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Introduccion

En los ultimos anos ha habido un gran desarrollo en el campo de las Logicas
Multivaluadas y, en consecuencia, de las estructuras matematicas comprometi-
das en ese desarrollo, como lo son las MV-alebras, las effect algebras y las
MV-effect algebras. En el ano 2006 Gejza Jenca [12] y Thomas Vetterlein
[17] partiendo de hipdtesis distintas representaron MV-algebras a través del
cociente de un algebra de Boole B por un subgrupo del grupo de todos los
automorfismos de B (Aut(B)). Esto es, ambos toman un par (B, G) (donde B
es un algebra de Boole y G es un subgrupo de Aut(B)), definen la relacién de
equivalencia sobre B a ~ b siy solo si existe f € G tal que f(a) = by se define
una operacion @ en el conjunto de las clases que lo hace una MV-algebra. En
este trabajo se desarrolla una parte de la representacién de Jenca (la otra esta
desarrollada en [12] y en la Tesis de Licenciatura de Guillermo Herrmann) y
se da una relacion entre las ideas de estos dos autores.

En la primera seccién se dan todas las definiciones y se demuestran todos
los resultados que son necesarios para el desarrollo de las secciones posteri-
ores lo que, aparte de darle a este trabajo el caracter de “autocontenido”,
da una ordenada introduccién a estructuras bésicas en el algebra de la légica
como reticulados, algebras de Boole, etc. También aparecen aqui las estruc-
turas claves usadas en el trabajo de Jenca, las MV-alebras, las effect algebras
y las MV-effect algebras.

En la segunda y tercer seccion se desarrolla parte del trabajo de Gejza Jenca
en la que se define que es un MV — par y se muestra que a partir de una MV-
effect algebra M puede construirse un algebra de Boole B(M) y un subgrupo
G(M) de Aut(B(M)) de tal forma que el par (B(M),G(M)) resulta un MV-
par. Ademds en [12] y en la Tesis de Licenciatura de Guillermo Herrmann se
demuestra que a partir de un MV-par (B, G) se puede obtener una MV-effect
algebra A(B,G). En [12] y en la seccién tres de este trabajo se demuestra
también que M = A(B(M),G(M)).

En la seccién cuatro se demuestra una correspondencia uno a uno entre las
MV-dlgebras y las MV-effect algebras. La demostracion es una adaptacion de

[5] y corrige la demostracién dada en [7] Teorema 1.8.12 (pagina 75).



En el apéndice, se transcribe parte del trabajo de Thomas Vetterlein en el que
se definen los conceptos de Complete Boolean ambiguity algebras y normal
Boolean ambiguity algebras, y a partir de estas se construye una MV-algebra.
Se muestra en esta seccién que si el par (B, G) es una Complete Boolean am-
biguity algebra o una normal Boolean ambiguity algebra entonces (B,G) es
un MV-par y que la MV algebra obtenida usando el camino de Vetterlein y la
MYV algebra obtenida usando el camino de Jenca y el teorema de correspon-
dencia coinciden y son semisimples. Por ultimo se prueba que partiendo de
una MV-algebra semisimple y obteniendo un MV-par (mediante el teorema de
correspondencia y el Teorema 3.3.3) este dltimo es una normal Boolean ambi-
guity algebra aunque no necesariamente es una Complete Boolean ambiguity

algebra.



1 Definitions and basic results

1.1 Lattices [16] [10] [3]

A partially ordered set (or poset) (A, <) consist of a nonempty set A and a
binary relation < on A such that < satisfies:

Reflexivity a<a

Antisymmetry a <b, b <a imply that a =105

Transitivity a <b, b<cimply that a <c

A poset (A, <) that also satisfies Va,be A a<b or b<a,

is called a chain (or fully ordered set).

Let P a poset, H C P and a € P. Then a is an upper bound of H iff h < a for
all h € H. An upper bound a of H is the supremum of H iff, for any upper
bound b of H, we have a < b (a is the least upper bound of H).

We shall write a = supH or a =\ H. If H={z,y}, wewrite \/ H =2zVy.
Let P a poset, H C P and a € P. Then a is an lower bound of H iff a < h
for all h € H. An lower bound a of H is the infimum of H iff, for any lower
bound b of H, we have b < a (a is the greatest lower bound of H).

We shall write a =infH or a= A\ H. If H={z,y}, wewrite A\H =zAvy.

It is easy to check te uniqueness of the infimum and supremum.
A poset (P, <) is a lattice if aANb y aVb exist, for all a,b € L.

Example 1.1.1 The set P(X) of all subset of a set X is a lattice with the
operations aVb=aUb, aAb=anb.

Example 1.1.2 If (' is a chain, then C' is a lattice.

Example 1.1.3 Let N; = {1,2,...... } where n < m iff 3k /nk =m
(i.e n | m). Then N, is a lattice with the operations a V b = mem(a,b) and

aNb=MCD(a,b) .

In every lattice the following hold:
(L1) Idempotency:



rVrx=x=xAx
(L2) Conmutativity:

tVy=yVvVuzx TANYy=yANx
(L3) Associativity:
zV(yVz)=(xVy Vz cAyANz)=(xAy) Az

(L4) Absorption identities:
zV(@Ay)=x=xA(zVy)
Alsox<ysr=rxANysSy=zVy.

Therefore x <y=axANz<yAz and zVz<yVz.

Example 1.1.4 If L is a lattice, a,b € L, a < b and
la,b] = {z € L /a < x < b}, then [a,b] is a lattice.

Example 1.1.5 Let (L,<,V,A) be a lattice. If we put a <p b iff b < a,
aANpb=aVband aVpb=aAbthen (L, <p, Ap,Vp) is a lattice.

A lattice can be characterized purely in terms of the properties
(L1), (L2), (L3), (L4).

Theorem 1.1.6 Let A be a nonempty set and “+7, “.” two binary operations
on A satisfying (L1),(L2),(L3),(L4) and set a <b iff a=a.b.

Then A is a lattice with aVb=a+0b and a Nb= a.b.

(Remark. If a = a.b, then a +b = a.b+b and, by (L4), a+b=10.
Similarlyb=a+b=a=a.b. Thusa <b iffa=abiffb=a+b).

Proof.
< is an order:
e a <aby (L)

e If a <band b <a, then a =a.b and b = b.a.

Therefore by (L2) a = a.b=b.a = b.

o Ifa <band b <c, then a =a.b and b = b.c.

Therefore by (L3) a.c = (a.b).c = a.(b.c) =a.b=a and a < c.
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at+b=aVb:

By (L4) a = a.(a+b) and thus a < a + b. Similarly b < a + b.
Let z such that ¢« < z and b < 2z, then 2z = a + 2z and z = b+ z. Then
(a+b)+2z=a+(b+2) =a+z = zand thus a+b < z. Therefore a+b = aVb.

ab=aAb:

Since (a.b).a = a.(a.b) = (a.a).b = a.b, we have a.b < a. Similarly a.b < b.
Let z such that z < a and z < b, then 2z = a.z and z = b.z. Then z = a.z =
a.(b.z) = (a.b).z and thus z < a.b. Therefore a.b = a A b. O

A lattice A is said to be distributive if, for all a,b,c € A

(L5) alN(bVe)=(@aNb)V(aNc)
aV(bAc)=(aVb)A(aVc)

Example 1.1.7 If C is a chain, then C is a distributive lattice.

A bounded lattice is one that has both a smallest element (or “0”) and a largest
element (or “17),that is, Va in the lattice, 0 <a and a < 1. (L6)

Notation a = xVy means a=zVy and Ay =0.

A sublattice KK = (K; A, V) of the lattice £ = (L; A, V) is a nonempty subset
K of L with the property that a,b € K implies that a A b,a Vb € K (the
operations A, V are taken in k), and the A and the V of K are restrictions to
K of the A and the V of L.

To put this in simpler language, we take a nonempty subset IC of the lattice £
such that C is closed under A and V. Under the same A and V, I is a lattice;
this is a sublattice of L.

A {0,1} — sublattice of a bounded lattice L is a sublattice containing the 0
and 1 of L.

An element a # 0 of a bounded lattice is called atom if the condition

0 <z < a implies that either x = 0 or x = a.



A set I of elements of a bounded distributive lattice L is said to be an ideal
provided that:

0el

Ifa,beL,aclandb<a,thenbel
Ifa,beL,aclandbel,thenaVvbel

A set I of elements of a bounded distributive lattice L is said to be a filter
provided that:

le F

Ifa,be L ,a€ Fanda<b,thenbe F

Ifa,be L ,ac Fandbe F,thenaANbeF

It is easy to see that intersection of any number of ideals (filers) of a lattice
L is a ideal (filter) of L. Thus, if a subset H of a lattice L is nonempty, we
can define the ideal (filter) generated by the set H, it is the intersection of all
ideals (filters) containing H, and the least ideal (filter) containing H.

The ideal generated by H will be denoted by (H|, and the filter generated by
H will be denoted by [H).

Lemma 1.1.8 Let L be a lattice and let H be a subset of L. Then
(H] = { « € L such that 3 an integer n > 1 and
elements hy...... h,€ Lwithe<h V...... Vhy, }.

Proof. Let I = { € L such that 3 an integer n > 1 and

elements hy...... h, € Lwitha <h V...... V hy, }.
It is clear that I is an ideal, and obviously H C I. Finally, ift H C J and J is
an ideal, then I C J, and thus [ is the smallest ideal containing H; that is,
I =(H]. O

Similarly, we have:

Lemma 1.1.9 Let L be a lattice and let H be a subset of L. Then
[H) = { = € L such that 3 an integer n > 1 and
elements hy...... h, € Lwitha>h;A...... A hy, }.



In particular if a,b € L,
(a] = {z € L such that x < a} is the principal ideal generated by a.
[b) = {y € L such that y > b} is the principal filter generated by b.

An ideal (filter) A of a bounded lattice L is called proper if A # L.

Lemma 1.1.10 An ideal I of a bounded lattice L is proper if and only if
1¢1.

Proof. If 1 ¢ I, then I # L and [ is proper.
Let I be a proper ideal of L. If 1 € I then a € [ for all element a in L (since
Va € L a <1 and [ is an ideal), thus L = I, which is a contradiction O

Similarly we have,

Lemma 1.1.11 A filter F of a bounded lattice L is proper if and only if 0 ¢ I.

An ideal I of a bounded lattice L is called prime if it is proper and the condition

a ANb € I implies that either a € I or b € I.

A filter F of a bounded lattice L is called prime if it is proper and the condition
aV b€ F implies that either a € F or b € F.

Lemma 1.1.12 Let L be a lattice, and let M be a prime filter (ideal) of L.
Then P = M¢ (M¢= L\ M) is a prime ideal (filter) of L.

Proof. We will verify one case only, the other require similar arguments. Let

M be a prime filter of L we will see that P = M€ is a prime ideal of L.

P is an ideal:

M prime = M proper =(by lemma 1.1.11) 0 ¢ M = 0 € M = P.

Let a be an element of P (= a ¢ M) and b < a.

Since M is a filter, if b € M and b < a then a € M which is a contradiction.
Therefore b ¢ M and thus b € P.

Since M is a prime filter, if a V b € M, then either a € M or b € M, hence
a¢ M and b¢ M imply aVb¢ M, thatis a € Pand b€ P imply aVb € P.
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P is an prime ideal:

M#®) (1 €M)= P = M¢is proper.

Since M is a filter a € M and b€ M = a ANb € M, hence

aNbé¢ M = ecithera ¢ M orb¢ M,

that isa Ab € P = eithera € Porbe P O

Theorem 1.1.13 (Birkhoff-Stone) Let L be a bounded distributive lattice.
If J is an ideal and F is a filter of L such that J N F = (), then there exist a
prime filter M such that JNM =0 and F C M.

Proof.

Let L be a bounded distributive lattice, and
F={G/Gisafilterof L, F C G and GNJ =0}

Since F € F, F # (. The set F is ordered by inclusion. Let {G;}
family totally ordered of F, then

ier be a

H = UG, is a filter of L,
FCH,
HNJ = (UierGi) N J = Uier(Gi N J) = Ui = 0,

thus H € F and H is an upper bound of {G;}

Therefore, by Zorn’s Lemma, F has a maximal element M.

i€l

It only remains to show that M is a prime filter of L.

Now suppose z Vy € M and let

M, = (M,z) = {s € L such that s > m A z for some m € M},
My = (M,y) = {s € L such that t > m A z for some m € M}.

We have, either My NJ =0 or MynNJ = 0.

If not, du,v in J and my, my in M such that
u>my AT vZ=ma Ny

Let m = my A mo, then

11



u>mAcx v>mAy.

Therefore u Vv > (mAx)V (mAy)=mA (zVy).

Since m € M, zVy € M and M is a filter, then m A (z Vy) € M, hence
uVveM.AlsouVwv e J, then uVov e MnNJ which is a contradiction.
Therefore, either M; NJ =0 or My N J = (). Suppoes that M; N.J = (). Since
F C M C M, then M; € F. Now, M C M;, M; € F and M is maximal in
F, imply M = M, and since x € My, then x € M. Similarly, if My N J = 0,
then y € M. Therefore M is a prime filter a

Corollary 1.1.14 Let L be a bounded distributive lattice. If J is an ideal and
F is a filter of L such that J N F = (), then there exist a prime ideal P such
that FNP =0 and J C P.

Proof. By Theorem 1.1.13 there exist a prime filter M such that JNM = ()
and FF C M. Let P = M°¢ (ie. P = L\ M) then P is a prime ideal (by
Lemma 1.1.12) and PNF = (since F' C M) and J C P (since JNM = ).0

Corollary 1.1.15 Let L be a distributive lattice, a,b € L and a # b. Then

there is a prime ideal of L containing exactly one of a and b.

Proof. Let (a] be the ideal generated by a and [b) the filter generated by b.
By Corollary 1.1.14 there exist a prime ideal P such that (a] C P and
PN[b)=0. Thusa € P and b ¢ P. 0

A homomorphism ¢ of the lattice Ly into the lattice L; is a map of Ly into

L+, satisfying both
paNb) =p(a) A p(b)

p(aVb)=(a)V o)

Remark: Let ¢ : Ly — L; be a homomorphism of lattices and aj,as € L.
If a1 < apin Ly then ¢(a;) < ¢(as) in L. Indeed, a; < agin Ly = a3 =
a; A ag = p(ar) = p(ar A az) = p(ar) A p(as), and then ¢(a;) < ¢(az) in L.

12



Remark: Let ¢ : Ly — L; be a homomorphism of lattices, then ¢(Ly) is a
sublattice of L.

A homomorphism of a lattice into itself is called an endomorphism, and a

one-to-one homomorphism will also be called an embedding.

A isomorphism of lattices is a biyective homomorphism. It is easy to see that
f~! (the inverse function of f) is an isomorphism of lattices as well.

The notation A = B means that there exist a isomorphism ¢ : A — B.

Let A and B be two bounded lattices. A {0, 1}-homomorphism is a

homomorphism that preserves 0 and 1.

Let Ly, Ly and L3 be three lattices and let g : L1 — Lo and f : Ly — L3 be
two homomorphisms of lattices. We write f o g for the composition of the two
operators, that is Va € Ly fog(a) = f(g(a)) in Ls. It is easy to see that fog

is a homomorphism.
Some of the next results will be used in Section 2.

Let L be a lattice. An element a of L is joint-irreducible iff a = bV ¢ implies
that @ = b or a = c¢; it is meet-irreducible iff a = b A ¢ implies that a = b or
a = c¢. The set of all nonzero joint-irreducible elements of a lattice L is denoted
by J(L) and the set of all non-unit meet-irreducible elements of a lattice L is
denoted by M(L).

In what follows, > denotes the usual covering relation on a poset, that means,

a > b iff b is a maximal element of the set {z : z < a}.

Lemma 1.1.16 Let L be a finite distributive lattice, let C' be a maximal
chain in L and let a € J(L). We define nc(a) = A{x € C:x > a} (the
smallest member of C' containing a, see Figure 1 to the left) and m(a) =
V{z e L:z#%a} Let z € C, mc(a) = x. Then

(i) aVa=mrc(a)

(ii)) a Nz =aAAm(a).

13



Proof.

(i) We have me(a) A (aV ) = (me(a) ANa) V (te(a) Ax) =aV z, so

me(a) > aVa > x. Since o (a) > x, we have either 7¢(a) =aVzoraVe = z.
However, a V x = z contradits with 7¢(a) # z (since aVe =2z = a <z =
= mc(a) <z = me(a) = ), hence m¢(a) =a V x.

(17) First note that

o Tc(a) - =a>alx.

Indeed, let a Ax < z < a, then x < zV 2z < zVa = me(a). Since

mo(a) < x we have either z = x V 2z or 7¢(a) = x V z. Now
r=zVz=z<r=z<aAx=z=alz, and
xVz=rmc(a) = (since a < me(a)) a=aAnc(a)=aN(xVz)=
=(aNz)V(aNnz)=(aNx)Vz=2 (sincez<aandaAz < z).

e a £ m(a). Indeed, let A be the set {x € L : x # a}, since L is a finite
lattice A = {z1,...,z,}. If a <m(a) then a =aAm(a) =aA (VA=

=aAN(x1V...Vz,)=(aANz1)V...V(aAxy,). Since a € J(L), then 3y,
1 < j < nsuch that a = a A z; and thus a < x; which is a contradiction

since z; € A.

Now, since z # a, we have z < m(a) and a Az < a A m(a) < a. Since
aVz=rmrc(a) =z, a>aAx. Therefore, a A x = a Am(a) or a Am(a) = a.
Since a £ m(a), a Az = a Am(a). O

Lemma 1.1.17 Let L be a finite distributive lattice. Then

(i) Every element is the join of nonzero joint-irreducible elements of L.

(ii) Let 271 be the set of all subsets of J(L). Then the mapping r : L — 27
given by r(z) = {a € J(L) : a < z} is a {0, 1}-embedding of L into 2/(~).
(iii) For every maximal chain C' of L, the mapping 7¢ : J(L) — C
is a bijection from the set of all join-irreducible elements onto C' .

Note that mc maps nonzero elements onto nonzero elements.

14



(iv) a € J(L) iff {& € L:x % a}is a prime ideal, and then,
m(a)=\V{z €L:x%a}e M(L).

Proof.

(¢) Let = be an element of L. If x € J(L), x is the join of nonzero joint-
irreducible elements of L.

If not, x =y V 2z with x # y and = # 2

Ify € J(L) and z € J(L) then x is the join of nonzero joint-irreducible elements
of L. If not, if for example, y € J(L) and z ¢ J(L)

then z = r VvVt with r # z and t # z. Therefore x =y V r V t.

The others case are similarly.

Since L is a finite lattice, the process comes to an end at a certain point.

(1) r is a {0, 1}-homomorphism of lattices:

r(0)={ac J(L):a<0}=0 (a€J(L)=a#0)

r(l)={ae J(L):a <1} =J(L)

Since a <x Ay < a<zand a <y, then r(z Ay) =r(x) Nr(y)
Ifa<zora<wy, thena <xVy. Thusr(z)Ur(y) Cr(zVy).
lfa<zVy=a=aA(zVy)=(aANzx)V(aAy) and since a € J(L), we have
eithera=aAxora=aAy (ie. a<xora<y),thenacr(z)oracr(y).
Thus r(z Vy) C r(z) Ur(y) and then r(z Vy) = r(z) Ur(y).

(73i) Since L is a finite lattice and Va in J(L) a <1 € C, m¢ is well defined.
T 1S injective:

Let a,b € J(L), x € C, x <m¢(a) (ie.z =\ {xr € C:x <me(a)}), and
mo(a) = me(b) (see Figure 1).

Then z V a = mo(a) = mo(b) = x V b, and
a=alAnc(a)=aN(xVa)=aA(xVb) =(aNx)V(aAD).

Therefore a = (a Ax) or a = (a Ab) (since a € J(L)) and thus a < z or a < b.
If @ <z then me(a) = AN{z € C:z2>a} <z and thus m¢(a) < z < 7c(a),
which is a contradiction. Therefore a < b. Similarly we can prove b < a and
thus a = b.

T s surjective:

15



Figure 1:

Let y € C'and z € C, z < y. Since z < y then z < y, therefore by (i) Ja € J(L)
such that a <y and a £ z. Thus 7c(a) <y (since y € {x € C: a < z}) and
z < me(a), (since z ¢ {x € C:a<x}. Therefore y = me(a) and 7e is a

surjective map.

(iv) Let A be the set {x € L : 2 # a} and a € J(L), then:

A is an ideal:
a€eJL)=0<a=0%a=0€c Alfrec Aandy <z theny e A
otherwise a < y < x which is a contradiction since x € A. If r € Aandy € A
then z Vy € A otherwise a < zVythena=aA(zVy) =(aAz)V(aAy)
and, since a € J(L), a =a A x or a = a Ay, therefore a < x or a < y which is
a contradiction since z € A and y € A.

A is a prime ideal:

Ifz¢ Aand y ¢ A then a <z and a <y hence a < x Ay and thus x Ay ¢ A.
Therefore if x Ay € A then either x € A ory € A.

Now suppose A is a prime ideal and a = = V y. Hence  V y ¢ A and, since
A an ideal, * ¢ Aory ¢ A and then a < z or a < y. Therefore either
r<zVy=a<zory<zVy=a<y,ie xz=aory=aandthusae€ J(L).

16



It only remains to show that a € J(L) = m(a) € M(L). Suppose that m(a) =
= = A y. First note that z # a or y #? a . Indeed if z > a and y > a then
a < x Ay =m(a) which is a contradiction (see proof Lemma 1.1.16 (i7)),

i.e. either z € Aory € Ahence x <\/A=m(a) =z ANy <zor

y < VA=m(a) =x ANy <y then either z = m(a) or y = m(a) and thus
m(a) € M(L). O

1.2 Boolean algebras [16] [10] [3] [15]

In a bounded lattice L, a is a complement of b iff

anNb=0
aVb=1

Lemma 1.2.1 In a bounded distributive lattice, an element can have only

one complement.

