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Tesis de Licenciatura

Construcción de MV-pairs y Boolean ambiguity

algebras a partir de una MV-algebra y viceversa.

Hernán de la Vega

Director: Roberto Cignoli

Junio 2011



Agradezco especialmente a mi direc-

tor de tesis, el Dr. Roberto Cig-

noli por su paciencia y sus ganas
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Introducción

En los últimos años ha habido un gran desarrollo en el campo de las Lógicas

Multivaluadas y, en consecuencia, de las estructuras matemáticas comprometi-

das en ese desarrollo, como lo son las MV-alebras, las effect algebras y las

MV-effect algebras. En el año 2006 Gejza Jenča [12] y Thomas Vetterlein

[17] partiendo de hipótesis distintas representaron MV-algebras a través del

cociente de un álgebra de Boole B por un subgrupo del grupo de todos los

automorfismos de B (Aut(B)). Esto es, ambos toman un par (B,G) (donde B

es un álgebra de Boole y G es un subgrupo de Aut(B)), definen la relación de

equivalencia sobre B a ∼ b si y solo si existe f ∈ G tal que f(a) = b y se define

una operación ⊕ en el conjunto de las clases que lo hace una MV-algebra. En

este trabajo se desarrolla una parte de la representación de Jenča (la otra está

desarrollada en [12] y en la Tesis de Licenciatura de Guillermo Herrmann) y

se da una relación entre las ideas de estos dos autores.

En la primera sección se dan todas las definiciones y se demuestran todos

los resultados que son necesarios para el desarrollo de las secciones posteri-

ores lo que, aparte de darle a este trabajo el caracter de “autocontenido”,

da una ordenada introducción a estructuras básicas en el álgebra de la lógica

como reticulados, álgebras de Boole, etc. También aparecen aqúı las estruc-

turas claves usadas en el trabajo de Jenča, las MV-alebras, las effect algebras

y las MV-effect algebras.

En la segunda y tercer sección se desarrolla parte del trabajo de Gejza Jenča

en la que se define que es un MV − par y se muestra que a partir de una MV-

effect algebra M puede construirse un álgebra de Boole B(M) y un subgrupo

G(M) de Aut(B(M)) de tal forma que el par (B(M), G(M)) resulta un MV-

par. Además en [12] y en la Tesis de Licenciatura de Guillermo Herrmann se

demuestra que a partir de un MV-par (B,G) se puede obtener una MV-effect

algebra A(B,G). En [12] y en la sección tres de este trabajo se demuestra

también que M ∼= A(B(M), G(M)).

En la sección cuatro se demuestra una correspondencia uno a uno entre las

MV-álgebras y las MV-effect álgebras. La demostración es una adaptación de

[5] y corrige la demostración dada en [7] Teorema 1.8.12 (página 75).
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En el apéndice, se transcribe parte del trabajo de Thomas Vetterlein en el que

se definen los conceptos de Complete Boolean ambiguity algebras y normal

Boolean ambiguity algebras, y a partir de estas se construye una MV-algebra.

Se muestra en esta sección que si el par (B,G) es una Complete Boolean am-

biguity algebra o una normal Boolean ambiguity algebra entonces (B,G) es

un MV-par y que la MV algebra obtenida usando el camino de Vetterlein y la

MV algebra obtenida usando el camino de Jenča y el teorema de correspon-

dencia coinciden y son semisimples. Por último se prueba que partiendo de

una MV-algebra semisimple y obteniendo un MV-par (mediante el teorema de

correspondencia y el Teorema 3.3.3) este último es una normal Boolean ambi-

guity algebra aunque no necesariamente es una Complete Boolean ambiguity

algebra.
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1 Definitions and basic results

1.1 Lattices [16] [10] [3]

A partially ordered set (or poset) 〈A,≤〉 consist of a nonempty set A and a

binary relation ≤ on A such that ≤ satisfies:

Reflexivity a ≤ a

Antisymmetry a ≤ b, b ≤ a imply that a = b

Transitivity a ≤ b, b ≤ c imply that a ≤ c

A poset 〈A,≤〉 that also satisfies ∀a, b ∈ A a ≤ b or b ≤ a,

is called a chain (or fully ordered set).

Let P a poset, H ⊆ P and a ∈ P . Then a is an upper bound of H iff h ≤ a for

all h ∈ H. An upper bound a of H is the supremum of H iff, for any upper

bound b of H, we have a ≤ b (a is the least upper bound of H).

We shall write a = supH or a =
∨
H. If H = {x, y}, we write

∨
H = x∨y.