Proof. If by and b; are both complements of a, then
b():b()/\l :bo/\(a\/bl) = (bo/\a)\/(bo\/b1) :O\/(bo\/bl) :bo\/bl
similarly, bl = bo V bl, thus bg = b1 O

We denote to complement of an element a by a’. Note that a” =a, 0/ =1
and 1/ = 0.

A complemented lattice is a bounded lattice B in which every element has a

complement, i.e. Va € B 3a’ € Bsuchthat aAd’=0and aVvad =1 (L7).

A Boolean algebra is a distributive complemented lattice.
Thus a Boolean élgebra is a system: (B, A,V, ’,0,1) where A,V are binary

operations, ' is a unary operation, and 0, 1 are nullary operations.

As in lattices, we can define a Boolean algebra in terms of the properties of

AV,

Theorem 1.2.2 Let B be a nonempty set and +,. two binary operations
and " a unary operation on B satisfying (L1), (L2), (L3), (L4), (L5), (L6) and
(L7) (see page 6,8,8,17). Set a < b iff a = a.b.
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Then B is a Boolean algebra and a Vb= a+b and a A b= a.b.
Proof. Theorem 1.1.6. O

Example 1.2.3 The set P(X) of all subset of a set X, is a Boolean algebra
with the operations aVb=aUb, aAb=anb, ad =a°, 0=0, 1 =X .

Its atoms are the subset with only one element.

Example 1.2.4 Let (B, A,V, ’,0, 1) be a Boolean algebra, let a be an element
of B and the interval [0,a] = {x € B/0 <z < a}. Then ([0,a],A,V, ¢0,a) is
a Boolean algebra, where z¢ := z’' A a.

Indeed, [0, a] is closed under V and A, and a is its largest element.

If  €[0,a) then z° ANz = (2’ Na) Aoz = (2 ANz)ANa=0Aa=0 and

Ve = (@' Na)Ve=(2'Vz)A(rVa)=1ANa=a (since B is a distributive

lattice and x < a).

Example 1.2.5 Let (A;);c; be a family of Boolean algebras. It is easy to see
that the product A =[] jed A, is a Boolean algebra with the operations:
Ifa,bEA (a\/b)j:aj\/bj (a/\b)j:aj/\bj a’:(a’)jeJ

J
1A = (1Aj)jej and OA = (OAj)jeJ.

Lemma 1.2.6 (De Morgan’s Identities) Let B be a Boolean algebra and
let a,b in B. Then

(i) (aVb) =d Ab and
(i) (anb) =d V.

Proof.

(7)) (aVb)V(d'AV) =aVbV(dAV) >aV(bAd)V(dAV) =aV(d AN bVDY)) =
aV(a'AN1)=aVad =1. Therefore (a Vb)V (a/ AD') = 1. On the other hand,
(aVO)A(dANY) = (and NV)V (DA AY)=0V0=0. Thus (aVb) =d AV.
(77) Replacing a by a’ and b by V' in (i) and using that Vo € B 2” = z, then
(anb) =d V. 0

Let B be a Boolean algebra and a,b € B. We define a\b=a AV

The next Lemma will be used in Section 3.
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Lemma 1.2.7 Let B be a Boolean algebra and a,b,c,d € B. Then:
() (avb)\e=(a\e)V b\ o).

(i) (anb)\c=(a\c)A(b\c).

(iii) If c<a,c<band a\c=0b)\ cthen a =b.

(iv) a\b<a.

(v) fa<b<c\dthenb\a=((bVd) Ac)\ ((aVd)Ac).

(Vi) a<be b <d.

(vii) If a < ¢ then (b\¢) \ (a\¢c) =0\ a.

(viii) Let ag,aq,...,a, € B be such that 0 =ag < a; < ... < a,, then

an = (ay \ an_1)V...V(az \ a1)V(as \ ag).

In particular, if a, = 1 and we write b; = a; \ a;_1, 1 < j < n, we obtain
1 =b,V...VbyVb;. Therefore for all z € B,

x = (xAby)V ... V(2 Ab2)V (2 Ab). We say that {;}7_, is a decomposition

of unit in the Boolean algebra B.

(ix) Let ay,...,an,b1,...,bp,¢1,...,¢, in B be such that a;,b; < c¢y;...
cojan, by <cpand g Ae; =0 for 1 # 5 1<4,j <n.Then
(@ V...Va,)AN(b1V...Vb,) = (a1 Ab) V...V (a, Aby,) and, if

a1V...NVa,=bV...Vb, then ay =bq,...,a, =b,.

Proof.
i) (avb)\c=(aVb)ANd=(aNnd)V(bAC)

(i = (a\c)V(b\o)

(i7) (aND)\c=(aANbD)AN =(aN)NDANI)=(a\c)N (D) c).

(iii) a=aNl=aAN(cVvd)=(aNc)V(aNnd)=cV(a\c)=cV(b\c) =
bAc)V(OAL)=bA(cV)=bAN1=0.

(w) a\b=aANb <a.

(v) (bvd)Ane)\ ((avd)Ae)=((bVd)ANe)A((aVd)Ae) =
=((bAc)V(dNe)AN((dANd)V )=
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=bANcNdNd)V (bANcA)V ([ dNecNd Nd)YV (dNeNd) =
=(bAcAd ANd)YVOVOVO=(bAd)A(cAd)=(b\a)A(c\d)=Db\a since,
by (iv) b\ a < b and by hypothesis b < ¢\ d.

(vi) @ < b= a = a Ab then, by De Morgan’s identities, a’ = a’ V I/ and thus
b’ < d'. Therefore a < b imply O/ < a'. In particular &' < o’ imply a” < b” that
isa<hb.

(vii) (b\c)\(a\c) = (bA)A(and) = (bAI)A(a'Ve) = (DAL A )V (DAL Ne) =
=bA(Nd)VO=bAd =b\a froma <cand (vi).

(viit) We use induction on n. If n = 1, we have a; = a1 A1 = a3 A0 =a; \0 =
ar \ ag. Let ag,ay,...,a,,a,41 € B be such that 0 = ap < a3 < ... < a, <
ani1- Then, a,i1 = anig A1 = apyy A (a,Vd)) = (ani1 A ay)V(an Aal) =
(s \ @) = (a \ )V V(an \ a1)V(ar \ @0)¥ (s \ @) (by the
induction hypothesis).

(i) (a1V.. Va )N V.. . Vb,) = [ ainbj. 1f i # j, a;Ab; < ciAc; = 0, thus
a;\b; = 0 and we obtain (a1 V...Va,)A(b1V...Vb,) = (a1 Ab) V...V (a,Aby).
Now suppose a; V.. .Va, = b1 V...Vb,, then a;A(a1V...Va,) = a; A(byV...Vb,)
hence a; A a; = a; Abj (since for ¢ # j, a; Na; < ¢; Ac; =0 and

a; ANb; < ¢;Ncj =0). Therefore a; = a; Ab; and thus a; < b;. Similarly b; < a;
and then a; =0; 1 <j<n. O

A subalgebra of a Boolean algebra B is a nonempty subset A of B satisfying

the following conditions:
i) re A=2a' € A,
(i) r,ye A=z ANy€eAand zVy € A.

Note that 0 € A, 1€ A and A is a Boolean algebra.

Theorem 1.2.8 Every bounded distributive lattice can be embedded in a

Boolean algebra.

Prof. Let L be a bounded distributive lattice and let X be the set of all prime
ideals of L. For a € L, let r(a) = {P/a ¢ P, P € X}.
Let ¢ be the map of L into P(X), ¢(a) = r(a).
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We claim that ¢ is a {0, 1}-homomorphism of lattices of L into the lattice (the
Boolean algebra) P(X).

Since VP € X, 0 € P then r(0) = 0.

Since every P in X is proper and Lemma 1.1.10, then r(1) = X.

r(aAb) =r(a)Nr(d):

Per(and)imply aANb ¢ P, sincea ANb<aand P is a ideal, if a € P then
a/Nb e P, wich is a contradiction, then a ¢ P. Similarly b ¢ P, thus P € r(a)
and P € r(b) that is r(a A b) C r(a) Nr(b).

Conversely, P € r(a) N r(b) imply a ¢ P and b ¢ P. Since that P is a prime
ideal, aAb€ P = a € P or b € P,wich is a contradiction, then a A b ¢ P
Therefore r(a) Nr(b) C r(a Ab) and thus r(a A b) = r(a) Nr(b).

r(aVb) =r(a)Ur(d):

P e r(aVvb)imply aVvb¢ P.Since P is a ideal, if « € P and b € P imply
aVb € P, therefore either a ¢ P or b ¢ P. This is, either P € r(a) or P € r(b)
and r(a V b) C r(a) Ur(b).

Since a < aVb, b<aVb, and Pisaideal,aVbe Pimplya € Pandbe P,
then a ¢ P or b ¢ P, imply a Vb ¢ P. This is r(a) Ur(b) C r(a V b). Thus
r(aVb) =r(a)Ur(b).

1 is an injective map:

Let a,b € L, by Corollary 1.1.15 there exist a prime ideal P such that a € P
and b ¢ P, then P ¢ r(a) and P € r(b), thus r(a) # r(b). 0

A homomorphism ¢ of Boolean algebras is a {0, 1}-homomorphism of lattices

that preseves the complement .

Remark: Let A, B be two Boolean algebras and let ¢ : A — B be an
{0, 1}-homomorphism of lattices. Then ¢ preseves the complement .
Indeed, let a € A, 04 =aNd = p(04) =plaNd)= 0p=pla)\p(d).

la=aVvad = @(la)=plaVvd)=1g=pa)Ve(d).
Thus (¢(a))” = ¢(a’).

Lemma 1.2.9 Let ¢ : A — B be a homomorphism of Boolean algebras.

Let aq,as € A, then
(i) If a1 <as = p(a1) < ¢(az) in B.
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(i) ¢(ar \ az) = p(ar) \ p(az).

Proof. (i) Remark page 12.
(#2) plar \ az) = (a1 A ay) = plar) A p(ay) = plar) A (plaz))" =
= p(a1) \ p(az). O

A homomorphism ¢ : By — By of Boolean algebras is onto (or surjective) if
for every by € By there is a by € By with ¢(by) = bs.

A homomorphism ¢ of Boolean algebras is one-to-one (or injective) if

o(a) = @(b) = a =b.

An isomorphism of Boolean algebras is a biyective (one-to-one and onto) ho-
mohorphism.

The notation A = B means that there exist an isomorphism ¢ : A — B.

An isomorphism of a Boolean algebra with itself is called an automorphism.
Let B be a Boolean algebra and let f : B — B be an automorphisms on B,
we write f" for fo...o f (n times) and f™ for f~'o...o f~! (n times) for

all n € N.
Definition 1.2.10

e A Group (A,+,0) is a non-empty set A with a binary operation + and
a constan 0 satisfying the following equations:
for all z,y, 2 € A we have z+(y+2) = (x+y)+2z, r+0=0+2 ==z,
Vz € A there is an element —z € A such that x + (—z) = (—z) + 2 = 0.

e Let (A, +,0) be a group and C' C A. We say that C' is a subgroup of A
if: 0eC reC=—-xel and Ve,ye C z+yeC.

Example 1.2.11 It is easy to see that:

If B is a Boolean algebra, then ¢d : B — B is an isomorphis on B where
id(b) = b for all b € B (the identity map).

If By, B; and B, are Boolean algebras, and ¢ : By — By, ¢ : By — Bs,
are two homomorphisms (isomorphisms) of Boolean algebras, then ¢o¢ :

By — By is a homomorphism (isomorphism) of Boolean algebras.
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If By, By are Boolean algebras, and ¢ : By — Bj is an isomorphism of

1

Boolean algebras, then o= : By — By is an isomorphism of Boolean

algebras.

Let B be a Boolean algebra. We write Aut(B) for the set of all automorphisms
of B. From Example 1.2.11 it is easy to see that (Aut(B),o,d) is a group.

Example 1.2.12 Let (A4;),c; be a family of Boolean algebras. The map

prA=]]A4 — A&
jedJ

defined by

pr((aj)jer) = ay

is called the projection map on the k th coordinate of HjeJ Aj.

It is easy to check that py is a surjective homomorphism of Boolean algebras.

1.3 Boolean algebras R-generated by a bounded
distributive lattice [10]

Let A be a nonempty set with two binary operations “+ 7 and “.” .

A is called a ring if Va, b, c € A:

(a+b)+c=a+(b+c) J0 € AsuchthatVae A a+0=a
a+b=b+a Va € A 9—a € Asuch that a + (—a) =0
(a.b).c = a.(b.c) a.(b+c)=ab+a.c (a+b).c=a.c+b.c

A is called a commutative ring if A is a ring and Va,b € A a.b = b.a.

A is called a ring with a unit if A is a ring and exists 1 € A such that
YVae A a.l=a.

Let A be a ring, and C' C A.
C'is a subring of A if:

0eC, ai,as € C= a;+ay € C and aj.as € C,| ace(C=—-acC

Let A be a commutative ring, and I C A.
I is an ideal of A if:
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C #0, ryel=r+(-y)el, x€A and cel = z.cel.

Let A and B be rings. A map f: A — B is called a homomorphism if

Vaj,az € A flar+a2) = flar) + f(a2),  flar.az) = flar).f(a2),
and, furthermore, if A and B are rings with unit, then f(1) = 1.

The proofs of two next theorems are purely computational.
Theorem 1.3.1

(i) Let B be a Boolean algebra. We defined two binary operations in B:
a+b=(aNb)V(bAd)=(a\b)V (b\a) “symmetric difference”
ab=aAb
them B® = (B, +,0,.,1) is a conmutative ring satisfying 22 = z.0 = .

Furthermore Vo € B z+x = 0 and hence v = (—z) and z+y = 2+ (—y).

(ii) Conversely, let a (B, +,0,.,1) conmutative ring with unit satisfying 22 =
x.x = z, (a Boolean ring with unit). If we defined = < y iff x = z.y, then
B become a Boolean algebra B* in which t Ay = 2.y and 2z Vy =

rT+y+zy.
(iii) Let B be a Boolean algebra, then (B®)* = B.

(iv) Let B be a Boolean ring with unit, then (B%)® = B.

Theorem 1.3.2 Let By and B; be two Boolean algebras.

(i) Let I C By. Then [ is an ideal of By iff I is an ideal of (By)*.

(ii) Let ¢ : By — Bj. Then ¢ is a homomorphism of Boolean algebras of B
into By iff ¢ is a homomorphism of (By)® into (B;)*.

(iii) By is a subalgebra of By iff (By)® is a subring of (Bj)*.
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We will need the next Lemma.
Lemma 1.3.3 Let B be a Boolean algebra.
(i) fa,be BthenaAb=0iff a <V
(i) If a,b € Band aAb =0, then a+b = aVb (where V is the disjoint join).
(i) If a,b € Band a <b,thena+b=">)\ a.
(iv) If a,b,c € B and a < b, then a A (c\ b) = 0.

(v) Let ay,as,...,as, € B be such that a; < as < ... < ag,. Then

a +as+ ...+ Aop = (CLQ \ al)\'/(a4 \ CL3)\'/ Ce \'/<a2n \ agn_1>.

(vi) Let aq,as,...,as,—1 € B be such that 0 < a; <as < ... < ag, 1. Then

a+ag+ ...+ agp_1 = CL1\7<CL3 \ CL2)\7 c. \7(a2n_1 \ agn_g).

Proof. (i) If aAnb=0thena=aAl=aA (bVI)=(aAb)V(aAD)=
=0V (aAl)=aAl, and thus a < b'. On the other hand a <V = a=a AV
and then a Ab= (aANV)Ab=aAN({H AND)=aN0=0.

(i) By (i) aAb=0=a <V and b < d’, hence a+ b= (a ANV)V(bAd) =

= aVb.

(731) By (i) a <b=aAl =0. Thena+b=(aANV)V(bAd)=0V (bAd) =
=bAd =0b\a.

(iv) Since a < b, by (i), aAV = 0. Thus a A (c\b) = aA(cAV) = (aANV)Nec=
=0Ac=0.

(v) We proceed by induction on n. If n = 1 we have a; < ay and, by (i),
a1+@2:a1\a2. Now suppose a1 < as < ... < as, = a1 +as+ ...+ as, =
= (az \ a1)V(as \ a3)V ... V(ag, \ azn_1). Let a1 < as < ... < ag, < agppg <

< agpyo. From the induction hypothesis and ag,11 < as,i0 and (ii7) we have
a; +as+ ...+ agy + Gops1 + Gopyo = (a1 +as + ...+ azy) + (a2p1 + a2p12) =
((az \ a1)V(ag \ a3)V ... V(az, \ azn_1)) + (a2n12 \ azny1). Note that

forall 1 <i<n,ay\ay_1 < ay < as,, 1 and thus

(ag \ a1)V(ag \ a3)V...V(ag, \ agn—1) < ag,i1. Therefore, by (iv),

((a2 \ a1)V(as \ az)V ... V(azn \ azs-1)) A (2012 \ @2n41) = 0 and thus by (i)
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((a2 \ a1)V(as \ az)V ... V(agn \ agn-1)) + (a2ns2 \ a2n11) =

= (az \ a1)V(as \ a3)V ... V(az, \ a2n_1)V(az,i2 \ a2ny1). Therefore

ay +as + ...+ o + Aopy1 + onpo = (ag \ ar)Viag \ az)V ... V(a, \ az,_1)V
V(agnia \ aani1)-

(vi) Let ag = 0 then, by (v), a1 +as+...+ a1 =0+a1+ax+...+ag,_ 1=
ap+ay+as+ ...+ ag 1= (a; \ ag)V(az \ a2)V ... V(agn_1 \ a2,) =

= (a1 \ 0)V(az \ az)V ... V(ag,_1 \ az,) = a1V(az \ a2)V...V(agn,_1 \ az,). 0O

Definition 1.3.4 Let L a {0, 1} — sublattice of the Boolean algebra B. Then
L is said to R-generate B iff L generates B as a ring.

The next Lemma will be used in Section 2.

Lemma 1.3.5 Let L be a finite distributive lattice and r : L — 27(0) ag
Lemma 1.1.17. Then r(L) R-generates 27("),

Proof. From Remark page 12 r(L) is a sublattice of 27().
Now, note that:

i) Let a € J(L), 21 < a and 25 < a. Then z; = 2.

z1 < aand zo < a imply 21 < a, 29 < a and 2; V 25 < a. Thus z; <

21 V 29 < a. Since z; < a we have either z; V zo = a or 21 V 29 = 21.
21V 2y =a= 2z =aor 2 =a (since a € J(L)) which is a contradiction.

Then z; V z5 = 2z; and thus 2o < z;. Similarly z; < 25 and thus z; = 2».

ii) Let a € J(L) and z < a. Then z =\/{zx € L : z < a}.
0 € {xeL:x<a}. Since L is finite, {x € L:z <a} = {x1,...,2,}
with z; <a,1 <7 <n,and thus z; V...V z, < a. Now

1 V...Vz, =a= 351 <j <nsuch that a = x; (since a € J(L))
which is a contradiction. Therefore 21 V...V, < ¢ and thus ;1 V... Vzx,
is a maximal element of {x € L: 2z < a} that is \/{r € L:z <a} < a
and thus ,(from i), z = \/{z € L: x < a}.
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iii) Let a € J(L) and z < a. Then r(a) + r(z) = {a}.
z<a=z<a=r(z) Cr(a) and then r(a) + r(z) = r(a) \ r(2).

a € r(a) and a ¢ r(z) (since z < a) then {a} € r(a) \ r(z) = r(a) + r(2)
and thus {a} C r(a) + r(2).

rer(a)+r(z)=r(a)\r(z) =zeJ(L),z<aandz £ z. Alsoz < a

and 2 <a=z2<zxVz<a Since z < aeitherxVz=zo0rzVz=a.

)
r(

zV z =2z = x < z which is a contradiction. Therefore z V 2 = ¢ and
since a € J(L) either z = a or x = a. Now, z = a is a contradiction, then
x=aand r(a) \ 7(2) =r(a) + r(z) C {a}. Therefore r(a) + r(z) = {a}.

Now, let A € 2/F) A = {ay,...,a,}.

Let z1,..., 2, such that z; < a;, 1 <i <n. Then, from éii) r(a;) +r(z;) = {a;}

1 <i<mnandthus A= {a,...,a,} ={a1}U...U{a,} ={a1}+...+{a,} =

= (r(ay) +7(z1)) + ...+ (r(an) +r(z)) =r(ar) +r(z1) + ... + r(an) + r(z).
O

Lemma 1.3.6 Let B be R-generated by L. Then every a € B can be ex-

pressed in the form ag+ a1 +...... 4+ ap—q with ag < a; <...... < a,_1 and

Proof. Let B; denote the set of all elements that can be represented in the
form ag+a;+...... + ap_1, Qo,QA1,...... Qp_1 € L.
Then L C By, and By is closed under + and — (since z —y = x + y).

Furthermore,

(ag+...... +ap_q).(bo+...... tbuo1) =Y aib; (1)

and each term a;b; = a; Ab; € L, so B; is closed under multiplication. We
conclude that B; = B.

Note that L is a sublattice of B; therefore, for a,b € L, a Vb in L is the same
asaVbin B. Thus a Vb= a+ b+ ab, and so

a+b=ab+ (aVb)=(aNb)+ (aVD).
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Take ag + a; + ...... + a,—1 € B. We prove by induction on n that the

summands can be made to form an increasing sequence. We will prove that

ap+a;+...... +ap_1=bg+b+...... + b,,_1, where
n—1—j
bi =V @i osiocin<cin 1 y<n1) (2)
k=0
and thus by < ...... <bp,pandb;e L 0<j<n-—1

For example if n = 3 the formula 2 is:

aptai+ag = (ag A ay A az) + ((ag Aay) V (ag A az) V (ag A ag) + (ag V ag V asg) .

J/ /
-~ -~ -~

bo b1 ba

For n = 2 we have ag + a1 = (ap A a1) + (ap V aq).

Let ag+a1+...... 4+ ap_1 + ay,.
ag+a;+...... +ap1+ta,=ap+ (a1 +...... + a,—1 + a,). By the induction
hypothesis, a; +...... +ap_1+a,=d+...... +d,_1 + d,, where
n—1—j
dj = \/( /\ (7 1§i1<i2<...<in,17j§n)

k=0
Now,
ag+ap+...... +an1t+a,=ap+ (ag+...... +a,1+a,) =

ap+ (dy +...... +d,1+dy)=ag+di+...... +d, 1 +d, =

=(agNdy)+ (agVdy)+do+...... +dy_1+d, =
= (ap Ady) + ((ag V di) Ads) + ((ag Vdi) Vdo) +ds+...... tdpy +dy, =
= (ag Ndy) + ((ap Vdy) Nda) + (ap Vde) +ds+...... +d, 1 +d, =
= (apNd1)+((agVdi)Ad2)+((agVda)Ads)+((agVde)Vds)+dy . . . . .. +dp_1+d, =
= (apNdy)+ ((agVdi)Nd)+ ((ag Vda) Nds)+(agVds)+dy ... ... +dyp1+d, =
=(agANdy)+ ((apVdi) Ndy) +...... + ((ap V dp—1) Ndy) + (ag V dy,),
and

agNdy =agAN(ar Ao Nag_1 Nay) =agANay A... A ap_1 N\ a, = by.
apVd,=ayV (a1 V...Vap_1Vay,) =aVaV...Va,1Va,=Db,
and, for j =1,2,....,n—1,

(ap V d;) Ndji1 = (ao ANdjy1) V (dj Ndjy1) = (ag ANdjp1) V dj =
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n—j—1 n—j

= (ap A (\/( /\ iy, 1<ig<ir<...<in_j_1<n))) V (\/(/\ iy, 1<ig<ir<...<in_;<n)) =

k=0 k=0

n—j—1 n—j
= (\/( /\ o A @iy, 1<i1 <1 <. <in_j_1<n)) V (\/(/\ Wiy, 1<ig<is <...<in_j<n)) =
k=0 k=0
n—j n—j
= (\/(/\ iy, 0=ig<iy<...<in_j_1<n)) V (\/(/\ iy, 1<iy <in<...<in_j<n)) =
k=0 k=0

n—i

- \/(/\ Qjy, 0§i0<i1<---<in_j—1§n) = bj

—J
k=0

Lemma 1.3.7 Let L be a bounded distributive lattice. Then there exist a
Boolean algebra R-generated by L.

Proof. By Lemma 1.2.8 L can be embedded in a Boolean algebra A.

Let [L] denote the set of all elements that can be represented in the form
apg+ai+...... + a1, o, QA1,.----. ap—1 € L. Then

lfae[l]=d €[L]sincel € Landa =a+1(a+1=(aNl)V(dA1l)=
(@n0)V(dAN1)=0Vd =d).

If z,y € [L], then by formula (1) page 27, x Ay € [L] and since =z V y =
r+y+axAy, zVy € l[L]

Thus [L] is a subalgebra of the Boolean algebra A, in particular [L] is a Boolean
algebra. Furthermore, by definition, L C [L] and [L] is R-generate by L. O

Lemma 1.3.8 Let B be a Boolean algebre R-generated by L.
Then |B| < |L| + Ro.

Proof. By Lemma 1.3.6, every element of B can be associated with a finite
sequence of elements of L U {+}, and there are no more than |L| + Ry such

sequences. (I
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Definition 1.3.9 Let L be a bounded distributive lattice. B is a Boolean
algebra freely R-generated by L if:

(i) B is a Boolean algebra.
(ii) B is R-generated by L.

(iii) If By is R-generated by L, then there is a homomorphism ¢ of B onto
By that is the identity map on L.

Theorem 1.3.10 Let L be a bounded distributive lattice. Then, there exist
a Boolean algebra B freely R-generated by L.

Proof. Let (B,);ec; the family of all Boolean algebras R-generated by L (from
Lemma 1.3.7 this family is not empty). For any B; there exist

i; : L — Bj the inclusion. B has the property that, for any B; (j € J) there
exist a homomorphism ¢, of B onto B; that is the identity map on L. To
construct B, we have to construct a Boolean algebra R-generated having this
property for all B;.

How would we construct such a Boolean algebra R-generated for two (B; and
Bs)? Form the Boolean algebra B; X Bs (see example 1.2.5), and define a map
¢ L — By X By by (1) = (i1(1),i2(l)). Then

¢ is a {0, 1 }-homomorphism of lattices and ¢ is an injective map.

Thus, ¢(L) = L, and ¢(L) is a bounded distributive lattice.

We identify [ € L with ¢(1) = (i1(1),i2(1)) € ¢(L) C By X Bs.

Let N = [¢(L)] (N C By x By) as Lemma 1.3.7.

By construction, N is R-generated by L (by ¢(L)).

Let ;- N — B; (j = 1,2) @;(b1,b2) = bj,

then ¢;(“0") = ¢;(¢(1)) = ¢;(i1(1),42(1)) = i;(I) = | in By, and

¢; is a homomorphism of Boolean algebras (see example 1.2.12) of N onto B;.

If we are given any number of Boolean algebras B; R-generated by L, we can
proceed as before. There is only one problem. All B; do not form a set, so their
direct product cannot be formed. Observe that, by lemma 1.3.8, in every B;
we have |B;| < |L| + Nq. Thus, by choosing a large enough set S and taking

only those B; that satisfy B; C S, we can solve our problem.
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Now we are ready to proceed with the formal proof. Choose a set S satisfying
|S| = |L|+Ny. Note that for each B;, since | B;| < |S|, we have a injective map
a; By — S,

Let S; = a;(B;), and make S; into a Boolean algebra by defining

0s, = ;(0p,), ls, = a;(1p,), a;(b1) A o(b2) = a;(br A bg),

aj(b) Vaj(ba) = (b Vo)  and  (o(D)) = a;(¥).

Then o is an isomorphism of Boolean algebras, and B; = 5.

Let A be the Boolean algebra A =[[,.;S; and ¢ : L — A with

o(l) = (a;(4;(1)))jes- ¢ is a injective {0, 1}-homomorphism of lattices.

As before, let B = [¢(L)] C A. Then, B is a Boolean algebra and B is R-
generated by L (by ¢(L)). Also, let ¢y, : B — By, px = a; ' opy (k € J).

¢ is @ homomorphism of Boolean algebras of B onto By, (see Example 1.2.11)
and, if we identify [ € L with ¢(l) in B, then ¢ (“I”) = pr(o(l)) =

— ol (3 (i50))ses) = ot o prl (3 (150 ses) = i awielD))) = inll) = Lin
By, O

Lemma 1.3.11 Let ag,aq,...... ,a,_1 be elements of L such that
apg<a; < ...... < a,_1. Let B be a Boolean algebra R-generated by L.
Then ag+a;+...... +ap-1 <a,—; in B.

[199%)]

Proof. We proceed by induction on “n”.

The case n = 1 is trivial (ag < ap).

Let ag+a;+...... 4+ ap_1 + ay, apg <ap < ...... < ap_1 < ay.

The induction hypothesis is ag+a; +...... +an—1 < ap_1 .

Thus ag+a; +...... +ap_1 < an_1 < a,, and then

(ap+a;+...... +a, 1) Na, =0

Therefore,

ag+a;+...... +ang+ta,=(a+a+...... +an_1)+a, =
=((ap+a+...... +an1) Nap)V ((ag+a1+...... +a,1)Nal) =
=(ao+ar+...... +an1) Nap,) V0=

=(ag+a+...... +an_1) Na, < a, O

Lemma 1.3.12 Let B be a Boolean algebra freely R-generated by L and let
By be a Boolean algebra R-generated by L. Then B = Bj.
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Proof. Since B a Boolean algebra freely R-generated by L, then there exist a
homomorphism ¢ of B onto B; that is the identity map on L.

We will see that ¢ is one-to-one.

If a,b € B and ¢(a) = ¢(b) then,

0= p(a) A(p(a)) = @b) A(p(a) = @(b) Ap(a) = @b Ad).

Let c =bAd € B. By Lemma 1.3.6, if ¢ # 0 then

c=lo+lL+...... + 11,

where o, l1,...... dp 1 €Land 0<lp <1 <...... <l,_1.

De todas las posibles escrituras de ¢, tomo

c=lo+lL+...... +lpo1, loyly,..o... €L, 0<lpg<hL <., <ln_1

con 1 minimo.
We have ¢(c) =0

olo+1L+...... +ln2+ln 1)=0

o(lo) + () +...... + @(ln—2) + ¢(ln—1) =0  (by Theorem 1.3.2 (ii)).
w(lo) + () +...... + o(lp—2) = —p(la-1)

o(lo) +o(lh)+...... + o(lh—2) = p(ln-1) (by Theorem 1.3.1 (i)).
Thus, by Lemma 1.3.11 and Lemma 1.2.9,

P(ln—2) < o(ln-1) = @) + @(l1) +...... + (ln-2) < @(ln-2).

Hence ¢(l,,—2) = ¢(l,,—1) and since ¢ is the identity map on L, l,_o = [,,_1.
Therefore, c=1lg+ 11 +...... +lpot+lpr=lo+lL+...... +lp1 + 1 =
=lo+L+...... + (o + b)) =lo+ L +...... +1l,3+0=
=lg+lL+...... + [l,,_3. Absurdo pues n era minimo.

Then we have ¢ = 0 that is bAd’ = 0.

With the same argument a A b = 0.

Now, bAa =0=a <b (by Lemma 1.3.3 (7)), and a A) =0=b < a.
Hence a = b O

Theorem 1.3.13 Let B; and B, be two Boolean algebras R-generated by L.
Then Bl Bg

Proof. By lemma 1.3.12 there exist ¢ : B — B; and g : B — By
isomorphisms of Boolean algebras, where B is a Boolean algebra freely R-

-1

generated by L. Therefore ¢ : By — By, @ = @90 (¢1) is a isomorphism

of B; into By O
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Remark: For a bounded distributive lattice L, we shall denote by B(L) a
Boolean algebra R-generated by L.

Example 1.3.14 For a bounded chain C' an explicit representation of B(C')

is given as follows:

Let B [C] be the set of all subsets of C' of the form

where + is the symmetric difference and (a] = {c € C/c < a}. We consider
BIC] as a poset (partially ordered by C). We identify a € C with (a] for
a # 0, and 0 with (). Thus C C B[C].

Note that,

o ay < a; = (ag] + (a1] = (ao, a1],
e if A B are disjoint sets, then A+ B = (B°NA)U (BN A°) = AUB,

e ag < a; < ay < asz= (ag,a1] and (ag, ag] are disjoint sets.

Then

(ao] + (as] +...... + (agn—o] + (ag,—1] =
= ((ao] + (a1]) + .. + ((azn—1] + (a2n—2]) =
= (ap, a1+ ......... + (agn_2, aon_1] =
= (ag,a]U......... U (agn_2, Gon_1]

(ag] + (a1] + (ag] + ... ... + (agn—1] + (az,] =
= (ao] + ((a1] + (a2]) + ... + ((a2n-1] + (a2n]) =
= (ao) + (a,as] +......... + (agp_1, a9, =
= (ao) U (a1, az)U......... U (agn_1, agn] =
= (0,a0] U (ag,as)U......... U (agn_1, aon)-

Lemma 1.3.15 Let C a bounded chain. Then ({0} U B [C]U{C},uU,N,0,C)
is the Boolean algebra R-generated by C'.

Proof. The proof is obvious by construction and by Theorem 1.3.13. a
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Lemma 1.3.16 If [0,q], is an interval in a bounded distributive lattice L,

then B([0,a],) is naturally isomorphic to the interval [0, a] ;).

Proof. We note that:

[0, a] g1y is a Boolean algebra (see example 1.2.4),

[0, a],, is a sublattice of [0, a]p ;).

Moreover if z € [O,a]B(L) then v =1y + 1o+ ...+ 1, with l1,05,...,1l,, € L and
0<z<a Thenz=zANa=UL+bL+...+lL)Na=l+1l+...+1,).a=
=lh.a+lba+.. . +l,.a=LANa+l,Na+...+1,Na, and since [; Aa € [0,a],,
j=1,...,n, we have that [0, a] 5, is R-generate by [0, a].

Thus, by Theorem 1.3.13, B([0,a],) = [0, a] ;-

Proposition 1.3.17 Let L; and Ly be two bounded distributive lattices, and
let ¢ : L1 — Ly be a {0,1} —homomorphism of lattices. Then ¢ uniquely
extends to a homomorphism of Boolean algebras ¢ : B(L;) — B(Ls).

Proof. Let a € B(L;), then a = ag+ ay + ... + a,_1. We define
@(a) = plag) + ¢(ar) + ...+ p(a,_1). We shall see that ¢ is well defined.
First suppose that ag + a1 + ...+ a,_1 = 0, then by Lemma 1.3.6, ag + a; +

..+ a,_1 can be expressed in the form

b0+b1+...+bn_1 with bogblg...gbn_l and

n—1—j

bj = \/( /\ Q;,, 0§i0<il<...<in,1,]~§nfl)

k=0
Thus bg+ b1+ ...+ b,1 =0with by < by < ... <b,_1.
If n is even, by Lemma 1.3.3 (v), by = b1;b2 = b3;...;b, 4 = by_3;b 0 = by_1,
and thus ¢(by) + @(b1) + ... + p(bp—1) =
= @(bo) +(bo) + @(b2) + p(b2) + ... + @(bn1) + @(bp-1) =
= (@(bo)+90(bo))+(90(bz)+90(bz))+ A (p(bp-1)+¢(bp-1)) = 0+0+...+0 = 0.
If n is odd, by Lemma 1.3.3 (vi), bo =0; b1 ba;bs = by;...;by_yg = by_3;
by—2 = by_1, and thus ¢(by) + ¢ (b + @(b,_1) =
= ¢(0) + @(b1) + ¢(b1) + p(bs) + w(bs) oot p(ba—1) + o(bn1) =
= ¢(0) + (2(b1) + (b1)) + ((b3) + (b3)) + ... + (2(bn-1) + @(bn-1)) =
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=040+...40=0.
Therefore, since ¢ a homomorphism of lattices and formula (2) page 28,

0 =@(bo) +(br) + ...+ @(bn1) =

n—1 n—2 0
= o(\V (N iy osioecinr<n-0)) (N (O iy 0sioecin s<n- 1))+ A\ (/\ @iy 05i02n1)) =
k=0 k=0 k=0
n—1 n—2 0
= \/(/\ p(as,) 0§io<...<z’n71§n71)+\/(/\ ©(ai,) 0<io<...<in_a<n—1)F- -+\/(/\ p(ai,) o<io<n-1) =
k=0 k=0 k=0

= p(ap) +(a1) + ...+ ¢(an—1) (again from formula (2)).

Thus, we have prove that

ap+ar+...+a,1 =0 = @(ag) +e(ar) + ...+ ¢(a,—1) =0.

Now let ag+a1+ ... +a,_1 =cy+c1+ ...+ Cpn_1, then
ap+a+...+ap_1+cg+c1+...4+ cmo1 =0 hence

p(ao) +(ar) + ...+ @(an-1) + ¢(co) + p(c1) + ... + @(cm-1) = 0 and thus
olag) + @(ar) + ...+ plan—1) = p(co) + p(c1) + ... + @(cm—1). Therefore @ is
well defined.

Moreover ¢(0) = ¢(0) =0  §(1) =¢(1) =1 and if
a=a+a1+...+a,_1andc=cy+c1+ ...+ ¢n_1, then
Plat+c)=@lag+ar+...+a1+co+cr+...+cm1) =

= p(ao) +p(ar) + ... +p(an—1) + ¢(co) + lc1) + ... + @(Cm-1) =

= (p(ag) +p(ar)+...+plan-1))+(p(co) +pler) +. . . +p(cm-1)) = H(a) +&(c).
pla.c) =@((ao + ...+ an-1)-(co+ ... + cm-1)) = - aicj) = D p(aic;) =

= (e 9(c)) = (9(a0)+ . A+ p(an1))-(9(c0)+- -+ p(em 1)) = B(a) B(o).
Therefore, by Theorem 1.3.2 (i7), ¢ is a homomorphism of Boolean algebras.
Let ¢ be another extension of ¢, then if a = ag+a; + ...+ a,_1,

Y(a) =v(ag+ a1+ ...+ an1) = V(ap) + Y(ar) + ...+ Y(ap_1) =

= @(ag) +v(ar) + ...+ p(a,—1) = ¢(a) and thus the extension ¢ is unique. O

Corollary 1.3.18 Let L; and Ly, be two bounded distributive lattices, and
let ¢ : L1 — Lo be an isomorphism of lattices. Then ¢ uniquely extends to an

isomorphism of Boolean algebras ¢ : B(L;) — B(Ls).
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Proof. By Theorem 1.3.17 there is an extension ¢ : B(L;) — B(Ls) where
o(a) = (ag) + ¢(ar) + ...+ lan—1) ifa =ap+ a1+ ... +an_1, a; € Ly
0<37<n—-1.

@ 1s surjective:

Let c€ B(Lg), thenc=co+c1+...+¢po1, ¢ €Ly, j=0,1,...,n—1
Since ¢ is an isomorphism of L; onto Lo, there exists ag,as,...,a,_1 € Ly
such that ¢(a;) =¢;, j=0,1,...,n— 1. Therefore

c=cot+cr+ ...+ =9(ag) +Fplar) + ...+ @lan—1) = ¢(a),
witha=ag+a;+ ...+ a,_1.

¢ is injective:

Let ag,ay,...,a,_1,Co,C1,-..,Cm_1 € Ly be such that

Plag+ay+...+ap1) =@(co+c1+ ...+ cp_1), that is

p(ao) +(ar) +... + @an—1) = p(co) + p(c1) + ...+ @(cm—1) in B(Lo).
Since ¢! : Ly — L; a homomorphism of lattices ,by Theorem 1.3.17, there is
an extension ¢! : B(Ly) — B(Ly), ¢ Ndo+di+...+dy ) =

=@ Ndo) + ¢~ (d1) + ... + ¢ (dn1), do,dy,. .., dn1 € Lo.

Since 90:1 is well defined, if dg+dy+...+d,—1 = eg+e1+...+em1 in B(Ls),
then o1 (do+dy+ ...+ dn1) = o (g + €1+ ...+ €m_1) in B(Ly).

In particular,

P (plao) + plar) + ..+ @lan-1)) = ¢~ (@(co) + p(c1) + - + P(Cm1))-
Thus ag + a1 + ... + an—1 = ¢~ (¢(a0)) + v~ ((a1)) .. + 0~ (¢(an-1)) =

= o H(p(ao) + p(ar) + ..+ @lan-1)) = ¢ 1 ((co) +p(c1) + ..+ Plem-1)) =
= (pleo)) + o (pler)) ...+ o Hplem-1)) = o+ e+ + e

O

1.4 Effect algebras [3]

An effect algebra is a partial algebra E= (E,@®,0,1) such that @ is a binary
partial operation and 0, 1, are nullary operations satisfying the following

conditions, where x,y, z denote arbitrary elements of E.

E, If x @ y is defined, then y @ x is defined and x Dy =y ® .

E, lf @y and (z®y) @ 2 are defined, then y @&z and x @ (y ® 2) are defined,
and (z®yY)Bz=2d (y D 2).
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E3 For every x € E, there exist a unique x' € E such that x & 2’ = 1.

Ey If x @1 is defined, then x = 0.
We denot "there exist a & b” by a L b.

Example 1.4.1 Let E = [0, 1] be the real unit interval, or £ = QN [0, 1], or
E:,Cn:{() 12 ...,Z—:?,l} (n€ N,n>2),and for all x,y € E, x By

’n—17 n-17

is defined iff x <1 — y. In this case we defined x &y := x + y.
It is easy to see that (F,®,0,1) is an effect algebras, where 2/ =1 — x.
Also, if (ny — 1) | (nog — 1), then £,, C £,, C QN[0,1] C [0, 1], where C is a

subalgebra inclusion.

Example 1.4.2 Let (B, A,V, ¢ 0,1) be a Boolean algebra. For a,b in B we
say a L biff aAb=0 and, if a L b, we define a ® b :=a V b.
Then (B, ®,0,1) is an effect algebra, where 2’ = x°.

Lemma 1.4.3 The following properties hold in every effect algebra E:
(i) For every z € E, 2" =z
(i) '=0and 0/ =1
(iii) For eachx € £ x @0 is defined and 2 &0 ==z
(iv) If x @ y is defined, then y & (z @ y)' is defined, and x = (y @ (z ® y)")’
(v) f x @y and = @ z are defined and x ®y = x @ 2, then y = 2
(vi) fze®y=0,thenz =y =0

Proof. To prove (i), note that by £} and E3, 2’ @z =x d 2’ = 1.

Hence 2" = z.

Since by E3 1 @ 1’ is defined, E, implies that 1" = 0, and by (i) we have that
0’ = 1” = 1. This proves (i7).

To prove (iii), note first that by (i) 1 & 0 = 1. Hence by Ej3, E; and FEj:
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l1=100=(2"®2)®0=2"® (x ®0). Then by E3 and (i) we conclude that

r®0=2a" =z, and (:ii) is proved.

If x @ y is defined, then by E5 and F, we have that
l=@eyo@ay) =0y (ay))

and then (iv) follows from E5 and (i).

To show the cancellative property, suppose that x ®y = x @ z. By (iv) and E;
we have that y = (z ® (y® x)') = (z ® (2 @ z)") = z. This proves (v).

If x @y =0, then by (iv) and (ii), y ® (x B y)' = y & 1 is defined, and by FEjy,
y = 0. Hence by (éii), 0 = x @& 0 = x. This completes the proof of (vi) O

Let E be an effect algebra. The binary relation < defined on E by the pre-
scription z < y if there is z such that x & 2z = y is a partial order on F, called
the natural order of E. Indeed, reflexivity follows from (iii) of Lemma 1.4.3,

transitivity from FEs, and antisymmetry from (v) in Lemma 1.4.3.