Let P a poset, H ⊆ P and a ∈ P . Then a is an lower bound of H iff a ≤ h

for all h ∈ H. An lower bound a of H is the infimum of H iff, for any lower

bound b of H, we have b ≤ a (a is the greatest lower bound of H).

We shall write a = infH or a =
∧
H. If H = {x, y}, we write

∧
H = x∧y.

It is easy to check te uniqueness of the infimum and supremum.

A poset 〈P,≤〉 is a lattice if a ∧ b y a ∨ b exist, for all a, b ∈ L.

Example 1.1.1 The set P(X) of all subset of a set X is a lattice with the

operations a ∨ b = a ∪ b , a ∧ b = a ∩ b .

Example 1.1.2 If C is a chain, then C is a lattice.

Example 1.1.3 Let Nd = {1, 2, . . . . . .} where n ≤ m iff ∃k / n.k = m

(i.e n | m). Then Nd is a lattice with the operations a ∨ b = mcm(a, b) and

a ∧ b = MCD(a, b) .

In every lattice the following hold:

(L1) Idempotency:
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x ∨ x = x = x ∧ x
(L2) Conmutativity:

x ∨ y = y ∨ x x ∧ y = y ∧ x
(L3) Associativity:

x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z
(L4) Absorption identities:

x ∨ (x ∧ y) = x = x ∧ (x ∨ y)

Also x ≤ y ⇔ x = x ∧ y ⇔ y = x ∨ y.

Therefore x ≤ y ⇒ x ∧ z ≤ y ∧ z and x ∨ z ≤ y ∨ z.

Example 1.1.4 If L is a lattice, a, b ∈ L, a ≤ b and

[a, b] = {x ∈ L / a ≤ x ≤ b}, then [a, b] is a lattice.

Example 1.1.5 Let 〈L,≤,∨,∧〉 be a lattice. If we put a ≤D b iff b ≤ a,

a ∧D b = a ∨ b and a ∨D b = a ∧ b then 〈L,≤D,∧D,∨D〉 is a lattice.

A lattice can be characterized purely in terms of the properties

(L1), (L2), (L3), (L4).

Theorem 1.1.6 Let A be a nonempty set and “+”, “.” two binary operations

on A satisfying (L1), (L2), (L3), (L4) and set a ≤ b iff a = a.b.

Then A is a lattice with a ∨ b = a+ b and a ∧ b = a.b.

(Remark. If a = a.b, then a+ b = a.b+ b and, by (L4), a+ b = b.

Similarly b = a+ b⇒ a = a.b. Thus a ≤ b iff a = a.b iff b = a+ b).

Proof.

≤ is an order:

• a ≤ a by (L1)

• If a ≤ b and b ≤ a, then a = a.b and b = b.a.

Therefore by (L2) a = a.b = b.a = b.

• If a ≤ b and b ≤ c, then a = a.b and b = b.c.

Therefore by (L3) a.c = (a.b).c = a.(b.c) = a.b = a and a ≤ c.
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a+ b = a ∨ b :

By (L4) a = a.(a+ b) and thus a ≤ a+ b. Similarly b ≤ a+ b.

Let z such that a ≤ z and b ≤ z, then z = a + z and z = b + z. Then

(a+b)+z = a+(b+z) = a+z = z and thus a+b ≤ z. Therefore a+b = a∨b.

a.b = a ∧ b :

Since (a.b).a = a.(a.b) = (a.a).b = a.b, we have a.b ≤ a. Similarly a.b ≤ b.

Let z such that z ≤ a and z ≤ b, then z = a.z and z = b.z. Then z = a.z =

a.(b.z) = (a.b).z and thus z ≤ a.b. Therefore a.b = a ∧ b. 2

A lattice A is said to be distributive if, for all a, b, c ∈ A

(L5) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Example 1.1.7 If C is a chain, then C is a distributive lattice.

A bounded lattice is one that has both a smallest element (or “0”) and a largest

element (or “1”),that is, ∀a in the lattice, 0 ≤ a and a ≤ 1. (L6)

Notation a = x∨̇y means a = x ∨ y and x ∧ y = 0.

A sublattice K = 〈K;∧,∨〉 of the lattice L = 〈L;∧,∨〉 is a nonempty subset

K of L with the property that a, b ∈ K implies that a ∧ b, a ∨ b ∈ K (the

operations ∧, ∨ are taken in K), and the ∧ and the ∨ of K are restrictions to

K of the ∧ and the ∨ of L.