Example 1.4.4 In Example 1.4.1 < is the usual order of numbers of E, and

in Example 1.4.2 < is the same as in B.
Lemma 1.4.5 Let E be an effect algebra and let z,y, z € E. Then we have:
(i) x <y if and only if ¢ < 2.
(ii) = @ y is defined if and only if z <y
(iii) Vo € E,0 < z.
(iv) Ve e B,z < 1.

(v) If z @ y is defined and z < x then z @ y is defined
(if z @ y is defined and z < y then z @ x is defined).

(vi) If x @y is defined then z < x @y and y < x B y.

(vii) If 2 @ z and y @ z are defined and x < y, then x & 2z < y @ 2.
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Proof. Suppose z < y, and take z such that * @ z = y. By (i) and (7) in
Lemma 1.4.3, 2’ = 2 ® (z ® 2)’ = z ® ¢/, and this shows that y' < z’. On the
other hand, if ¢ < 2/, by what we have just proved and (i) of Lemma 1.4.3,
we have x = 2” < y” = y. This completes the proof of (7).

To prove (i7), suppose first that = @y is defined. Then by (iv) in Lemma 1.4.3,
Y =2® (x®y), hence z < 3. Suppose now that z < ¢/, i.e., that there is z
such that z@ 2z =9'. Then 1 = y®y' = y® (¢ @ z), hence by Ey and Ey, t Dy
is defined.

(¢7) By Lemma 1.4.3 (iii) and definition of <.

(1v) By Ej5 and definition of <.

(v) By (ii) x Ly = o <y, therefore z <y and then, by (ii), z L y. The rest
follows by symmetry.

(vi) By definition of <.

(vit) x <y=3Js€ Esuchthat t @ s=y. Theny®z=(xds) Bz =
=(s@x)Dz=s®(r®z) (By £y and E,), and thus z @ z < y P 2. O

Let E be an effect algebra, it is possible to introduce a new partial
operation &.

b © a exists and equals c if and only if a & ¢ exists and equals b.

In other words, b © a is defined iff a < b and then a ® (bSa) = b
(& is well defined by Lemma 1.4.3 (v)).

Example 1.4.6 In example 1.4.1if a < b, bSa = b— a, and in example 1.4.2
ifa<b,boa=0>b\a(whereb\a=bAd =bAa).

Remark: If a ® b is defined and a®b=c, thena=cSband b =cSa.
Also, since a b= a @b, we have a = (a ®b) &b and
b=(a®b)Sa.

Lemma 1.4.7 Let E be an effect algebra and let a,b,c € E.
(i) If a < b, then bSa <b.
(ii)) If a < bthen bS (bSa) is defined and b & (b S a) = a.
(iii) fa<b<c¢ thenboa<cSa.
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(iv) a©0 is defined and a © 0 = a.
(v) a©ais defined and a © a = 0.
(vi) If a < b < ¢, then (c6a)S (bSa) is defined and (c©a) S (bEa) = cOb.

(vii) If a < b < ¢, then (b® ¢), (a® ¢) and (b P ¢) © (a ® ¢) are defined and
bdc)s(ade)=boa.

(viii) If a <b<¢,thencob<coa.

(ix) fo<canda<cobthenb<cSaand (cob)Sa=(cSa)Ob.

Proof.

(i) a<b=boaisdefinedand a® (boa)=b = bSa <b.

(73) If a < b then b © a is defined and, by (i), b © (b © a) is defined. From
a® (b© a) =b and previous remark we have b & (b © a) = a.

(17i) a < b= 3t € E such that a ®t = b and, by previous remark, t = b a.
b<c¢= dse€ E such that b s = ¢, and s = ¢ & b. Therefore
c=bBs=(a®t)Ps=a® (tds) (by Ey), then (t ®s) =cS a. Thus

(by Lemma 1.4.5 (vi)) bea=t<t®s=cOSa.

(iv) and (v) follows from Lemma 1.4.3 (iii) and previous remark.
(wi)b=(boa)®aand c=(cob)@bimply c=(cb)® (b a)Pa)=

= ((cob)® (bSa)) @ a then, by previous remark, (c©b) ® (bSa) =cSa
and again by previous remark bS a = (¢S a) © (¢S b).

(vii) If @ < b < ¢ then, by (vii) and Lemma 1.4.5 (ii), (b ® ¢), (a @ ¢) and
(bdc)S(ade) are defined. Since a < b, by definition of ©, we have b = (bSa)®a
then b@c=(bSa)Pa)®c=(bSa)® (a®c). Thus by previous remark
boa=(bdc)o(adc).

(viit) Since a < ¢, b < cand a <b, Je € FE such that b = a @ e therefore
a®(cea)=c=bB(cob)=(a®e)®(cOb) =a®(e® (cOb)). Then , by
the cancellative property, c©a=e® (c©b) and thuscob<cSa .

(iz) Since, by (i), a < c© b < ¢ then, by (viii), c© (cE&b) < ¢© a hence, since
b < cand (i1), we have b = ¢S (cOb) < c©a. Moreover coa = ((c©a)Ob) Db,
then (c6a)®a= (((c&a)Sb) ®b)@a, hence c = (((cSa)ob)®a)db
and, since ¢ = (c©b) ® b, we obtain (cob) ®b = (((cca)Sb) Ba)db.
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Therefore, by the cancellative property, (c ©b) = ((c © a) © b) @ a and thus
(coa)ob=(cob) oa. O

Lemma 1.4.8 Let E be an effect algebra. If a @ b is defined, then
(a®b) =dob=Voca.

Proof. By Lemma 1.4.3 (iv) if a ® b is defined, then b @ (a © b)’ is defined and
a=b®(@db)). Thusad = (b (a®b))) =bD (a D).
From definition of ©, (a ® b)’ = a’ © b. The rest follows by symmetry. O

Let Ei, Ey be effect algebras. A mapping ¢ : Ey — FE» is called a

homomorphism of effect algebras iff

e 0(1)=1
e The existence of a @ b implies the existence of ¢(a) @ ¢(b) and
¢(a @ b) = ¢(a) ® ¢(b)

Remark: Let a € Ey, then ¢(a') = (¢(a))' in Es.

Lemma 1.4.9 Let E;, E5 be effect algebras and let ¢ : £; — E5 be a

homomorphism of effect algebras.

(i) If a,b € Fy and a < b, then ¢(a) < ¢(b).
(ii) If a,b € Ey and a < b, then ¢(b S a) = ¢(b) © ¢(a).

Proof.

(1) a < b= Jc € E; such that b = a @ c. Then ¢(a) @ ¢(c) is defined in F,
and ¢(b) = ¢(a) © ¢(c). Thus ¢(a) < ¢(b).

(77) By (i) a < b = ¢(a) < ¢(b), and thus ¢(b) & ¢(a) is defined. From
b= (boa)Pa, we have ¢p(b) = ¢p(bSa)®¢(a) and thus ¢p(bSa) = ¢(b)S¢(a).O

A homomorphism ¢ : Fy — Es is full iff whenever ¢(a) L ¢(b) and
o(a) @ ¢(b) € ¢(Ey), then there are ay, by € E; such that
¢(a) = ¢(a1), ¢(b) = ¢(by) and ay L by.
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A homomorphism ¢ : E; — Es is an isomorphism iff ¢ is bijective and full.

Note that even if F; and FE5 are lattice ordered, a homomorphism of effect

algebras need not to preserve joins and meets.

1.5 MV-effect algebras [7]

Definition 1.5.1 An MV-effect algebra is a lattice ordered effect algebra M
in which, for all a,b € M, (avVb)©a=5b (a AD).

Example 1.5.2 The examples 1.4.1 and 1.4.2 are MV-effect algebras
(see examples 1.4.4 and 1.4.6).

Proposition 1.5.3 Let M be an MV-effect algebra and let a,b,c € M.
(i) fa<cand b<c,thence (aVb) =(cea)A(ceb).
In particular, if @ L b, then (a ®b) © (aV b) =a Ab.
(ii) If c<aand ¢ < b, then (a Ab)Sc=(ac)A(bSc).
(iii) ((avb)ea)A ((aVvbd)eb) =0.
(iv) If c<aand ¢ < b, then (acc)V (bSc)=(aVb) oec.

(v) fa<candb<cthenco (aAb)=(cca)V (cob).

In particular, if we put ¢ =a V b,

(avb)e(andb)=((aVvb)oa)V ((aVb)Sh).

Proof.

(i)

From the inequalities a < aVb < cand b < aV b < ¢ and Lemma 1.4.7
(viii) we have c& (aVb) < cSa and ¢S (aVb) < ¢&b. For any other
w € M with w < c©aand w < ¢S b, by Lemma 1.4.7 (i), (i7) and (viii),
a=co(coa)<cowandb=co(coOb) < cOw, therefore aVb < cow < ¢,
and so w = cO (c©w) < ¢O (aVDb), which implies that ¢ © (a V b) is the
greatest lower bound of the set {¢ & a, ¢ © b}, which concludes the proof of (7).
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(i)

c<aand c<bimplyc<aAb<aand c<aAb<bthen,

by Lemma 1.4.7 (iii), (a Ab)©c<aecand (aANb)Sc<boec.

If we M is such that w < a© c and w < b & ¢ then, since (a © ¢) @ ¢ is
defined and Lemma 1.4.5 (v), w @ c is defined and, by Lemma 1.4.5 (vii),
wdec< (aoc)®dec=aandwdc< (boc)dce=0.

Therefore ¢ < w @ ¢ < a Ab and thus, by Lemma 1.4.7 (¢i7) and Remark page
39, w=(wd®c)oc< (aAb)©c. Hence (a Ab) © ¢ is the greatest lower bound
of {acc,boc}.

(i)

In (i) put ¢ =a Vb and Lemma 1.4.7 (v).

(iv)

From ¢ <a<aVband c <b<aVbwe get, by Lemma 1.4.7 (iii), a © ¢ <
(avb)ocand boc < (aVb)Sc Let w € M be such that a © ¢ < w and
boc<wthenacc<wA((avb)ec) < (aVb)Scand thus
((avb)ec)eo(wA((avbd)ec) <((avb)ec)o(acc) = (aVb) Saby
Lemma 1.4.7 (vi); similarly, ((aVb) ©¢)© (wA ((aVbd)©c)) < (aVb)Sh.
Therefore ((aVb)©c)o(wA((aVb)oc) <((avb)oa)A((aVb)eb)=0
by (iii). Hence ((a Vb) & c) o (wA ((aVb)oc)) =0, then
((avb)ec)e(wA((avb)ec))®(wA((avb)oe) =08 (wA((aVb)Sec))
and thus (aVb)oc=wA((aVd)oc) <w.

(v)

From the inequalities a Ab < a < cand a Ab < b < ¢ it follows, by Lemma
1.4.7 (viii), that c6a < cS (aAb) and cob < co (aADb). Forw e M
with c6a <wand c6b < w, then coa = (coa)ANc < wAc < ¢ which
gives co (wAc) < co(coa) = a (by Lemma 1.4.7 (ii)), and similarly
¢S (wAc) < b, therefore, co (wAc) < aAb. Then, since a Ab < ¢, we obtain
co(anb)<co(co(wAc))=wAc<w (by Lemma 1.4.7 (viii) and (ii)),
which implies that ¢© (a A b) is the least upper bound of the set {¢ © a,c © b}.
O

Proposition 1.5.4 Let M be an MV-effect algebra and let a,b,c € M.

(i) If a® b and a @ c are defined then a ® (bA¢) = (a ®b) A (a @ ).
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(ii)) If a® b and a @ c are defined then a @ (bV ¢) = (a ®b) V (a ® ¢).

Proof.

(i)

By Proposition 1.5.3 (ii) ((a®b)A(a®c))ca = ((adb)sa)A((adc)Sa) = bAc,
therefore (((a®b) A(a®c)) ©a)®a= (bAc)®a and thus
(adb)AN(ad®c)=(bAc)®Da.

(i)

By Proposition 1.5.3 (iv) ((a®b)V(a®c))oa = ((adb)Sa)V((adc)Sa) = bVe,
whence (((a®b)V(a®c)©a)da=(bVc)®a, and thus
(a®b)V(iadc)=(0bVe)da O

Lemma 1.5.5 (De Morgan’s Identities) Let M be an MV-effect algebra
and let a,b in M. Then

(i) (aVvb) =d AV and
(i) (anb) =d V.

Proof.

(i) By definition an MV-effect algebra is a lattice, by Lemma 1.4.5 (i) a < b if
and only if ' < ' and by Lemma 1.4.3 (i) a” = a. Thus, since a’ ANV < a’ we
have a < (a’ AD'). Similarly b < (a’ AV')'.

Suppose a < e and b < e then ¢/ < a’ and ¢ <V therefore ¢/ = e’ Ne/ <ad AV
and thus (¢’ A b') < e, but this means a Vb = (a’ AV)'. Hence (a V b) =
(@' NV')" = a' AV which completes the proof of (i).

(ii) If we simultaneously replace a by @’ and b by ¥’ in (i), we obtain

(@' V) =d"ANb"=aANband then ¢’ VI = (a AD). O

In section 4 is given the definition of MV-algebras and it is proved that there
is a natural, one-to-one correspondence between MV-effect algebras and MV-
algebras given by the following rules. Let (M, ®,0,1) be an MV-effect algebra.
Let B be a total operation given by xt Hy = x & (2’ A y). Then (M,H,,0) is
an MV-algebra.

Similarly, let (M,H, —,0) be an MV-algebra. Restrict the operation H to the
pairs (x,y) satisfying x < ¢y’ and call the new partial operation @ . Then
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(M, ®,0,1) is an MV-effect algebra.

Proposition 1.5.6 On each MV-effect algebra E the natural order deter-

mines a bounded distributive lattice structure.

Proof. En el apéndice se muestra que en la mencionada correspondencia en-
tre MV-algebras y MV-effect algebras, el orden en una MV-effect algebra
(M,®,0,1) coincide con el orden de su respectiva MV-édlgebra (M, H, —,0)
y como por la Proposicién 4.1.6, (M,H, —,0) es un reticulado acotado y dis-

tributivo, entonces (M, ®,0, 1) también lo es. O

Proposition 1.5.7 Let F be an MV-effect algebra. Then there exist the
Boolean algebra R-generated by E.

Proof. By Proposition 1.5.6 F is a bounded distributive lattice, and by Lemma
1.3.7 and Theorem 1.3.13 there exist the Boolean algebra R-generated by E.
O

2 The function ¢); [13

Let M be an MV-effect algebra (and thus M is a bounded distributive lattice),
and let B(M) be the Boolean algebra R-generated by M.

For every element = of B(M), there exists a finite chain z; < ...... < z, in
M such that v = 21 +...... + 2, (lemma 1.3.6). We then say than {z;}]_,
is a M-chain representation of z. It is easy to see that every element of B(M)
has a M-chain representation of even length (if z; < ...... < z, is a M-
chain representation of odd length, then 0 < z; < ...... < z, is a M-chain

representation of even length).

Theorem 2.0.8 (Main result). Let M be an MV-effect algebra.
The mapping ¢ur : B(M) — M given by éu(r) = @i, (22 © zai1),
where {xz}?zl is a M-chain representation of x, is a surjective homomorphism

of effect algebras.

We have divided the proof into a secuence of lemmas. We use the notation of
Lemmas 1.1.16 and 1.1.17.
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Lemma 2.0.9 Let L be a finite sublattice of an MV-effect algebra M. Let
C' be a maximal chain of L, let a € J(L) and let x € C, m¢(a) > x. Then
mo(a) 8r =a s (a Amla)).

Proof. Since M is a distributive lattice, L is distributive. By Lemma 1.1.16,
we have aVx = me(a) and aAx =aAm(a). Since M is an MV-effect algebra

me(a)or=(aVa)Or=a6 (aNzx)=0a6 (aAma)). 0

Lemma 2.0.10 Let L be a finite sublattice of an MV-effect algebra M. Let
C1,C5 be a maximal chains of L. There exists a bijection b : C; — C5 such
that, for all z1, 29 € Cy with zo > 1, 22 © 21 = b(x2) ©y, where y € Cy and
b(z2) =1 y.

Proof. Since M is distributive, L is distributive. Let us put b(z) = 7, (7, (z)).
By Lemma 1.1.17 (iii), b is a bijection. Write a = Wall(l‘g). By Corollary
2.0.9, 7o, (a) © 21 = z2 621 = a S (a A m(a)). Similarly, by Lemma 2.0.9,
b(xe) Oy =mc,(a) Oy =a6 (a Am(a)). Thus xe © 21 = b(x2) O y. O

Lemma 2.0.11 Let L be a finite 0,1-sublattice of an MV-effect algebra M.
The mapping vy, : 2780 — M given by

V(X)) = EPao (aAm(a)

acX
is a homomorphism of effect algebras and, for all x € L, ¢ (r(x)) = z,
(note that the sum € is finite).

Proof. By definition ¢ () = 0. Let € L and write L, = {y € L:y < x}
(L, is a lattice). Note that r(z) = J(L,). Let C = {0 = zg,21,...,2, =z}

with x; 11 > x; be a maximal chain of L,. We claim that the sum

n
Do
i=1

exists in M and equals x.
We proceed by induction on n. lf n =1, @)z, 02,01 =21 820 =210

and this is defined and equals x;.
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Let C' ={0=xp,21,...,%pn, Tpr1 = x} with 2,41 > z; be a maximal chain of
L., then {0 = zg,z1,...,2,} is a maximal chain of L, with x;,; > x;. Then
by the induction hypothesis @, z; © ;1 exists in M and equals x,,. Thus
B ziowi1= (DL, 26 xi1) ® (Tny1 ©n) = Tn & (Tny1 © 7,) and (by
definition of © page 39 and z,, < x,,1) this is defined and equals z,,1, so the

claim is proved.

By Corollary 2.0.9 (replacing a by n'(z;) and = by 2, ) we have

26 @iy = 15 (1) © (n5 () A m(ng (@),

Since mc is a bijection , we have r(z) = {m;'(z;):i € {1,...,n}}, hence
Yr(r(z)) exists and equals z. As a consequence, 97 (27F))) = (r(1)) = 1.
The additivity of ¢ is trivial. O

Since, for every finite lattice L, r(L) R-generates 27(") (Lemma 1.3.5), the
injective mapping r : L — 27 uniquely extends to an isomorphism of Boolean
algebras 7 : B(L) — 27(") (by Corollary 1.3.18).

Lemma 2.0.12 Let L be a finite 0,1-sublattice of an MV-effect algebra M.
Let ¢r, 7 be the mapping given above. Then v o 7 is a homomorphism of

effect agebras satisfying

n

b0 s+ aat .+ 22) = E)em O 1)

=1

for every chain xq < ... < x5, of L.

Proof. Evidently, ¢y o7 : B(L) — M is a homomorphism of effect algebras.
Let x; < ... < 9, be a chain in L. Then
Y (F(ey +xo+ .o+ 9,)) = Up(F(ay) + F(x2) + ...+ 7(22,)) =

=p(r(zy) +r(xe) + ...+ 1r(z2,)).
Since r is a lattice homomorphism , r(x;) < ... < r(xg,). Thus, in the Boolean
algebra 27(5) we obtain (by Lemma 1.3.3 (v) and examples 1.4.2 and 1.4.6)

?"(ilfl) 4. SCQn @ SCQZ or l'gl 1))
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Finally, by Lemma 2.0.11 and since 1, is a homomorphism of Effect algebras

Yr(r() +r(@e) + ..o+ () = EBW(?"(MD)@@DL(T(%%—Q):

n

= @@2@ O Tyi1) =

=1
= qu(JJl + X9+ ... +.T2n>.

O
Proof of the main result. Let 1 < ... < x9,, y1 < ... < 9o, be two chains
of M. Let L be the 0,1-sublattice of M generated by {1, ..., Zon, Y1, -, Yom}-
Then B(L) is a Boolean subalgebra of B(M), {z1,...,Zon, Y1, -, Yom} C B(L)
and, by Lemma 2.0.12, ¢, : B(L) — M is a homomorphism of effect algebras.
Let us prove that ¢, is well defined. Suppose that x1+...+x2, = y1+. ..+ Yom.
By Lemma 2.0.12, @, (x2; © x2i-1) = @D~ (Y2 © y2i—1), hence ¢y is well
defined on B(L) and hence on the whole set M. Moreover, ¢y, is just the
restriction of ¢y to B(L).
Suppose now that © = x1 + ... + 2o, L y1 + ... + Y2, = y. Again by Lemma
2.0.12, ¢p(z) Lor(y) and ¢r(z ©y) = ¢r(x) @ ¢r(y). Obviously, ¢ (1) = 1.
For the proof of surjectivity, it suffices to observe that, for all x € M,
oy (x) = 2. O

Example 2.0.13 Let = € B([0,1]) and let {z;}.", be a M-chain representa-
tion of x of even length (see examples 1.5.2 and 1.3.14).

Then,

T=x1+To+ ...+ Top1+ Top = (1] + (2] + ... + (Ton_1] + (z2,]) =
= (21, 22]U...... U (2211, Ton],

and

om(x) = oy + ..o . + Zop) = (12071) D . ..... D (xon © op—1) =

=(xo—m1)+...... + (22, — T2,—1) = the “length” of x.
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3 From MV-effect algebras to MV-pairs

3.1 Effect algebra congruence [12]

A binary relation a ~ b defined for arbitrary elements a, b of a non-empty set
A is an equivalence relation in A iff it is reflexive, symmetric and transitive,

i.e., for arbitrary elements a,b,c € A :

a~ a,
if a ~ b then b~ a,

ifa~band b~ cthen a ~ c.

Let E be an effect algebra. A relation ~ on F is a weak congruence iff the
following conditions are satisfied.
(C1) ~ is an equivalence relation.