To put this in simpler language, we take a nonempty subset K of the lattice L
such that K is closed under ∧ and ∨. Under the same ∧ and ∨, K is a lattice;

this is a sublattice of L.

A {0, 1} − sublattice of a bounded lattice L is a sublattice containing the 0

and 1 of L.

An element a 6= 0 of a bounded lattice is called atom if the condition

0 ≤ x ≤ a implies that either x = 0 or x = a.
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A set I of elements of a bounded distributive lattice L is said to be an ideal

provided that:

0 ∈ I
If a, b ∈ L , a ∈ I and b ≤ a, then b ∈ I
If a, b ∈ L , a ∈ I and b ∈ I, then a ∨ b ∈ I

A set F of elements of a bounded distributive lattice L is said to be a filter

provided that:

1 ∈ F
If a, b ∈ L , a ∈ F and a ≤ b, then b ∈ F
If a, b ∈ L , a ∈ F and b ∈ F , then a ∧ b ∈ F

It is easy to see that intersection of any number of ideals (filers) of a lattice

L is a ideal (filter) of L. Thus, if a subset H of a lattice L is nonempty, we

can define the ideal (filter) generated by the set H, it is the intersection of all

ideals (filters) containing H, and the least ideal (filter) containing H.

The ideal generated by H will be denoted by (H], and the filter generated by

H will be denoted by [H).

Lemma 1.1.8 Let L be a lattice and let H be a subset of L. Then

(H] = { x ∈ L such that ∃ an integer n ≥ 1 and

elements h1 . . . . . . hn ∈ L with x ≤ h1 ∨ . . . . . . ∨ hn } .

Proof. Let I = { x ∈ L such that ∃ an integer n ≥ 1 and

elements h1 . . . . . . hn ∈ L with x ≤ h1 ∨ . . . . . . ∨ hn }.
It is clear that I is an ideal, and obviously H ⊆ I. Finally, if H ⊆ J and J is

an ideal, then I ⊆ J , and thus I is the smallest ideal containing H; that is,

I = (H] . 2

Similarly, we have:

Lemma 1.1.9 Let L be a lattice and let H be a subset of L. Then

[H) = { x ∈ L such that ∃ an integer n ≥ 1 and

elements h1 . . . . . . hn ∈ L with x ≥ h1 ∧ . . . . . . ∧ hn }.
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In particular if a, b ∈ L,

(a] = {x ∈ L such that x ≤ a} is the principal ideal generated by a.

[b) = {y ∈ L such that y ≥ b} is the principal filter generated by b.

An ideal (filter) A of a bounded lattice L is called proper if A 6= L.

Lemma 1.1.10 An ideal I of a bounded lattice L is proper if and only if

1 /∈ I.

Proof. If 1 /∈ I, then I 6= L and I is proper.

Let I be a proper ideal of L. If 1 ∈ I then a ∈ I for all element a in L (since

∀a ∈ L a ≤ 1 and I is an ideal), thus L = I, which is a contradiction 2

Similarly we have,

Lemma 1.1.11 A filter F of a bounded lattice L is proper if and only if 0 /∈ I.

An ideal I of a bounded lattice L is called prime if it is proper and the condition

a ∧ b ∈ I implies that either a ∈ I or b ∈ I.

A filter F of a bounded lattice L is called prime if it is proper and the condition

a ∨ b ∈ F implies that either a ∈ F or b ∈ F .

Lemma 1.1.12 Let L be a lattice, and let M be a prime filter (ideal) of L.

Then P = M c (M c = L \M) is a prime ideal (filter) of L.

Proof. We will verify one case only, the other require similar arguments. Let

M be a prime filter of L we will see that P = M c is a prime ideal of L.

P is an ideal:

M prime ⇒M proper ⇒(by lemma 1.1.11) 0 /∈M ⇒ 0 ∈M c = P .

Let a be an element of P (⇒ a /∈M) and b ≤ a.

Since M is a filter, if b ∈ M and b ≤ a then a ∈ M which is a contradiction.

Therefore b /∈M and thus b ∈ P .

Since M is a prime filter, if a ∨ b ∈ M , then either a ∈ M or b ∈ M , hence

a /∈M and b /∈M imply a∨ b /∈M , that is a ∈ P and b ∈ P imply a∨ b ∈ P .

10



P is an prime ideal:

M 6= ∅ (1 ∈M) ⇒ P = M c is proper.

Since M is a filter a ∈M and b ∈M ⇒ a ∧ b ∈M , hence

a ∧ b /∈M ⇒ either a /∈M or b /∈M ,

that is a ∧ b ∈ P ⇒ either a ∈ P or b ∈ P 2

Theorem 1.1.13 (Birkhoff-Stone) Let L be a bounded distributive lattice.

If J is an ideal and F is a filter of L such that J ∩ F = ∅, then there exist a

prime filter M such that J ∩M = ∅ and F ⊆M .

Proof.

Let L be a bounded distributive lattice, and

F = {G/ G is a filter of L , F ⊆ G and G ∩ J = ∅}
Since F ∈ F , F 6= ∅. The set F is ordered by inclusion. Let {Gi}i∈I be a

family totally ordered of F , then

H = ∪i∈IGi is a filter of L,

F ⊆ H,

H ∩ J = (∪i∈IGi) ∩ J = ∪i∈I(Gi ∩ J) = ∪i∈I∅ = ∅,

thus H ∈ F and H is an upper bound of {Gi}i∈I .
Therefore, by Zorn’s Lemma, F has a maximal element M .

It only remains to show that M is a prime filter of L.

Now suppose x ∨ y ∈M and let

M1 = 〈M,x〉 = {s ∈ L such that s ≥ m ∧ x for some m ∈M},
M2 = 〈M, y〉 = {s ∈ L such that t ≥ m ∧ x for some m ∈M}.

We have, either M1 ∩ J = ∅ or M2 ∩ J = ∅.
If not, ∃ u, v in J and m1,m2 in M such that

u ≥ m1 ∧ x v ≥ m2 ∧ y

Let m = m1 ∧m2, then
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u ≥ m ∧ x v ≥ m ∧ y.

Therefore u ∨ v ≥ (m ∧ x) ∨ (m ∧ y) = m ∧ (x ∨ y).

Since m ∈M , x ∨ y ∈M and M is a filter, then m ∧ (x ∨ y) ∈M , hence

u ∨ v ∈M . Also u ∨ v ∈ J , then u ∨ v ∈M ∩ J which is a contradiction.

Therefore, either M1 ∩ J = ∅ or M2 ∩ J = ∅. Suppoes that M1 ∩ J = ∅. Since

F ⊆ M ⊆ M1, then M1 ∈ F . Now, M ⊆ M1, M1 ∈ F and M is maximal in

F , imply M = M1 and since x ∈ M1, then x ∈ M . Similarly, if M2 ∩ J = ∅,
then y ∈M . Therefore M is a prime filter 2

Corollary 1.1.14 Let L be a bounded distributive lattice. If J is an ideal and

F is a filter of L such that J ∩ F = ∅, then there exist a prime ideal P such

that F ∩ P = ∅ and J ⊆ P .

Proof. By Theorem 1.1.13 there exist a prime filter M such that J ∩M = ∅
and F ⊆ M . Let P = M c (i.e. P = L \M) then P is a prime ideal (by

Lemma 1.1.12) and P ∩F = ∅ (since F ⊆M) and J ⊆ P (since J ∩M = ∅).2

Corollary 1.1.15 Let L be a distributive lattice, a, b ∈ L and a 6= b. Then

there is a prime ideal of L containing exactly one of a and b.

Proof. Let (a] be the ideal generated by a and [b) the filter generated by b.

By Corollary 1.1.14 there exist a prime ideal P such that (a] ⊆ P and

P ∩ [b) = ∅. Thus a ∈ P and b /∈ P. 2

A homomorphism ϕ of the lattice L0 into the lattice L1 is a map of L0 into

L1, satisfying both

ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b)

ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)

Remark: Let ϕ : L0 → L1 be a homomorphism of lattices and a1, a2 ∈ L0.

If a1 ≤ a2 in L0 then ϕ(a1) ≤ ϕ(a2) in L1. Indeed, a1 ≤ a2 in L0 ⇒ a1 =

a1 ∧ a2 ⇒ ϕ(a1) = ϕ(a1 ∧ a2) = ϕ(a1) ∧ ϕ(a2), and then ϕ(a1) ≤ ϕ(a2) in L1.
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Remark: Let ϕ : L0 → L1 be a homomorphism of lattices, then ϕ(L0) is a

sublattice of L1.

A homomorphism of a lattice into itself is called an endomorphism, and a

one-to-one homomorphism will also be called an embedding.

A isomorphism of lattices is a biyective homomorphism. It is easy to see that

f−1 (the inverse function of f) is an isomorphism of lattices as well.

The notation A ∼= B means that there exist a isomorphism ϕ : A→ B.

Let A and B be two bounded lattices. A {0, 1}-homomorphism is a

homomorphism that preserves 0 and 1.