(CQ) If ay ~ ag, b1 ~ bg and a, D bl, as P bQ exist, then a; P b1 ~ a9 P bQ.

We denote the class in F/ ~ of a element a of E by |a]
(ie. |a| ={be€ E/a ~ b}).

la| @ |b] is defined on E/ ~ iff there are a;,b; € E such that a; ~ a, by ~ b
and a; @ by exist. In this case we define |a| @ |b] := |a; P by].

If £ is an effect algebra and ~ is a weak congruence on F, the quotient E/ ~
need not to be a partial abelian monoid, since the associativity condition may
fail (c.f. [11]). This fact motivates the study of sufficient conditions for a weak

congruence to preserve associtivity. The following condition was considered in
[4].

(C5) If a ~ b @ ¢, then there are by, ¢; such that by ~ b, ¢; ~ ¢, by @ ¢ exists

and a = b; @ ¢.

Lemma 3.1.1 Let P be a partial monoid and let ~ be a weak congruence

satisfying (C5). Then, the quotient P/ ~ is again a partial abelian monoid.
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Proof.
la| @ |b] is well defined by (C2).
Associativity:
Suppose |a| & |b] and (|a| & |b]) & |c| are defined.
la| @ |b] is defined = Jaq, by such that a; ~ a, by ~ b and a; @ b; is defined.
Then |a| & |b] := |a; & by].
(la| @ 10]) @ |c| = (Ja1 @ b1|) @ || is defined = 3d, ¢; such that
c1~¢ a1 Db ~dandd® c is defined.
Then (ja| & b)) & |e] = |4 a1,
By (C5) Jag ~ ay,by ~ by such that as @ by is defined and d = ay @ bs.
Thus d®c; = (as®bs)Dcy. Since P is a partial monoid, by @ ¢y and as® (be®cy)
are defined, and d ® ¢; = as @ (by ® c1).
Thus (Ja| @ [b]) @ [c] = |d ® 1] = [a2 & (b2 @ 1) = |az| & (|b2] & |es]) =
= la| @ ([b] & |c]). O

Let E be an effect algebra, the (C1) (C2) (C5) properties of ~ does not
guarantee that the ' operation is preserved by ~. The operation ' is preserved
by ~ if condition

(C6) If @ ~ b then a’ ~ b' is satisfied.

A relation on an effect algrbra satisfying (C1) (C2) (C5) (C6) is called an

effect algebra congruence.

Lemma 3.1.2 Let (E,®,0,1) be an effect algebra and let ~ be an effect

algebra congruence, then
(i) (E/ ~,®,]0],|1]) is an effect algebra.

(ii) The mapping a — |a| is a full morphism of effect algebras.

Proof.

(i)

(E1) If |a| @ |b| is defined, then Ja; ~ a,b; ~ b such that a; @ b; exist. Since
E is a effect algebra by @ a; is defined and a; @ by = by @ a;. Thus |b| @ |a] is
defined and |a| ® |b] = |ay © b1| = |by ® a1| = |b] @ |al.

(E2) Lemma 3.1.1
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(E3) We will show that |a|' = |a/|. Let a € E. Since a ® a' is defined, then
la| @ |a’| is defined and |a| ® |a'| = |a ® «'| = |1].

Unicity:

If |a| ® o] = |1|, then Ja; ~ a,b; ~ b such that a; & by is defined and
1| = |a| @ |b] = |ag ® by], thus a1 & by ~ 1. By (C5) Jag ~ aj,by ~ b
such that ay @ by is defined and ay @ by = 1, then (since E is an effect algebra)
by = ay Now as ~ a3 ~ a = ay ~ a = ay) ~ a (by (C6)). Therefore
a~ay=by~b~b=>b~d =|b=|d|

(E4) If |a| @ |1] is defined, then Ja; ~ a,b ~ 1 such that a; @ b is defined.

By Lemma 1.4.3 (iv) ' = (b® a1) @ a;.

On the other hand by (C6) b~1=0 ~1 =0. Thus 0~ (b& a1) & a.

By (C5) Ju ~ (b® ay),v ~ a; such that u @ v is defined and 0 = u @ v.

By Lemma 1.4.3 (vi) v = 0. Therefore 0 =v ~a; ~a =0~ a = |a] =10].
(i)

It follows from definition of & on £/ ~ . a

Lemma 3.1.3 Let E be an effect algrbra and let ~ be an effect algebra

congruence. For all z,y € F, the following are equivalent.
(a) |z| < yl.
(b) There is x; ~ x such that z; <.
(c¢) There is y; ~ y such that x < y;.

Proof.

(b= a)

r1 <y = da € F such that z; @ a is defined and

y=z1®a= [yl =|n| @ |a| = [z] = |a1| <[yl

(c=a)

Similar to b = a.

(a =)

|z] <|y| = Ju € E such that |z| @ |u| is defined, and |z| & |u| = |y|.

Then dxg,ug € E such that xg ~ z, ug ~ u, xo d ug exists and xy G ug ~ y.
By the (C5) property, there are x1,u; such that x; ~ xg, u; ~ ug, 1 B ug

exists, and x1 @ u; = y. This proves a = b.
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(a=c)
By Lemma 3.1.2, Lemma 1.4.5 (i) and (C6) property, |y/| < |2/|. As a = b
there is z ~ ¢y’ such that z < 2’ and this is equivalent with z < z’. By the (C6)

property, z ~ ¢/ iff 2/ ~ y and we can put y; = 2. a

3.2 MV-pairs [12]

Let B be a Boolean algebra. Let G be a subgroup of Aut(B). For a,b € B we
write a ~g b (or a ~ b) iff there exists f € G such that f(a) = b. Obviously
~¢ is a equivalence relation. We write |a|, (or |a|) for the equivalence class of
an element a of B.
Also we denote B = B, = {|a|; : a € B}.
For all a,b € B we write:
L(a,b) ={a N f(b): feG}
L*(a,b) ={g(a) N f(b) : f,9 € G}
max(L(a,b)) = {m € L(a,b) : Vx € L(a,b) con x > m =z =m}
(the set of all maximal elements of L(a, b))
max(LT(a,b)) = {m € L*(a,b) : Vo € L™ (a,b) con x > m = x =m}

(the set of all maximal elements of L*(a,b))

Definition 3.2.1 Let B be a Boolean algebra and let G be a subgroup of
Aut(B). We say that (B,G) is an MV — pair iff the following two conditions

are satisfied:

(MVP1) For all a,b € B, f € G such that a < b and f(a) <b, thereis h € G
such that h(a) = f(a) and h(b) = b.

(MVP2) For all a,b € B and = € L(a,b) there exist m € max(L(a,b)) with

m > x.

Example 3.2.2 For every finite Boolean algebra B, (B; Aut(B)) is an
MV — pair.

Example 3.2.3 Let B be a Boolean algebra with three atoms ay, as, az. The
mapping f given by
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x||0fa|a|as|af|a5]|as|1

f(x) || 0| az|as|ar|a§|a§|af]|l

is an automorphism of B and G = {id, f, f*} is a subgroup of Aut(B). However,
(B,G) is not an MV — pair. Indeed, we have a; < a§ and f(a1) = as < a§,
but there is no h € G such that h(a;) = f(a1) and h(a§) = af.

Example 3.2.4 Let 22 be the Boolean algebra of all subsets of Z. Then
(22, Aut(2%)) is not an MV — pair. Indeed, let f € Aut(2%) be the automor-
phism of 2% associated with the permutation f(n) =n +1. Let A = B = N.
We see that f(A) = A\ {0}, A C B and f(A) C B. However, there is no
h € Aut(2%) such that h(A) = f(A) and h(B) = B, simply because A = B
implies that h(A) = h(B), but f(A) # B.

Lemma 3.2.5 Let B be a Boolean algebra, let G be a subgroup of Aut(B).

Then the following conditions are eqivalent:
(i) MV P2

(ii) For all a,b € B there exist m € maz(L(a,b)) with m > a A b.

Proof.

(i) = (i1) is clear.

(it) = (i) Let a,b € B and f € G. If g € G we have a A g(b) =
=aAg(f~(f() = (go f7)(f(b)). Therefore L(a,b) C L(a, f(b)). It g € G
we have a A g(f(b)) = a A (g o f)(b). Therefore L(a, f(b)) C L(a,b). Thus
L(a, f(b)) = L(a,b) and max(L(a, f(b))) = max(L(a,b)).

Now, let = € L(a,b), then z = a A f(b) for some f € G. From (ii) there exist
m € max(L(a, f(b))) with m > a A f(b).

Thus m > x = a A f(b) with m € max(L(a, f(b))) = max(L(a,b)). 0

Lemma 3.2.6 Let B be a Boolean algebra, let G’ be a subgroup of Aut(B).

Then the following condition are equivalent.

(a) (MVP1).
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(b) For all a,b € B, f € G such that a < b and a < f(b), there is h € G such
that h(b) = f(b) and h(a) = a.

(c) For all a,b € B, f € G such that a Ab =0 and a A f(b) = 0, there is
h € G such that h(b) = f(b) and h(a) = a.

Proof.

(a) = (b): Replace a with b° and b with a° and apply the fact that f is an
automorphism.

(b) = (c): Replace b with b°.

(¢) = (a): Replace b with a and a with b°. O

3.3 From MV-effect algebras to MV-pairs [12]

Notation: In what follows, we will deal with an MV-effect algebra M and
a Boolean algebra B(M) such that M is a 0,1-sublattice of B(M). In this
particular situation, a small notational problem arises: both M and B(M) are
MV-effect algebras, but the &,5 and ’ operations on B(M) and M differ.
To avoid confusion, we denote the partial operation of dijoint join (the &
of Boolean algebras) on a Boolean algebra by V. The partial difference of
comparable elements and the complement in a Boolean algebra are denoted

by \ and € respectively.

The next Theorem is prved in [12] and in Guillermo Herrmann’s Licentiate

Dissertation.

Theorem 3.3.1 [12/ Let (B, G) be an MV-pair, then (B, ®,0, 1) es una MV-
effect algebra, where 0 = |0| = {0}, 1 = |1| = {1} and |a|®|b]| is defined iff there
are a; ~ a , by ~ b such that a; A by = 0 and in this case |a| & |b] := |a;Vby|.
Furthermore |a|’ = |-a| and |a|A|b] = |a A f(b)| with aA f(b) € max(L*(a,b)).

Remark 3.3.2 |a| A [b] = maxz(L*(a,b)) where the = is a set equality.

The last Theorem prove that for every MV-pair (B, G) there is an MV-effect
algebra A(B, G) arising from it. The next Theorem prove that for every MV-
effect algebra M there is a MV-pair (B, G) such that A(B,G) = M. Let M
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be an MV-effect algebra. Let S be a subset of B(M) (the Boolean algebra R-
generated by M). We say that a mapping f : S — B(M) is ¢y — preserving
iff for all x € S, ¢pp(x) = op(f(x)) or, in other words, ¢y restricted to S
equals ¢y o f. Let G(M) be the set of all ¢y-preserving automorphisms of
B(M). It is easy to see that G(M) is a subgroup of Aut(B).

Theorem 3.3.3 Let M be an MV-effect algebra. Let G(M) be the set of all
¢ar-preserving automorphisms of B(M). Then (B(M),G(M)) is an MV-pair
and A(B(M),G(M)) is isomorphic to M.

As in Section 2, we have divided the proof into a sequence of lemmas. In this
section, M is an MV-effect algebra and G(M) is the subgroup of Aut(B(M))
described in Theorem 3.3.3.

Lemma 3.3.4 Let ¢,d € M, d < c. There is a ¢-preserving isomorphism

v B([0,cedly) — 0.\ g -

Proof. Consider the mapping vy : [0,c©d],; — [0,¢\ d]B(M), given by

Yo(x) = (z®d) \ d. Note that d < ¢ @ d < 2’ (since that x < cod = (¢ ®d))
and thus = @ d is defined. We see that ¢y(0) = 0 and ¢y(c© d) = ¢\ d.

1y preserves joins and meets:

By Proposition 1.5.4 (ii) and 1.2.7 (i) ¢o(xVy) = ((xVy) & d)\d=
—(@ed)Vyed)\d=((zod\dV(yed\d =t Vi)

By Proposition 1.5.4 (i) and 1.2.7 (ii) vo(x Ay) = ((x Ay) & d)\ d =
=(odryod)\d=((zod)\d)A((y©d)\d) =o(r) Ao(y).
From Lemma 1.2.7 (4i7) and Lemma 1.4.3 (v) 1y is injective, hence )y is a
{0, 1}-lattice embedding of [0,c © dJ,, into [0, ¢\ d] gy

We shall prove that the range of 1)y R-generates the Boolean algebra

[0, ¢\ d] g(pp- Yo then uniquely extends to an isomorphism (by Corollary 1.3.18).

¢ : B([O,C@ d]M) - [O7C\d]B(M)‘

Let z € [0,c\ d] (). Let {;}2", be an M-chain representation of z. For all

1 <i < n,x9\x2i-1 < c\d (since, by Lemma 1.2.7 (iv), x9;\xei—1 < x9; < c\d).
Then, by Lemma 1.2.7 (v)

T2 \ To;j—1 — ((le V d) VAN C) \ ((iL‘Qi_l vV d) VAN C).
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Forall1 <j <2n, (z;Vd)Ac€ [d,c]. By Lemma 1.3.3 (v) . = z1+.. .+ %9, =
= (22, \T2n-1)V .. . V(22\71) = (Y2 \Y2n_1)V ... V(y2\y1) = y1+. . .+y2n (Where
y; = (x; Vd) Ac). Therefore x has a M-chain representation {y; }jzl C [d,c]y,-
Since for all 1 <7 < n, d < yq—1 < y2 < ¢ then, by Lemma 1.2.7 (vii),

Y2i \ Y2i1 = (Y2 \ d) \ (Y2i-1 \ d)

and {y; \ d}.", is a chain representation of x. It remain to observe that, for all
1<i<2n,

yi\d=((y;©d) ®d)\d=1(y; ©d)

and that y;, ©d € [0,co d],, (since d < y; < c and Lemma 1.4.7 (i7)). Thus,
every element of [0, ¢\ d] g,y has a 1o([0, ¢ © d],)-chain representation.

Let us prove that ¢ is a ¢y-preserving mapping. Let z € B([0,c&d],,), let
{zz}?; be a [0,c © d],,-chain representation of z. Then, by Lemma 1.3.3 (v)

and since v is a homomorphism of lattices and ¢, is a homomorphism of effect

algebras

Oar((2)) = dar(P(ViZ (220 \ 22i-1))) =
= ¢M(\7?:1@/)(22i \ Z2i—1)) = @?:1 ¢M(¢(Zzi \ 22i—1))

and for all 1 <4 <n (by Lemma 1.2.7 (vii), Lemma 1.4.9 (i), Lemma 1.4.7
(vii), and since Vo € M ¢p(x) = x)

Oar(V(22i \ 22i-1)) = dar((22:) \ (V225-1)) =
= ou(((220 ® d) \ d) \ (221 D d) \ d)) =
= om((22i D d) \ (2201 D d)) = dpr(22i © d) © P21 B d) =
= (220 @ d) © (22i-1 © d) = 22; © 22i-1 = dnr(22: \ 22i-1),

so we obtain

om(V(2) = Dy dmr(V(22i \ 22i-1)) = Dy Par(22i \ 22i-1) = dar(2).
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Corollary 3.3.5 Let c¢i,dq,co,dy € M be such that ¢; > di,co > dy and

c1 ©dy = cg © dy. There is a ¢p-preserving isomorphism
¥ [0,e1\ dl]B(M) —[0,¢2\ d?]B(M)-

Proof.

By Lemma 3.3.4 there are ¢,;-preserving isomorphisms

Y11 B([0,e1 ©di]y) — (0,1 \ dilpyy and

a2 B([0,c2 © do] ) — [0, 2\ d2]B(M)

Since ¢; & dy = ¢3 © dy we can take

= yorhyt 1 [0,¢1\ dilpary — 10,¢2\ dalpapy, and 4 is a gu-preserving
isomorphism (since G(M) is a subgroup of Aut(M)). 0

Lemma 3.3.6 For every a € B(M), there is a ¢y-preserving isomorphism of
Boolean algebras ¢ : B([0, ¢a(a)],,) — [0, a]B(M).

Proof. Let {al} be an M-chain representation of a. Then {ag; \ ag;— 1}Z | s
a decomposition of unit in the Boolean algebra [0, a] 5, (see Lemma 1.3.3 (v)
and Lemma 1.2.7 (viii)) and ¢p(a) = D), (az © asi—1). For j € {0,...,n},
write b; = @7_,(ag © ag1). Then {b;};_ is a finite chain in [0, gn(a)],,
with by = 0 and b, = ¢a(a). Thus {b; \ b;—1},_, is a decomposition of unit
in the Boolean algebra B([0, ¢ (a)],,). For every x € B([0,onm(a)],,), =
Vi_i@ A (b; \ bj_1). Since, for all j, bj © b1 = az; © as;_1, Corollary 3.3.5
implies that, for all 1 < j <n, there is a ¢,/-preserving isomorphism
¥ 0,65 \ bj—1l ary = [0, az; \ azj] g _
Define ¢ B0, dur (@)]y) = 0, alpiary, $(@) = Vioyhy(w A (b \ b))
() is a homomorphism of Boolean algebras:
¥(0) = V- 1%(0“5 \bj1) = V2%(0) = V;_,0 =0,
V(@ar(a)) = Vgt (dnr(a) A (b \ bj1)) = Vi_yths(b; \ bja) =
= v;zl(agj \agj1) =a,+...+a =a.
e V) = Vi@V y) Al \ b)) =
= V] 15 ((@ A (b \ bj—1)) V (y A (b \ bj1))) =

\/J 1 (@ A (b \ bj—1)) Vi (y A (b \ bj-1)) =

= (Vjm®i(@ A (0 \ b)) V (Vi 5y A (b \ b)) = w() V b (y).
Y(xAy) = \/] i@ Ay) A (b \bj—1)) =
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—V] 1D A (b \ bj—1)) A (y A (b \ bj1))) =

—V] (i A (0 \ bj1)) A (y A (b \ bja))) =

= (Vima®i((@ A (5 N bim))) A (Vo ((y A (b \ Bi-1))) = (@) Ad(y) (by
Lemma 1.2.7 (ix)).

Thus ¢(x) is a homomorphism of Boolean algebras (see Remark page 21).

¥ (x) is injective:

W) = (y) = Viog@i(e A (0 \ b)) = Vji0(y A (0 \ bj-1)). Then, by
Lemma 1.2.7 (ix), j(x A (bj \ bj—1)) = ¥j(y A (b; \ bj—1)) and thus , since
¥; an isomorphism, x A (b; \ bj—1) = y A (b; \ bj_1) 1 < j < n. Therefore
v =\ @ A \bi1) = Vi y A\ bio1) = v.

¥ (x) is surjective:

Let y € [0,a]p(yy), then y = \/Zzly A (ag; \ agj—1). Since for all 1 < j < n
Y A (a9 \ agj1) < ag; \ agj—y and 5 2 0,05\ bja] gy — [0, a2; \ azja] gy
an isomorphism, there exist :E] € (0,55 \ bj—1] gy such that ¢;(z;) =

=y A (ag; \ agj—1). Let . = \/ _1Zj. Then z € B([0, ¢p(a)],,) and

w(%’) Vi@ A (b \ 1)) = Vg (Ve me) A (0 \ b)) =

= \/] (@ A (b \ bj-1)) = VJ Wi(zs) = VJ WA (az; \ azj—1) = y.

1 is ¢ps-preserving:

Let « € B([0, dar(a)lyy), then o ((x)) = dar(Vi_ys( A (b \ b)) =
=@ (u(¥j(x A (b; \ bj-1)))) = (since 1); is ¢p-preserving)

= @ (bu(@ A (b \ b)) = du(Vmyw A (b \ bj1)) = b (). O

Corollary 3.3.7 Let a,b € B(M) be such that ¢ (a) = ¢ar(b). Then there

is a ¢p-preserving isomorphism 1) : [0, al BV — 0, 0] B(M)
Proof. Use Lemma 3.3.6 twice. O

Lemma 3.3.8 Let u,v € B(M), uAv =0 and ¢p(u) = ¢pr(v). Then there is
a ¢p-preserving automorphism f of B(M) such that f(u) = v, f(v) = u and
for all z < (uVv), f(z) = z.

Proof. By Corollary 3.3.7, there is an isomorphism v : [0, u]B(M) — 0, v]B(M).
Let f: B(M) — B(M) be a mapping given by

f(x) =z Av)Vi(z Au)V(z A (uVv)©).
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It is easy to check that, for all z € B(M), f(f(x)) = x. Thus f is a bijection.
Moreover, we see that f(0) =0, f(1) =1 and for all z,y € B(M)
flavy) =v=H (@ Vvy) Ao)vi((z Vy) Au)V((@ Vy) A (o)) =
= (@A) V (y A))Vi(( Aw) vV (y Au))V(( A (Vo)) V(Y A (uve))) =
= (@ z Av)V(z Au)V(z A (Vo)) V (7 Y Av)Vi(y Au)V(y A (uVv)©)) =
= f(@) VvV [(y).
and
f(x€) = 7z Av)Vab(z¢ Au)V(z¢ A (uVv)©) =
=7 o\ (A V)VP(u (@ Au))V (A (uvw)) =
= (u\ Y~z A V)V (v \ Yz Au)V(z®A (uv)) =
= (@ A o) A V(e A (Vo)) = (F(2)
The latter equality follows by elementary Boolean calculus.

Since f preserves 0,1,V and ¢, it is a homomorphism of Boolean algebras. O

Lemma 3.3.9 Let u,v € B(M), ¢p(u) = ¢pr(v). Then there is a
¢ar-preserving automorphism f of B(M) such that f(u) = v, f(v) = u and
for all z < (u\Vv)©, f(z) = z.

Proof. Put ug =u\ uAvand vgp =u\ u A v then

(bM(ug) @ om(uNnv) = on(u) = op(v) = dnr(vo) ® oar(u Av)and thus

O (ug) = dar(vo). Since ug Avg = 0, by Lemma 3.3.8, there is f € G(M) such
that f(ug) = vo, f(vg) = ug and for all z € B(M) such that x < (ugVuvg)® we
have f(x) = z. Since u A v < (upVv)¢, f(u Av) =u Av. Therefore,

fuw) = flugVu Av) = f(ug)V(uAv) =voV(uAv) =v

and similarly, f(v) = u.
Let z < (u V v)°. Since x < (ug V 1v9)°, f(x) = . O

Corollary 3.3.10 For all u,v € B(M), u ~gun v iff ¢ar(u) = dar(v).

Proof. One implication follows by the definition of G(M), the other one follows
by Lemma 3.3.9. O

Corollary 3.3.11 For all u € B(M), u ~cr) ¢a(u).
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Proof. Put v = ¢y (u) in Corollary 3.3.10. O

Proof of Theorem 3.3.3.
(MVP1): Let a,b € B(M), f € G(M) be such that a < b, a < f(b). Let
u=0b\(bA f(b)),v=f(b)\ (bA f(b)). We have

Pu(u) = ¢u(b\ (bA f(D))) = oar(b) © dar(b A f(b)) =
= om(f(b) © dn(bA f(b) = dar(f(D) \ b A (b)) = dar(v).

By Lemma 3.3.8, there is a ¢p-preserving automorphism h of B(M) with
h(u) = v. Moreover, since a Au=a A v =0 we have h(a) =a (a ANu =0 and
aAv=01imply a A (uV v) =0 and then, by Lemma 1.3.3 (i), a < (u V v)°).
Similarly, since (bA f(b)) Au = (bA f(b)) Av = 0 we have h(bA f(b)) = bA f(b).
This implies that

h(b) = h((bA f(0)Vu) = h((b A f(b)))Vh(u) = (b A f(b))Vu = f(b).
Thus, there is h € G(M) such that h(a) = a and h(b) = f(b). By Lemma

3.2.6, this implies (MV P1).

(MV P2): Let a A f(b) be an element of L(a,b). By Corollary 3.3.11, there is
fi1 € G(M) such that fi(a) = ¢p(a). Since fy is ¢y —preserving,

om(filan f(D)) = dm(an f(b)). By Corollary 3.3.11, there is g € G(M) such
that g(fi(a A F())) = durla A 1),

Since

fila N f(b)) < fila) = dula)

and

g(frlan f(0) = dmla A f(b)) < Pu(a),

(MV P1) implies that there is h € G(M) such that h(fi(a A f(b))) =

= du(a A f(b)) and h(dar(a)) = pu(a).

Put y = a A f; (R (¢a(£(D)))). We shall prove that y > a A f(b) and that y
is a maximal element of L(a,b).

Indeed, we have
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h(f1(a)) = h(du(a)) = du(a),

therefore

h(fiy)) = h(filan fTH (T om(f(0))))
= h(fi(a)) NR(A(FT (h Hou(F(0)))) =
= ¢u(a) A ou(f (b)) = dar(a) A da(b)

(
(

and

h(filan f(b)) = dmlan f(b) < dula) A ou(f(b)) = h(fi(y)).

Since both h and f; are automorphisms of B(M), the latter inequality cleary
implies that a A f(b) < y. Moreover, since h and f; are ¢, —preserving and

¢y restricted to M is the identity mapping, we obtain

dr(y) = o (R(f1(y))) = dar(dar(a) A dar(b)) = dar(a) A dar(b).

Let us prove that y is maximal in L(a,b). Suppose that z € L(a,b), z > y.
Since z = a A fa(b) for some fo € G(M), we see that

dr(2) = dnr(a N fo(D)) < dnr(a) A dar(f2(D)) = dnr(a) A dar(b) = dar(y).

This implies that ¢ar(2) = om(y)- As du(z\y) = dum(2) © om(y) = 0 and g
is faithful (i.e. pp(x) =0= 2 =0), 2\ y = 0 and thus (since y < 2) z = y.

Let us prove that A(B(M),G(M)) is isomorphic to M.
The isomorphism v : A(B(M),G(M)) — M is given by

blalgan) = omla).

By Corollary 3.3.10, ¥ is well-defined and injective. Since, for all a € M,
U(lalgan) = a, ¢ is surjecective. Obviously, ¢(|1|g,) = 1. Let |alg,
blgny € A(B(M),G(M)) be such that |a|g,y L [b]gay- We may always
select the elements a,b € B(M) so that aVb exists, that means, a A b = 0.
Since ¢y is a morphism of effect algebras, ¢y(a) @ ¢ar(b) exists in M and we

may compute
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U(lalgan ® [bloan) = ¥([aVdlgn) = dulavd)
= ¢umla) ® om(b) = v(lalgnr) & V10l gan)
hence 1 is a morphism of effect algebras. It remains to prove that 1 is a full

morphism. Suppose that ¢ (|alg) © ¥(|blgny) exists in M. Consider the
elements ¢y (a) and (dar(a) ® dar(b)) \ ¢ar(a). We see that

Oar(a) A ((Par(a) ® @i (b)) \ ¢u(a)) =0,

that means, ¢y (a)V((dar(a) ® oar(b)) \ dar(a)) exists in B(M). This implies
that ¢pr(a) @ ((Oar(a) ® dar(b)) \ dar(a)) exists in A(B(M),G(M)). Finally,

(|0 (a)lgany) = da(dai(a)) = dar(a) = ¥(lalgap)

and

Y((orr(a) @ o (b)) \ onr(a)) = dnr((Par(a) @ oar (b)) \ dar(a)) =

= oum((om(a) ® Par (b)) © dur(Par(a)) = (pm(a) & dur(b)) © dara) =

¢M(b) = ¢<|b|G(M))- O

Example 3.3.12 Let M be the MV-effect algebra [0, 1] ( or M as in example
1.5.2). Then (see examples 1.5.2, 1.3.14 y 2.0.13) if a € B(M),

a = (1}1, 1'2] U ...... U (-1'211717 33271]7
and
drp(a) = (rg— 1)+ ..o ... + (225, — T2p—1) = the “length” of x.

Therefore |a| = |b| < the “length” of a = the “length” of b,

and ¢ : B(M)/con — [0,1], ¥(|a]) = the “length” of a,
is an isomorphism of effect-algebras.
Also

la|" = |a°| = {x € B(M) : the “length” of z = 1 — ( the “length” of @)} , and

la| @ |b] is defined < the “length” of a < 1— (the “length” of b) <
& Ja; ~a y by ~ bsuch that a; Nb; =0,
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1
/ : | / g
/ / Longitud de a
/ Al
Qa g a a, 1 Qa3 a;a, 1

Figure 2:

and, in this case, |a| & |b| = |ayUby| ={z € B(M) : the “length” of z =
(the “length” of a) + (the “length” of b) }

For example,

Let a = (ag,a1]U (ag,as]U(ayq,1] and f : [0,1] — [0,1] as in Figure 2 to the
left, and let f : B(M) — B(M), f(y) = f(y) (the “image of " by f).

Then , f € Aut(M), f is ¢a-preserving and

f(a) = (0,the “length” of a]  (Figure 2 to the right).

4 Correspondence between MV-algebras and
MV -effect algebras

4.1 MV-algebras |2

An MV-algebra is an algebra (A, @, —,0) with a binary operation @, a unary

operation — and a constan 0 satisfying the following equations:

MV1) 2@ (y®z)=(xdy) d =
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MV2) 2®dy=ydz

MV3) 26 0=x

MV4) ==z =z

MV5) z & =0 = =0

MV6) ~(-z@y)dy=-(ydz)d

Following tradition, we denote an MV-algebra (A, @, —,0) by its universe A.

On each MV-algebra A we define the constant 1 and the operations ® and ©

as follows:
1:=-0
T Oy = (" ®y)
roy=r0-y ( =-(rdy) )
The following identities are inmediate consequences of MV4):
MV7) =1 =0
MV8) z@®y = —(—z® —y)
Axioms MV5) and MV6) can now be written as:
MV5) &1 =1, and
MV6’) (zoy) dy=(yox)d .
Setting y = =0 in MV6) we obtain:
MV9) z @ -z = 1.

Lemma 4.1.1 Let A be an MV-algebra and z,y € A. Then the following

conditions are equivalent:
(i) ~wdy=1;
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(ii) z© -y =0;
(ili) y =2 ® (zr 0 y);
(iv) there is an element z € A such that z @& z = v.

Proof. (i) = (i) By MV4) and MV7). (ii) = (iii) Inmediate from MV3) and
MV6’). (iti) = (iv) Take z =y S . (iv) = (i) By MV9), ~a @x @ z=1. O

Let A be an MV-algebra. For any two element x and y of A let us agree to

write
r <y

iff z and y satisfy the above equivalent conditions (7) — (iv). It follows that < is
a partial order, called the natural order of A. Indeed, reflexivity is equivalent
to MV9), antisymetry follows from conditions (i7) and (éi7), and transitivity

follows from condition (iv).

Lemma 4.1.2 Let A be an MV-algebra. For each a € A, —a is the unique

solution x of the simultaneous equations:
abzr=1
a®r=0

Proof. By Lemma 4.1.1, these two equations amount to writing

0 <z < —a. O

Lemma 4.1.3 In every MV-algebra A the natural order < has the following

properties:

(i) <y ifand only if -y < —z;

(ii) f x <y thenforeach z€ Az ®2<yd®zandz0z<yo z;
(i) zoy <z iff z<-ydz;

(iv) y <z dy;
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(v) 20y <y.
(vi)0<z VzeAd

(vil) <1 VzeA

Proof. (i) This follows from Lemma 4.1.1 (i), since =z & y = ~—y & . (i7)
The monotonicity of @ is an easy consequence of Lemma 4.1.1 (iv); using (4),
one inmediately proves the monotonicity of ®. (i) It is sufficient to note that
r@y < zisequivalent to 1 = =2(xQy)® 2z = -z ® -y ® z. (i) It is inmediate
from definition of <, Lemma 4.1.1 (iv). (v) By (iv) -y < =z @& -y, then by
(i) =7(—z & —y) <y and thus  ©®y < y. (vi) It is inmediate from definition
of <, Lemma 4.1.1 (iv) and MV3). (viz) It is inmediate from definition of <,
Lemma 4.1.1 (iv) and MV5’) O

Proposition 4.1.4 On each MV-algebra A the natural order determines a
bounded lattice structure. Specifically, the join zV y and the meet x Ay of the

elements x and y are given by

tVy=(r0w)oy=(20y) dy=-(-rdy) dy, (3)

TNy =-(-rV oy =10 (-rdY). (4)

Proof. To prove 3, by MV6’), MV9) and Lemma 4.1.3 (ii), 2 < (z©y) By
and y < (x ©y) @ y. Suppose x < z and y < z. By (i) and (i27) in Lemma
411, z@z=1and z = (2 ©y) @ y. Then by MV6’) we can write
oy oy oz=((roy) oy oya(z0y) =
=@yo-(roy)o-(zoy @(zoy) =
=o-(zoy)o-roy®(:0y) =

=yo-(roy)dxdz=1

It follows that ((z © y) ® y) < z, which completes the proof of (3). We now
inmediately obtain (4) as a consequence of (3) together with Lemma 4.1.3 (7).

Also A is a bounded lattice by Lemma 4.1.3 (vi) and (vii). O
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Proposition 4.1.5 The following equations hold in every MV-algebra:
i) z0WyVa)=(@0y) V(roz2),
(i) 2® (yAz2)= (DY) A(zd 2).
(ili) =(zAy) =—aV -y

(iv) m(xVy) =z Ay

Proof. By MV6’) and Lemma 4.1.3 (i7), z0y < zO(yVz) and 20z < 2O(yVz).
Suppose z @y < t and x ® z < t. Then by 4.1.3 (dii), y < -z & ¢ and
z < -z @t, whence yV z < =z @ t. One more application of Lemma 4.1.3 (ii7)
yield (y V z) ® = < t, which completes the proof of (7). It is now easy to see
that (¢7) is a consequence of (i), using Lemma 4.1.3 (i), together with MV4)
and MV8). (éi7) It follows that Proposition 4.1.4 (4) and MV4). (iv) By 4.1.4
(4) mz A=y = =(=—x vV =—y) = =(z Vy) by MV4). O

Proposition 4.1.6 Let A be an MV-algebra. Then A with the natural order

is a bounded distributive lattice.

Proof. By Proposition 4.1.4, A is a bounded lattice. Now

aN(bVec) ®-(bVe)o(bVe) By Proposition 4.1.4 (4)
S

( (
(@ (=bA=c)®(bVec) By Proposition 4.1.5 (iv)
((a®-b) A (a®—c)) ®(bVe) By Proposition 4.1.5 (i4)
(((a®—b) A (a®—c) ®b)V (((a®—b) A (ad ) ®c)
By Proposition 4.1.5 ()
((a®—c)®(ad—b)® (ad—b)©b)
(((a®—b) ® —(a®—c)) ® (a® —c)©®c) By Proposition 4.1.4 (4)
((a®—c)®=(a®-b))®(aAb))V(((a®—b)B—(a®—c))®(aNc))
By Proposition 4.1.4 (4)

<(aNb)V (aNc). By Lemma 4.1.3 (v)
On the other hand, aAb<a A (bVc),aNc<aA (bVc)imply
(@anb)V(aNc)<aA(bVc), and therefore
(anb)V(aANc)=aN(bVec).

= \a
= (a

<
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Replacing a by bV ain a A (bVe) = (a Ab)V (a A c) we obtain
(bVa)A(bVe)=((bVa)Ab)V((bVa)Ac)=
=bV((bVa)Ac) (since (bVa)Ab=Db)
=bV(bAc)V(anc)=bBV(bANc)V(aNhc)=
=bV(aNc) (sincebV (bAc)=D). 0

4.2 Correspondence between MV-algebras and
MYV -effect algebras

Proposition 4.2.1 Let (M,H, —,0) be an MV-algebra. Restrict the operation
H to the pairs (x,y) satisfying x < —y and call the new partial operation & .
Then M7? = (M,®,0,1) is an MV-effect algebra (where 1 = —0).

Proof.

M? = (M,®,0,1) is an effect algebra :

Ey

If 2 @y is defined then x < —y, hence (by Lemma 4.1.3 (i) and MV4) y < —z.
Therefore y @ z is defined and (by MV2) x @y =cBy=yHz =y & .

Es

Let a,b,c in M such that b @ ¢ and a @ (b ® ¢) are defined (i.e. b < —¢ and
a < —(b®c)). By lemma 4.1.3 (iv) b < bHc = b@c. By hypothesis a < —(bdc),
then (b@ c¢) < —a and thus b < (b@® ¢) < —a. Therefore b < —a and then a © b
is defined.

By hypothesis a < =(b&c¢), then by Lemma 4.1.3 (ii) and since a®b is defined,
a®b=aBb< —(bBc)Bb = —~(bEHc)Bb = =(bH—(—c¢))Bb = —(-bHB—-c)B-c
(by MV6).

On the other hand, by hypothesis b < —¢, then by Lemma 4.1.1 (i) 1 = —cH—b.
Therefore a®b < =(-bH—-c)B-c = =1H-c = 0H-c = —c and thus (a®b)Gc
is defined and (a ®b) @c= (aBb)Bc=aB (bHc)=a® (b c).

Ey

Let z € M, then there exist a unique -z in M such that x B -z = 1 (see MV9
and Lemma 4.1.2). Also, since z < z and =—x = x, x @ —z is defined and
r@dx=xH-z=1

Remark. 2/ in M7 is =z in M.
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E,
If @1 is defined then z < =1 and thus < 0. By Lemma 4.1.3 (vi) = 0.

The natural order of the MV-algebra M and the natural order of the

effect-algebra M7 are the same:

In other words a < bin M iff a < bin MF.

Let a <bin M. then 3z € M such that a B z = b (Lemma 4.1.1 (iv)).

Since z A —a < —a then a < —=(zA-a). Thus a@® (2 A—a) is defined and

a® (zA-a)=aB (zA-a)=(aBz2)A (aB -a) (by Proposition 4.1.5 (ii))
=(aB2)AN1=aBz=0.

Therefore a < bin MF.

Now assume that a < b in M7, then 32 € M” (z € M) such that a ® z is

defined and b=a® z =aH 2.

Therefore a < b in M.

MP? is a bounded distributive lattice:
The MV-algebra M is a bounded distributive lattice (Proposition 4.1.6) and
since the natural order of the MV-algebra M and the natural order of the

effect-algebra M” are the same, then M7 is a bounded distributive lattice.

If a <bin M?, then b&a in M%7 is bHa in M:

a<-bBa = —(-bHa)<-a,ie bHa< a.

Thus a @ (bHa) is defined in M”.

Also,a <bin M” = a<bin M = (Lemma 4.1.1 (44i)) a B (bBa) = b.
Therefore, if a < b, a® (bHa) = aB(bBa) =b ,ie. a <b = boa=bHa.

The lattice ordered effect algebra M7 satisfies the ecuation
(aVb)ea=0b6 (aNb):
(avb)oa=(aVvb)Ba=-(-(aVbHBa)==((-aN-b)Ha) =
= =((—maBa) A (=bHa)) ( by Proposition 4.1.5 (ii))
==(1A(-bHa)) =—(-bHa)= (bBa).
b (anb)=bB(aANb)=—(-bB (aAb)) =—((-bBa)A(-bHED)) =
=(-bBa)Al)==(-bHa) = (bBa).
Therefore (a Vb) ©a=0b6 (a Ab).
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This completes the proof of Proposition 4.2.1. O

Proposition 4.2.2 Let M = (M,®,0,1) be an MV-effect algebra. Let B be
a total operation given by s By = 2 ® (2/ Ay). Then M7 = (M, 1, ’,0) is an
MV-algebra.

Proof.
MV?2)
cBy=z® (@' ANy)=(" S (@ Ny)) = (Lemma 1.4.8)
=((@'Vy) ey) = (since M an MV-effect algebra)

=y® (@' Vy) =y®(xANy')=yHBz (by De Morgan’s Identities).

MV1)
We will need the next results. We define a total binary operation on M given
by aBb=a6 (a AD).

Lemma 4.2.3 Let M an MV-effect algebra and a, b, c € M, then

(i) fb<athenaBb=aS0b.
(ii) aB(bAc)=(aBb)V (aBc).
(iii) (eBb)Hc=aB (bBc¢).

(iv) aBb= (d/’Bb) = (¥ Ba).

Proof.
(i) aBb=as (aNb)=aob (sinceb<a).

(it) (aBb) vV (aBec)=(ac (anb))V(ac (aNc)) =
=a0 ((aNb)AN(aNc)) = (by Lemma 1.5.3 (v))
=a(aN(bAhc)=aB(bAc).

(1ii) (aBb)Bc=(aBb & ((«Bb
= (aS ((ac (anb)) A (an
B((aB(anb)Ac)) e (an
(a8 (A b))
S (ac (aAb))

o (aND)))

Ne)=(aS (and)O((ao(anb))Ac) =
(by Lemma 1.4.7 (iz))
(by (2))

aAb) = (by (it))

aAb) = (by (i)

)©
)©

c)) ©
¢)) ©

)
c) b) =
= (a ) b) =
((a V(aH (
((ao (ao V(e B (
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(anb)V(aBc) o (and) = (by Lemma 1.4.7 (i7))

= (
=(@Bc o ((anb)A(aBc)) = (since M an MV-effect algebra)
=(aBc)o ((aBc)Ab) = (since, by Lemma 1.4.7 (i), aBc¢ < a)
= (aBc)Bhb.
(w) aBb=a® (d Nb) = (d©(d AND)) = (by Lemma 1.4.8)
= (¢’ Bb)". The rest follows by symmetry and MV2. O

Now, we will prove MV1).

By Lemma 4.2.3 (iv), (aBb)Bc= ((aBb)Bc) =(('Ba)) Be) =
=((Ba)Bc¢)=(t'Bc)Ba) =  (by Lemma 4.2.3 (4i))
=((bHc)'Ba) = (((0Bc¢))YHBa)) = (bBHc)Ba=aB((bHBc) (by MV2).

MV3)
tBHO=2® (@ AN0)=260=u. (Lemma 1.4.3 (iii))

MV4)
By Lemma 1.4.3 (i) 2" = «.

MV5)
cBO=2d @' AN0)=xd (@' Al)=cdr’=1=0
(by E3 and Lemma 1.4.3 (ii)).

MVe6)

By MV2) (2’ By) By =yByB) =y [y Aly® Y Na'))] =

=yo oW AL))  (since (y @ (y Na')) <)

=yo @ oWAr)=>FoWeo W)=y Ax)) (by Lemma 1.4.7
(i)

=yVuax.

Thus (2’ By) By =y Vzand by symmetry (¢ Bz) Bz =z Vy.

Therefore (¢/ By) By = (v Bzx) Be. O

The natural order of the MV-effect algebra M and the natural order
of the MV- algebra M7 are the same:

Ifa<bin M = dz¢& M such that a @ z is defined and a ® z = b.
a®zisdefined > a<zzZ=2<d =dANz=z2
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ThusaBz=a® (¢’ AN2) =a®z=0b, and then a < b in M7.

a<bin M7 = 3z € M such that a Bz = b that is a ® (¢’ A 2) = b.
Therefore a < b in M.

Proposition 4.2.4
(i) Let (M,®,0,1) be an MV-effect algebra, then (M7)? = M,
(i) Let (M,H,—,0) be an MV algebra, then (M*)7 = M.

Proof.
(7)
Let a,b in (M7)” such that a @ yry» b is defined, i.e. a < in (M7)7.
Now a < b in (MT)P < a<Vin M7 & a<b in M.
Then b < @’ in M and thus @’ Ab=b.
Therefore a ®yryr b= a8y b=a®y (/ Ab) = a Dy b.
(i)
a B eyt b=a@yr (d Nb) =
=a My (' AD) (since a < (' Ab) in MP = a < (a’ AD) in M)
= (a8 ') AN (aBp b) (Proposition 4.1.5 (ii))
=1A(aHyb) =
= g H,, b. O

5 Appendix

Let M an MV-algebra, we call radical of M (Rad(M)) the intersection of all
maximal ideals of M. An element a in M is said to be infinitely small or
infinitesimal if and only if a # 0 and na < —a for each integer n > 0 (where
na is a B ... B a n-times). The set of all infinitesimals in M will be denoted
by Infinit(M). An MV-algebra M is said to be semisimple if and only if
Rad(M) = {0}.

Remark 5.0.5 It is proved in [2, Proposition 3.6.4] that
Rad(M) = {0} U Infinit(M).
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Example 5.0.6 Let C' = [0, 1], then it is easy to see that C' = (C,H, —,0) is
an MV-algebra where for all z,y in C xBy = min(zx+y, 1) and ~z = 1—z. It
is called the standard MV-algebra. Also the natural order on the MV-algebra C

is the usual order of numbers of C' and C' is semisimple since I'n finit(M) = (.

Remark 5.0.7 Let C' = [0, 1] as example 5.0.6 and C7 as Proposition 4.2.1.
Then C7 = (C,®,0,1) where a @ b is defined if and only if a < 1 — b and, in
this case, a®b=a+b. Also a’ =1 —a and a &b is defined if and only if b < a

and, in this case, a &b =a — b.

Example 5.0.8 It is proved in [2] Proposition 3.6.1 (page 72) that an MV-
algebra M is semisimple if and only if M is a subdirect product of subalgebras
of the standard MV-algebra [0, 1], that is, there is an injective homomorphism
of MV-algebras h : M — [],.; C; such that for each j € I, C; is subalgebra
of [0,1] and p o h : M — Cj; is a homomorphism onto C;, where p’ is the
5t projection.

We identify M with the subalgebra (and the sublattice) h(M) C [],.; C; and
M?P with h(M)” C T]..; C;. Thus, we can think of the elements 2 € M7 as
elements (2!);c; with 2! € C' 1 € T and if (2!)1cs, (y')1er € M we have that
(#")1er © (y)ier is defined in M7 if and only if (2')icr < 1—(y")ier = (1 =y )ier
(ie. forall l € I 2! <1 —4') and, in this case, (2')ic; ® (¥ )ier = (2' + y)ier.
Also (2')1e1 © (y')ier is defined in M” if and only if (2');c; > (y')ier (ie. for
alll € I 2! >4') and, in this case, (2')ic; © (¥)ier = (2! — ¥ )ier.

Example 5.0.9 Let M be a semisimple MV-algebra, then (see example 5.0.8)
M7 C T],.; Ci. It is easy to see that the map f : [[,.; Ci — [],c; B(C;) defined
by f((z')ier) = ((0,2)es (see example 1.3.14 and Lemma 1.3.15) is an order
isomorphism onto the sublattices f(M7) of [[,.; B(C;). Then ([10] I1.4 Corol-
lary 8) B(M7”) = B(f(M7”)) = B where B is the subalgebra of []..; B(C;)
R-generate by f(M7). Thus, we can think of the elements x € B(M7) as
elements in [[, ; B(C;). Furthermore, let € B(M7), then © = z1 + ... + x,
with z1,...,22, € M” and 1 < ... < x9, and ¢yr () = D, (T2 © w2i—1) =
D, (zh — aby )ier = [Dor (@h, — :vl%_l)]le[. Thus if we think in B(C;) the
element z{ +...+a}, as (¢1, 23] U... U (ah,_,,25,] (see example 1.3.14) then

éupe () is in each coordinate i the “length” of (zt, xi]U... ... U (2h,_y, 25, ].
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5.1 Vetterlein’s Boolean ambiguity algebras

A Boolean algebra B = (B, A,V, € 0,1) with a countable dense subset is
called separable. Furthermore, for g € Aut(B) and a € B, we denote by ¢|,
the restriction of g to the interval [0, a]. We define a — b = —a Vb for a,b € B.
We furthermore write a_Lb if there are no non-zero ag < a and by < b such
that ag ~ by. Let B be a separable Boolean algebra, and G be a group of
automorphisms of B. Then we call the pair (B,G) a Boolean ambiguity

algebra. Given (B, ), we introduce the following notions:

i We call G compact if for all non-zero a € B, every set of pairwise disjoint

elements of the form g(a), where g € G, is finite.

ii Let B be a o—complete Boolean algebra. We call G full if for any two

partitions of unity (a;);<x and (b;)i<x, where A < w, and a system g; € G,

i < A, such that g(b;) = a;, the automorphism ¢ defined by g|., = ¢;

a;»s

belong to G as well.

iii We call G f-full if for any two partitions of unity (a;);<; and (b;);<;, where
| < w,and asystem g; € G, i < [, such that g(b;) = a;, the automorphism
g defined by gla, = gila, for each i <, belong to G as well.

iv. We say that G has the decomposition property, or (DP) for short, if for
any a,b € B, there are ¢ < a and d < b such that c~d and a\c L b\ d.

A Boolean ambiguity algebra (B, GG) will be called complete if B is c—complete
and G is compact and full, and it is called normal if GG is compact f-full and
fulfils (DP).

Remark 5.1.1 As a matter of fact, all the results concerning normal ambi-
guity algebras stated in this paper do not depend on the separability of the
corresponding Boolean algebras. Hence this condition can be eliminated from

the definition of normal ambiguity algebras.

Let (B,G) be a complete Boolean ambiguity algebra or a normal Boolean
ambiguity algebra then it is proved in [17, Propositions 2.8 and 4.5] that
(B, <,0,1) is a lattice with smallest element 0 = |0] = {0}, greatest element

~Go
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1 =|1] = {1} and |a| < |b| if and only if there exist a; ~ a and by ~ b such that
a; < by. Moreover, for any a,b € B, there is a by ~ bsuch that |a A by| = |a|A|b|
and |a V by| = |a|V|b|. Furthermore if a, b € B, then {|a; A b1| : a; ~ a,b; ~ b}
has a minimal element, and {|a; — b1| : a; ~ a,b; ~ b} has a maximal element.
Let (B,G) be a complete Boolean ambiguity algebra or a normal Boolean
ambiguity algebra. We define:

la| © o] = A{lar Abi] - ag ~a, by ~ b}, ~lal = [a] — 0= [a°],

la| = [b] = V{lar — bi] s a1 ~a, by~ b}, fa] @ [b] = ~(=]a] © = [b]).

Proposition 5.1.2 [17, Propositions 2.12 and 4.7] Let (B, G) be a complete
Boolean ambiguity algebra or a normal Boolean ambiguity algebra. Let a,b €
B such that |a|A|b] = |a A b|. Then |a|®[b°] = |a A b°| and |a| — |b] = |a — b].

Theorem 5.1.3 [17, Theorems 2.14 and 4.8] Let (B, G) be a complete Boolean
ambiguity algebra or a normal Boolean ambiguity algebra. Then (B.,®, —,0)
is an MV-algebra.

5.2 Normal Boolean ambiguity algebras and MV-pairs

Let us start this section by showing that if (B, G) is a Normal Boolean ambi-
guity algebra then (B, G) is an MV-pair. We need first to prove the following

lemmas:

Lemma 5.2.1 Let (B,G) be a Boolean ambiguity algebra with G compact,
let f € G and let z,a,b € B such that a Ab =0, z < a and f"(x) < b for all
n € N. Then x = 0.

Proof. Since x < a, aAb = 0and f*(x) < bforalln € N we have zA f"(z) =0
for all n € N, then f'(z) A fi(z) =0 for all i # j 4,5 € N. Since G is com-
pact { f"(x) : n € N} is finite, ie. {f"(z) : n € N} = { f}(x), f2(z),..., [F(z)}.
Let ff*1(x), then 3j, 1 < j < k such that f*!(z) = fi(z), therefore

f(f* Y (x)) = f(f(x)), that is fF717(z) = = (note that k + 1 — j > 0)
then x = 0 since fk“*j(x) <b, r<aand a Ab=0. O

Lemma 5.2.2 Let (B,G) be a Boolean ambiguity algebra and let a,b € B,

then the following conditions are equivalent:

75



(i) ald
(ii) forallh € G h(a) Nb=0

Proof.

(i) = (44): If h(a) Ab# 0, let by = h(a) Ab and let ag = h™1(by) = a A h1(b).
Then 0 # ag < a, 0 # by < b and ag ~ by which contradicts a_Lb.

(1) = (i): Let a9 < a, by < b and ag ~ by. Then there exist h € G with
by = h(ao), therefore by = by Ab = h(ag) ANb < h(a) Ab =0 and thus by = 0
and aq¢ = 0. O

Remark 5.2.3 Let (B, G) be a complete Boolean ambiguity algebra or a nor-
mal Boolean ambiguity algebra. Then it is proved in [17] Lemmas 2.3 and 4.4
that if a,b € B are such that a ~ b and a < b, then a = b.

Lemma 5.2.4 Let (B, G) be a complete Boolean ambiguity algebra or a nor-
mal Boolean ambiguity algebra and let a,b,b' € B such that b ~ b and
la AV'| = |a| A |b]. Then a AV € max(L*(a,b)).

Proof.
Let f,g € G such that a AV < g(a) A f(b). Then we have:

lg(a) A f(b)] < la] and |g(a) A f(b)] < [b], thus |g(a) A f(D)] < |af A[b].
a ANV < g(a) A f(b) imply |a A | < |g(a) A f(D)].

Therefore |a| A |b] = |a AV| < |g(a) A f(b)] < |a| A |b| and then

la AU = lg(a) A f(B)].
Since a AV < g(a) A f(b) and a AV ~ g(a) A f(b) then, by Remark 5.2.3,
aANb =g(a) A f(b) and thus a AV € max(L*(a,b)). 0

Proposition 5.2.5 Let (B, G) be a normal Boolean ambiguity algebra, then
(B,G) is an MV-pair.

Proof.

MVP1

Let (B,G) be a normal Boolean ambiguity algebra, a,b € B and f € G such
that a < b and f(a) <b.
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e If a = b then f(a) = f(b) < b and then, by Remark 5.2.3, f(a) = f(b) =

b = a. Therefore h = id satisfy the requirement.

e If f(a) = b then a ~ b and a < b. As above we have a = b. Therefore

f(a) = b= a and again h = id satisfy the requirement.

e If a <band f(a) < bitis proved in [17, Lemma 4.3] that 3h € G such
that h(b) = b and h|, = f|,. In particular h(b) = b and h(a) = f(a).

MVP2 Let (B,G) be a complete Boolean ambiguity algebra. From Lemma
3.2.5 it suffices to prove that for all a,b € B there exist m € max(L(a,b))
such that m > aAb. Let a,b € B. Since (B, G) is a normal Boolean ambiguity
algebra, we can apply (DP) property to a\ b and b\ a and we obtain that there

are

c<a\b, d<b\aand g€ G with g(d) =cand (a\b)\c L (b\a)\d (5)

(note that cAd = 0). Since G is {-full the automorphism ¢ defined by §ls = g4,
gle = g7 e and §l(evaye = id|(evaye is in G. Let ¥ = g(b). It is easy to see that
V=(0b\d)Ve, aNb =(aNb)Ve, V\a=(b\a)\dand a\V = (a\b)\c,

and thus, a Ab<aAb and, from (5), b'\a L a\V. (6)

We claim that for all b” ~ b there exist an h € G such that h(a AV') < aAb.
Indeed, since b’ ~ b”, it is proved in [17] Lemma 4.3 (i7) that there exist an
h € G such that

AO\Y) =6\, R \V) ="\ and Alyxy = idypy.  (7)

By (6) and Lemma 5.2.2 h(a\b')A (0 \a) = 0 that is h(a AV) A Aa® = 0, and
we also obtain h(a AV AV) AV Aa® AND"® = 0. Since, from (7), h(a AV AD") <
R(B"\ V) =0 \V" = (U \V")Aa)V((U'\ V") Na®) = (0 ANb" ANa)V (D AB"™ A af)
we have that h(a AV AY") <V Aa A" <V Aa.

On the other hand, by (7), h(a AU AY") =id(a NV AV') =a ANV AY <aAl.
Therefore h(a AD") = h(a A" AV)VRh(a A" AVC) <aAV VaAnb =aAb and

the claim is proved.
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We will prove that |a A b'| = |a|A|b|. It is clear that |a A V| < |a| and |[a A V| <
|b|. Let = € B such that |z| < |a| and |z| < |b], then there are fi, fo € G such
that f1(z) < a and x < fo(b') (and thus fi(x) < fi(f2(0'))). Therefore

fi(z) <a A fi(fo(V')). From the claim, there is an h € G such that

h(a A fi(fo(V)) <aAb, that is a A fi(fo(D) < h~Ha AV). Then

filx) <h YHaAV), and thus (ho fi)(z) < a Al that is |z] < |a AV
Therefore |a A b'| = |a|] A ]b].

Finally, from Lemma 5.2.4, a AV € max(L*(a,b)) and, by (6), aAb < aAl.O

Summing up, we have:

Let (B, G) be a normal Boolean ambiguity algebra then,

(I) From Theorem 5.1.3, (B.,H,—,0) is an MV-algebra. We call it V(B, G).

(IT) From Proposition 5.2.5 (B, G) is an MV-pair and then, from Theorem
3.3.1, M = (B.,®,0,1) is an MV-effect algebra . Therefore from Propo-
sition 4.2.2, M7 = (B., |, =, 0) is an MV-algebra. We call it J(B, G).

Proposition 5.2.6 Let (B,G) be a normal Boolean ambiguity algebra and
let the MV-algebras V(B,G) and J (B, G) as (I) and (II).
Then V(B,G) = J(B,G).

Proof. In V(B,G) and J(B,G) we have 0 = |0] = {0}. Let |a| € B, in
V(B,G) —la| = |a| and in J(B,G) = la| = |a|' = |a°|. Thus = = - on B..
So we only need to show that B = B8 on B..

la|B|b] = (= |a|O—|b]) = =(]a®|®|b°|) = =(|a® A f(b)°|) where, by Proposition
5.1.2, f(b) is such that |a® A f(D)| = |a°| A |b|] and then, from Lemma 5.2.4
a A f(b) € max(L*(ab)). Then we have

|al B[6] = =(la® A f(0)°]) = [(a A (b)) = [a v f(b)] with

a A f(b) € max(L*(a% b))

On the other hand

ol B = Ja] @ (Jal' A b)) = Ja] & (ja¢] A [b]) = Jal ® |ac A g(b)] with

a‘ A g(b) € max(L*(a%b)). From Remark 3.3.2 |a® A g(b)| = |a® A f(b)],
and thus |a| B8] = |a| © |a° A g(b)] = |a| @ |a° A f(b)] =
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= |ava® A f(b)] = |aV f(D)|. O

Let us proceed with this section by showing that the MV-algebras obtained in

Proposition 5.2.6 are semisimple.

Let (B, G) be an MV-pair and let M = (B.,®,0,1) be the MV-effect algebra
as in Theorem 3.3.1. Let |a| € M, we write nl|a| (n € N) for |a|®... D ]a| (n
times) provided |a| & ... ® |a| (n times) is defined. Then:

Lemma 5.2.7 Let M and a as above, then 2|a|, 3]al, ..., nla|, are defined
in M if and only if there are fi,..., f, € G such that f;(a) A f;(a) = 0 for all
i#7j i,j=1,...,n. In this case n|a| = |fi(a)V ...V f.(a)|.

Proof. We use induction on n. If n = 2, from Theorem 3.3.1 |a| @ |a| is defined
if and only if there are fi, fo € G such that fi(a) A fa(a) = 0 and in this case
la| & |a] = |fi(a)V f2(a)]. Suppose that 2]al, 3|a|, ..., n|a|, (n + 1)]|a| are
defined in M. By the induction hypothesis, there are g4, ..., g, € G such that
gila) Agj(a) =0foralli # j i,7=1,...,n and nla] = |gi(a)V...Vgn(a)|.
Therefore (n+1) |a| = |g1(a)V ... Vgn(a)|® |a| and this is defined if and only if
there are hy, hy € G such that hy(g1(a)V ... Vgu(a)) Aha(a) = 0, that is, if and
only if I (gs(a)) Aa(g5(a)) =0 Wi £ 6,7 =1,...,n and hy(gi(a)) Aala) =
0 i=1,....,nand (n+1)|a] = |hi(g;(a))V... ... Vhi(gj(a))Vha(a)|. The

induction is complete if we call f; =h;og; 1 =1,...,nand f,;1 =hy. O

Lemma 5.2.8 Let (B, G) be a normal Boolean ambiguity algebra, let
M = (B.,®,0,1) be the MV-effect algebra as in (IT) and let 0 # |a| € M.
Then there exist n € N such that 2|al, 3|a|, ..., (n — 1) ]a|, are defined in M

and n |a| is not defined in M.

Proof. If m|a| is defined for all m € N then, from Lemma 5.2.7, there are
fi, fa, ... € G such that fi(a) A fi(a) = 0 for all i # 5 i,j € N wich is a

contradiction since a # 0 and G is compact. a

Corollary 5.2.9 Let (B,G) be a normal Boolean ambiguity algebra and let
M = (B.,®,0,1) be the MV-effect algebra as in (II). Then for all a € B,
a # 0, there exist n € N such that m|a| < |a|'m =1,...,n—1 and n|a| £ |a|
in M.
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Proof. Let E be an effect algebra and let z,y € E, it is easy to see that x ®y
is defined if and only if y < 2. Therefore |a|® |a| is defined in M if and only if
la] < al’, (|a| @ |a]) @ |a| is defined if and only if |a| @ |a| < |a|, ..., in general
m |a| is defined if and only if (m — 1) |a| < |a|’. Therefore the proof follows

from Lemma 5.2.8. O

Proposition 5.2.10 Let (B, G) be a normal Boolean ambiguity algebra and
let V(B,G) as in (I). Then V(B,G) is a semisimple MV-algebra.

Proof. Let 0 # a € B. Let M = (B.,®,0,1) be the MV-effect algebra as in
(IT), then from Corollary 5.2.9, there exist n € N such that n|a| £ |a|" in M.
Since |a|" = % ]a| in J and, from Proposition 4.2.2, the order in M and M7 =
J(B,G) are the same we obtain that, in J(B,G), n|a| = |a|/B...Bla| =
lal @ ... & |a] £ = ]al. A

By Proposition 5.2.6 the MV-algebras J(B,G) = (B-,H,4,0) and V(B,G) =
(B~,H,—,0) are equals and thus we have that for all 0 # |a| € V(B,G)
there exist n € N such that n|a| € a| in V that is Infinit(V(B,G)) = 0.
Therefore, from Remark 5.0.5, Rad(V(B,G)) = 0 and V(B, G) is semisimple.O

Finally we will see that if we build on a semisimple MV-algebra and obtain,
through Proposition 4.2.2 and Theorem 3.3.3, an MV-pair, the latter is a nor-

mal Boolean ambiguity algebra.
To prove that G(M7) is compact we need the following results:

Let C; be a subalgebra of the standard MV-algebra [0, 1] as example 5.0.6 and
let B(C;) be the Boolean algebra R-generate by C;. Let a € B(C}),

a=a;+ay+ ...+ agyp1 + ag, with aq,... a9, € C; a1 < ... < ag, then (see
example 1.3.14) we can represent a as (aj,as)U... U(ag,_1,as2,]. We denote

lenght(a) for (as —a1) + ... + (agn — azn_1)-

Remark 5.2.11 Let C; and B(C;) as above, and a = (ay, az)U. .. U(a,_1, a2,
and b = (by,bo]U... U(bypm_1,bom] in B(C;), then aAb =0 if and only if
(agr—1, a9 ] N (bas_1,b2s] =0 for all 0 <r <n and 0 < s < m.

Lemma 5.2.12 Let C; and B(C;) as above and let {a,}, . be a secuence of
pairwise disjoint elements in B(C;) with the same lenght [ = lenght(a;) =

lenght(ay) = .... Then [ = 0 (and thus a; = 0,a, = 0,...).

reN
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Proof.
It follows from Remark 5.2.11, that
a1 A\ as = 0 imply that [ < %

In the same form, if {a1,as, az} are pairwise disjoint, then < 3,

if {ay,as,...,a,} are pairwise disjoint, then [ < %,
and thus [ = 0. a

Corollary 5.2.13 Let C; and B(C}) as above and let {a;},_; be a secuence
of pairwise disjoint elements in B(C;) with the same lenght [ = lenght(a;) for
all j € Jand [ > 0. Then J is finite.

Proposition 5.2.14 Let M be a semisimple MV-algebra, let M7 as in Propo-
sition 4.2.2 and let (B(M™), G(M?")) be the MV-pair as Theorem 3.3.3 . Then
(B(M?),G(M7)) is a normal Boolean ambiguity algebra.

Proof.

G(M7) is compact:

From examples 5.0.8 and 5.0.9 we have that M” C [[,.,C; and B(M") C
[Lc; B(C;) where, for all i € I, Cj is a subalgebra of MV-algebra [0,1]. Let
v € B(MP),x = x1+...+x9, withzy,..., 79, € MP and 1 < ... < 1,. Note
that if f € G(M?") then ¢y7 (f(x)) = dpre(z) and thus, if f(z) = y1+. . .+ Yam
with y1,...,y2m € M7 and y; < ... < 9o, We have that (see example 5.0.9)
foralli € I (ys—yi)+...4 (Yo — Ysm_1) = (@b —2})+. ..+ (2, —vb,_1) >0
that is for all ¢ € I (¢}, 23] U... U (ah,_y,25,] and (v}, 5] U .. U (Yom_y, Yim)
have the same length in B(C}), that is, for all i € I lenght(x?) = lenght(f(z)?)
in B(C}).

Now, let z € B(M”), z # 0 and let { fo(2)},c4
ements with f, € G(M?) for all & € A. Since z # 0 then, from Theorem 3.3.3,
dur () # 0in [[,c; C; and thus 35 € I such that p? (¢re (x)) = (Spr ()7 # 0
in Cj, that is, Y21 (¢}, — x};_,) > 0 that is lenght(27) > 0 in B(C;). On the
other hand (since, f,(z) € B(M”) C [],c; B(C;) for all & € A) {fa},eca are

pairwise disjoint if and only if for all i € I {(fa)'},c4 are pairwise disjoint

be a set of pairwise disjoint el-

in B(C;). In particular {(fa)’},c4 are pairwise disjoint in B(C;) and, from
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above, 0 < lenght(a?) = lenght((f.(z))?) in B(C;) for all @ € A. Therefore
from Corollary 5.2.13 A is finite.

G(MP) is f-full:

Let ai,...,a, and by, ..., b, be two partitions of unity of B(M7), let g, ..., gn
in G(M7) such that gy(ar) =bx k=1,...,n and let g defined by gla. = gila,
Then ¢ e (g(z)) = dae(g(x AarV... Ve ANay)) =

= ¢y (g1(xANar)V ... Vgn(xAay,)) and, since ¢y» is a homomorphism of effect
algebras and the sum operation in B(M7) is V, we have that

Our(9(x)) = Byoy dure (gr(x A ar)) = Di_y dur (z A ax) (since gy is

ém — preserving k =1,...,n). Therefore ¢yr(g(z)) = P, dur(xz Aay) =
= ¢yr(z AayV...Vz Aay) = ¢yr(x) and thus g € G(MP) and G(M7) is
f-full.

(B(M?),G(M?)) fulfils (DP):

It is proved in [12] Lemma 4.4 that for every a € B(M), there is a
¢pr-preserving isomorphism of Boolean algebras

¥ B([0,0m(a)lyr) — [0,a] - Let a,b € B(M7) and let

t = ¢yr(a) A ¢pe(b), then there are two ¢y e-preserving isomorphisms of
Boolean algebras hy : B([0, ppre(a)]ye) — [0, a] gy and

ha + B([0, ¢pre (b)] 57) — [0, 0] ey (note that ¢ € [0, ¢prr(a)]y» and

t € 10,007 (b)]7), let ¢ = hy(t) and d = ho(t) then 0 < c < aand 0 < d < b
and ¢ ~ d since hy and hs are ¢,;p-preserving and Theorem 3.3.3. Let r,s €
B(M?) be such that 0 < r <a\c¢, 0 < s <b\dandr ~ s (and thus by
Theorem 3.3.3, ¢pe (1) = dpre(s)) then ¢pe(0) < dpr(r) < ¢pre(a\ ¢) and
drr (0) < dprr(s) < dpr(b\ d). Now, in the effect algebra B(M7”) the partial
difference is defined if and only if x < y and it is  \ y and, since ¢y is a
homomorphism of effect algebras, we obtain 0 < ¢y (1) < ¢pr(a) © dpre(c)
and 0 < ¢pr(s) < dur(b) © dpr(d) in MP. Therefore | since ¢y r(r) =
onr(s), 0< e (r) < (Qur(a) © dur(c) A (dur(b) © durr(d)).

On the other hand ¢yr(a) © ¢pe(c) = Ppr(a) © dpr(ha(t)) =

= ¢ur(a) © dyr(l) = dur(a) St = gur(a) © (Pur(a) A dyr (b)) =

= (¢hyr(a) = dyr(a) A dlyp(b))ier and
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if ¢ p(a) < ¢iyp (D)
7 (0) = Gl (B) 1F Gy () > 0y (0)

Similarly ¢ye (b) © ¢are (d) = (¢ (b) — & n (@) A @ n(b))ics and

e (@) = dr (@) A dyr (b) = { !

0 i 60 (8) > 610n )

e (0) = Gy la) i @ype(a) < Gy (D)
Thus (7 (a) S P (€)) A(dare (D) S ¢are(d)) = 0in M” and then ¢y»(r) = 0.
Therefore 7 = 0 and s = 0 and thus (B(M"), G(M7)) fulfils (DP).

e (0) = Sy (@) A Gy (b) = {

5.3 Complete Boolean ambiguity algebras and MV-pairs

Let us start this section by showing that if (B,G) is a Complete Boolean
ambiguity algebra then (B, ) is an MV-pair. However, we need first to prove

the following lemma:

Lemma 5.3.1 Let (B, G) be a complete Boolean ambiguity algebra, let a, b €
B and let g € G with g(b) < a. Then there is an automorphism g € G such
that g(b) < a and gla Ab) =a Ab.

Proof.

It is clear if a A b = 0. Suppose that a A b # 0.

To define g let us build an appropriate partition of the unit, appropriate au-
tomorphisms, and based on the fact that G is full. The proof is quite simple
when the Boolean algebra is atomic; in general, the idea is the same but the
operations are more cumbersome.

Let us start by defining certain elements b; in B so that in the event that the
Boolean algebra should be atomic, then b; would be the set of atoms x in set
b\ a such that g'(z) €aAb i=1,...,j—1and ¢/(x) € a\ b. See Figure 3.

Let by =bAa*Agta\b), by =bAaAb;Ag2(a\b),
. by =bAa NS A ANBS_  ANgTi(a\b),

We have divided the proof into a sequence of remarks.
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Figure 3:

R1) If i # j it is clear from definition, that b; A b; = 0.

R2) b\ a=\/ 70,

Let r = (b\a)\(\/ b;). We note that g(r) < g(b) < a and, for all i € NrAb; = 0.
1
(8)

We claim that for all i € N, ¢'(r) < a A b. We use induction on i.

Leti=1andt = g(r)A(a\b). Then g~'(t) = rAg='(a\b) < (b\a)Ag~'(a\b) =
bAaAg~H(a\b) = by and g~ (t) < r. Therefore g=1(t) < rAb; = 0 (by (8)) and
thus g7 () =0 and ¢t = 0. Finally 0 = ¢ = g(r) A (a\ b) imply g(r) < (a\b)¢ =
a®V b and since by (8) g(r) < a, we obtain g(r) = g(r) Aa < (a®V b) A a, and
then g(r) < aAb.

Induction hypothesis: ¢*(r) < aAb, k=1,2,...,i. Let t = g""}(r) A (a \ ),
then
g () =g' () AgH(a\b) < g'(r) <aAb,
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g (t)=g'(r) Ng~(a\b) < g'(r) <and.
Thus, for 0 < k <i— 1, we have g~ (¢t) <a Ab .

If we take infimum with g*** (b A a® AbS A ... AbS) A (a\ b) in both side to
the last inequality we obtain g~ (¢) A g*T L (DA @ ADS A ... ABE) A (a\b) =0
(since that (a\ b) AaAb=0) and then

g g TR NGO N ADS AL AVE) A (a\ b)) = g *1(0) that is
GEYONDBANENEN . AB)ANg N a\b)=0for 0 <k <i—1.

(. J/

b1
—i—1 _ —i—1 c
Therefore g7~ '(t) A by = 0, and thus ¢~ '(t) < b5,
g 7 t) Aby =0, and thus ¢ '(t) < b5,

g7 N (t) Abi =0, and thus  g~~(t) < be.

On the other hand ¢~ 1(t) = g7 (¢"™ (r) A(a\ b)) =7 A g~ (a\ D).
Thus ¢~ 1(t) <r<b\a=bAa® and g () < g " a\D).
Therefore g7 1(t) <bAa AV ADS ... ANDSA g Ha\b) = by

Then, we have: ¢g="'(t) < by and ¢ () < r. Therefore g7"71(t) <
bisy Ar =0 (by (8)) and thus ¢g=""!(¢) =0 and ¢t = 0.

Since g(b) < a and, by induction hypothesis, ¢'(r) < a Ab < b, we have
g r) <a. But 0=t = g™ (r) A (a\ b) and ¢""'(r) < a imply (as before, in
case i = 1) ¢""1(r) < aAb. Thus the induction is complete and we have proved
that ¢'(r) < aAbVieN.

Finally, we have r < b\ a and ¢'(r) < a Ab Vi € N, then from Lemma 5.2.1
r=0.
Since r = (b\ a) \ (V] b;) and \/7°b; < b\ a, we obtain b\ a = \/{" b;.

We intend to prove that if ¢ # j then g'(b;) A g7(b;) = 0, but we need first to
prove the following observation.
R3) Let r # 0 and r < b; for some i € N, then

g(r) Aland) # 0,
glg(r) Aa AD)] A (a Ab) = g*(r) Agla Ab) A(anb) #0,
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Figure 4:
g{glg(r) A (a AD) A (a A} A (anD) = g*(r) Ag*(anb) Ag(anb) A(anb) # 0,

g HrYNG2(aNb)A ... AglaAD) A (aANb) # 0 (see Figure 4).

Suppose that ¢'(r)Ag' = (aAb)A...Ag(aAb)A(aAb) = 0 for some 1 <[ <i—1.

Let k =min{l: g"(r) A g= (aAb)A...AglaAb) A (aAb) =0,
1<i<i—1}.

Now, 0= gF(r) Ag" Y (aAb)A...AglaND) A (aAb) =

= glg" t(r) A gE2(@aAb) A ... Aglanb)A(aAD)]A(aD).
We call m = g" L (r) Ag" 2(aAb) A ... AglaAb) A (a AD).

We have that g(m) < a (since m < b and then g(m) < g(b) < a) and
g(m) A (a Ab) = 0. Then
g(m) <a\b. Also m # 0 (since k — 1 < k). 9)

Let 2 =g (m)=rAgHanb)...ANgF2(aAb) ANg " (anb) <1 < b
Therefore 2 <b; =bAa ANV A ... ANV A ABE{ Ag i (a\b) <
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<bAaAbSA ... ABS_,. On the other hand g*(z) = g(m) < a\ b (by (9)), and
thus 2 < g~%(a\ b). Therefore z < bAa*AbSA...AbS | Ag~*(a\b) = by. Then
z < b and z < b; and thus z < b Ab; = 0 (since k # j) which is a contradiction
since (by (9)) m # 0. Therefore g*(r) A g*1(a Ab)... Agla Ab) A(aAb) #0
forall k=1,2,...,7i—1.

R4) Now we will prove that if 7 # j then ¢*(b;) A ¢7(b;) = 0. Suppose that
g'(b;) A g?(b;) # 0 with i # j and suppose i > j (the other case is similar).
Let 0 # t = ¢'(b;) A ¢°(b;). Since t < g'(b;) we have 0 # ¢g~'(¢t) < b;. Let
0#r=g"t).

From R3) ¢"(r) AgF=1(anb) ... Aglanb)A(anb) # 0 forall k=1,2,...,i—1.

Let 0£m;_1 =g (r)Ag™2(anb)...AglaANb)A(aAb) <aAb,
07 mi—s =g~ (mi—1) = g (1) Ag'>(anb) .. .A(anb)Ag~(anb) < anb,
0 7é mi—3 =g 1(mi 2) =g 3 (r)A.. ./\(a/\b)/\g Lanb)Ag=2(anb) < aAb,

0#£my =g (mg) =g(r)A(aAb)Ag (aAD)A...Ag™ T2 (aAb) < aAb,

0£s=g "(m1)=rAg aAb)A...Ag " (aAb) <r see Figure 5. (10)

Note that by construction ¢*7(s) = m,;_; < a Aband by (10) ¢'(s) < g'(r) =

= g'(g7'(t)) =t = g'(bi) A g’ (b;) < ¢/(b;) and thus g"/(s) < b; < b\ a.
Therefore g7 (s) < (a Ab) A (b\ a) = 0 and then ¢*7(s) = 0 and s = 0 wich
contradict (10).

Therefore g*(b;) A g7 (b;) = 0 for all i # j.

Thus we have proved that

bl,bQ,bg...,g(bl),g2(b2),g3§bg),...,((\'/Zlb,-)w\'/;’;gi(bi)))c is a partition of
unity (note that a A b < (Voo 0:)V(Vooyg'(6:)))°).

Since (B, @) is a complete Boolean ambiguity algebra, the automorphism g

g|g' :gii|gi(bi)a and

9l vz vz geone = Wy

Also glaAb)=id(aAb)=anb and gGb)=g((\,_ib:)V(a Ab)) =

vV i (bey)e Pelong to G as well.
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Figure 5:

= (Vi g (0))Vid(a A b) < (Vooy (a\ B)V(a Ab) = (a\DV(aAb) =a. O

Proposition 5.3.2 Let (B, G) be a complete Boolean ambiguity algebra, then
(B, G) is an MV-pair.

Proof.

MVP1 As Proposition 5.2.5 (we only must to use [17] Lemma 2.4 instead of
[17] Lemma 4.3).

MVP2

Let (B,G) be a complete Boolean ambiguity algebra. From Lemma 3.2.5 it
suffices to prove that for all a,b € B there exist m € max(L(a,b)) such that
m > aAb.

Vetterlein, in [17] Section 2, make use of parts of theory developed by Kawada
in [14]. Lemma 16 [14] and Lemma 2.7 [17], It shows that there is a paire, f € B
of disjoint elements wich are invariant under G and g1, g2, g3 € G such that
gi(ane) < bAe, go(bAf) < aAfand gs(an(eV f)°) = bA(eV f)°. From Lemma
5.3.1 there is go € G such that ga(bA f) < aA fand (DA f)A(aAf)) =
bANfYN(aNf)=aNbA f.
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Therefore we have

ane<g'(bne), an(eV f) =gg (bA(eV[)), (11)
GOANf) <anf (12)
and g2((0AF)A(anf))=(OAF)A(anf)=anbAf — (13)
(see Figure 6).

Since (B, G) is full and the elements e and f are invariant under GG, the auto-

morphism ¢ defined by

gle =91, levpe =95 levpe and gl =gl isinG. (14)

We call O/ = g(b). From (11), (12), (13) and (14) we have:
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aANbAhe<ane<g'(bhne)=gbAe)=
=g(b) Ng(e) = g(b) Ne =V e, (15)
aAbA(EV P <an(eV ) =g (bA(eV )) = glbA (e f)7) =
=g(b) Ag(leV f)7) =gO) AleV f)* = A(eV f)* and
AABAF=GanbAT) < @lbAS) = gbAf) = gB) Agf) =  (16)
=gb)Nf=VAJ,
Therefore (aAbAe)V (aNbA(eV f))V(aNbAF) < (W Ae)V (B A(eV )V (BAS)
that isa Ab <V and then aAb<aAl.
We will prove that |a A Y| = |a] A D).
It is clear thah |a A V| < |a| and |a A V| < |b|. Let x € B such that |z| < |af
and |z| < |b|, then 3fi, fo € G such that fi(z) < a and fao(x) < b. We have:

filz Ne) = fi(x) A file) = fi(x) Ne <aAe<b Ae (by(15)) and thus

filx Ne) <anl Ae. (17)

Let f3 = go fo. Note that e = (e V f)°V f (

invariant under G, then from (11),(12) and (14) we have that

fa(zne®) = fs(x)Afs(e) = fa(z)Ae® = g(fa(x))ne = g(fa(z))A((eV )V ) <
GO AV IV 1) = (9B A eV £V (g() A F) = gbOA(eV F))V g(bA f) =
95 (OA(eV )V ROAS) = (an(eV ))VaRbAS) <(an(eVf))Vanf=
an((eV )V f) = aAe. Furthermore fs(xAe®) < f3(x) = g(fo(z)) < g(b) = V.

Therefore

since e A f = 0) and e and f are

fa(xne) <aAnb Ne (18)
Since G is full and e and f are invariant under G, the automorphism A defined
by hle = file and hlee = f3|ec is in G. Then by (17) and (18)
h(z) =h((zANe)V(zAe)) =h(xANe)Vh(xAe)= fi(zxNe)V fs3(xAe®) <
<(aANVNe)V(aANY Ne®)=a Nl .
Therefore |z| < |a A V| and then |a A V| = |a| A |b].
Finally, from Lemma 5.2.4, we have that a A 0" € max(L"(a,b)). O
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As previous section, let (B, G) be a Complete Boolean ambiguity algebra then,

(I) From Theorem 5.1.3, (B.,H,—,0) is an MV-algebra. We call it V(B, G).

(IT) From Proposition 5.3.2 (B, G) is an MV-pair and then, from Theorem
3.3.1, M = (B.,®,0,1) is an MV-effect algebra . Therefore from Propo-
sition 4.2.2, M7 = (B., B, =, 0) is an MV-algebra. We call it J(B, G).

Proposition 5.3.3 Let (B,G) be a normal Boolean ambiguity algebra and
let the MV-algebras V(B,G) and J (B, G) as (I) and (II).
Then V(B,G) = J(B,G) and It are semisimple.

Proof. It is proved in exactly the same form that Proposition 5.2.6, Lemma
5.2.8, Corollary 5.2.9 and Proposition 5.2.10. a

We will see now that if we build on a semisimple MV-algebra and obtain,
through Proposition 4.2.2 and Theorem 3.3.3, an MV-pair it does not neces-

sarily constitute a Complete Boolean ambiguity algebra.

Lemma 5.3.4 Let C' = [0, 1] the semisimple MV-algebra as examlpe 5.0.6
and C7 as example 5.0.7. Let B(C”) be the Boolean algebra R-generated by
C? then B(C?”) is not o—complete.

Proof. ([10] 1.4 Lemma 25) Let 0 < 21 < @9 < ... < x, < ... < 1 (for
example x, = nL—l—l’ n € N) and let a,, = x1+x2+. . .+x9,, n € N. We claim that
V {an,n € N} does not exist. Indeed, let a be an upper bound for {a,,n € N}.
By example 1.3.14 we can represent a,, as (1, 23] U (23,24 U ... U (Top_1, Ton]
and a as (ag,as) U (as,aq) U ... U (agm_1, 00, with 0 < a1 < ay < ... <
a9, < 1. Since a contains each a,, there must exist an n and j < m such that
both (z2,-1, T2n] and (T2,11, Tonto| are contained in (ag;_1, ag;]. Therefore, the
interval (2, Z2,11] can be deleted from a, and it will still contain all the a;,
that is, @ + Z2,41 + T2,42 18 an upper bound for {a,,n € N} and

a + Topi1 + Topre < a. We conclude that {a,,n € N} does not have a least

upper bound. O
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Corollary 5.3.5 Let C” as above and let (B(C”),G(C7”)) be the MV-pair
as

Theorem 3.3.3, then (B(C%),G(C7)) is not a complete Boolean ambiguity
algebra.

Proof. Lemma 5.3.4. O

5.4 Final remark

We have proved (Propositions 5.2.5 and 5.2.10) that if (B,G) is a normal
Boolean ambiguity algebra, then (B, G) is an MV-pair and there is a semisim-
ple MV-algebra M7 = (B.,H,=,0) arising from it. Following 6], we denote it
B. . Furthermore if M is a semisimple MV-algebra then as shown in Proposi-
tions 5.2.14, the pair (B(M7”), G(M7)) is a normal Boolean ambiguity algebra
(and thus an MV-pair). Following again [6], we denote it (B(M), G(M)).

We want to show that these constructions are functorial. The followings defi-

nitions and results are taken from [6].
Let (B;,G4) and (Bs, Gs) be MV-pairs, we say that ¢ is a morphism of MV-
pairs iff

(i) ¥ : By — By is a morphism of Boolean algebras.

(ii) For all z,y € By, © ~¢, y implies ¥ (x) ~¢g, ¥(y).
(iii) For all z,y € By and fy € G, there exists f; € G such that

[0(@) A fo(b(W)]a, < [0 A fi(y)lg,

The class of MV-pairs equipped with morphisms of MV-pairs forms a category
P.

It is proved that if M; and M, are MV-algebras then the map v, : By o
B, given by ¢ur(|zg,) = [¢(2)]g, is a morphism of MV-algebras. Moreover
the map A : P — M (where M is the category of MV-algebras) given by
A((B,G)) = B, and A(¢) = 1y is a functor.

On the other hand using the fact [10] that all morphisms of bounded distribu-

tive lattices ¢ : My — Mj; uniquely extends to a homomorphism of Boolean
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algebras ¢p : B(M;) — B(M,) (where B(M;) and B(M,) are the Boolean
algebras R-generates by M; and M) it is proved in [6] that ¢p is a morphism
between the MV-pairs (B(M;),G(M;)) and (B(Msy), G(Ms)), and the map
V:M — P given by V(M) = (B(M),G(M)) and V(p) = ¢p is a faithful

functor.

Note that if M is an MV-algebra then A(V(M)) = B(M)~,,- Therefore
from Theorem 3.3.3 A(V(M)) = B(M)~,, = M and the map ny : M —
B(M)~g,, defined by na(x) = [2|g(py) is an isomorphism of MV-algebras.

Furthermore it is proved in [6] that if ¢ : My — M, is a morphism of MV-
algebras then the diagram

My

M, A(V(My))
P A(V(¥))
My — 2 o A(V(M,))

commutes. Therefore 1 : 1),y ~ AV is a natural equivalence, where 1y is
the identity functor on M.

Let AV denote the full subcategory of P whose objects are the normal Boolean
ambiguity algebras, and let S denote the full subcategory of M whose objects
are the semisimple MV-algebras. Propositions 5.2.10 and 5.2.14 show that we

can consider the restrictions of the functors A and V to N and S. Formally:

Let (B, G), (B1,Gy) and (Bsy, G2) be normal Boolean ambiguity algebras
and let ¢ : (By, G1) — (Bs, G3) be a morphism of MV-pairs. We call A
to the map A : N’ — S given by A((B,G)) = B, and A(y) = ¢y

Let M, M; and M, be semisimple MV-algebras and let ¢ : M7 — M, be
a morpfism of MV-algebras. We call V to the map V : & — A given by
V(M) = (B(M),G(M)) and V(p) = ¢p.

We immediately obtain that A : N' — S is a functor, V : S — N is a faithful
functor and 7 : 1g ~ AV is a natural equivalence, where 1g is the identity

functor on S.
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