Let L1, L2 and L3 be three lattices and let g : L1 → L2 and f : L2 → L3 be

two homomorphisms of lattices. We write f ◦ g for the composition of the two

operators, that is ∀a ∈ L1 f ◦ g(a) = f(g(a)) in L3. It is easy to see that f ◦ g
is a homomorphism.

Some of the next results will be used in Section 2.

Let L be a lattice. An element a of L is joint-irreducible iff a = b ∨ c implies

that a = b or a = c; it is meet-irreducible iff a = b ∧ c implies that a = b or

a = c. The set of all nonzero joint-irreducible elements of a lattice L is denoted

by J(L) and the set of all non-unit meet-irreducible elements of a lattice L is

denoted by M(L).

In what follows, � denotes the usual covering relation on a poset, that means,

a � b iff b is a maximal element of the set {x : x < a}.

Lemma 1.1.16 Let L be a finite distributive lattice, let C be a maximal

chain in L and let a ∈ J(L). We define πC(a) =
∧
{x ∈ C : x ≥ a} (the

smallest member of C containing a, see Figure 1 to the left) and m(a) =∨
{x ∈ L : x � a}. Let x ∈ C, πC(a) � x. Then

(i) a ∨ x = πC(a)

(ii) a ∧ x = a ∧m(a).
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Proof.

(i) We have πC(a) ∧ (a ∨ x) = (πC(a) ∧ a) ∨ (πC(a) ∧ x) = a ∨ x, so

πC(a) ≥ a∨x ≥ x. Since πC(a) � x, we have either πC(a) = a∨x or a∨x = x.

However, a ∨ x = x contradits with πC(a) 6= x (since a ∨ x = x⇒ a ≤ x⇒
⇒ πC(a) ≤ x⇒ πC(a) = x), hence πC(a) = a ∨ x.

(ii) First note that

• πC(a) � x⇒ a � a ∧ x.

Indeed, let a ∧ x ≤ z ≤ a, then x ≤ x ∨ z ≤ x ∨ a = πC(a). Since

πC(a) ≤ x we have either x = x ∨ z or πC(a) = x ∨ z. Now

x = x ∨ z ⇒ z ≤ x⇒ z ≤ a ∧ x⇒ z = a ∧ x, and

x ∨ z = πC(a)⇒ (since a ≤ πC(a)) a = a ∧ πC(a) = a ∧ (x ∨ z) =

= (a ∧ x) ∨ (a ∧ z) = (a ∧ x) ∨ z = z (since z ≤ a and a ∧ x ≤ z).

• a � m(a). Indeed, let A be the set {x ∈ L : x � a}, since L is a finite

lattice A = {x1, . . . , xn}. If a ≤ m(a) then a = a ∧m(a) = a ∧ (
∨
A) =

= a∧ (x1 ∨ . . .∨ xn) = (a∧ x1)∨ . . .∨ (a∧ xn). Since a ∈ J(L), then ∃j,
1 ≤ j ≤ n such that a = a∧ xj and thus a ≤ xj which is a contradiction

since xj ∈ A.

Now, since x � a, we have x ≤ m(a) and a ∧ x ≤ a ∧ m(a) ≤ a. Since

a ∨ x = πC(a) � x, a � a ∧ x. Therefore, a ∧ x = a ∧m(a) or a ∧m(a) = a.

Since a � m(a), a ∧ x = a ∧m(a). 2

Lemma 1.1.17 Let L be a finite distributive lattice. Then

(i) Every element is the join of nonzero joint-irreducible elements of L.

(ii) Let 2J(L) be the set of all subsets of J(L). Then the mapping r : L→ 2J(L)

given by r(x) = {a ∈ J(L) : a ≤ x} is a {0, 1}-embedding of L into 2J(L).

(iii) For every maximal chain C of L, the mapping πC : J(L)→ C

is a bijection from the set of all join-irreducible elements onto C .

Note that πC maps nonzero elements onto nonzero elements.
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(iv) a ∈ J(L) iff {x ∈ L : x � a} is a prime ideal, and then,

m(a) =
∨
{x ∈ L : x � a} ∈M(L).

Proof.

(i) Let x be an element of L. If x ∈ J(L), x is the join of nonzero joint-

irreducible elements of L.

If not, x = y ∨ z with x 6= y and x 6= z

If y ∈ J(L) and z ∈ J(L) then x is the join of nonzero joint-irreducible elements

of L. If not, if for example, y ∈ J(L) and z /∈ J(L)

then z = r ∨ t with r 6= z and t 6= z. Therefore x = y ∨ r ∨ t.
The others case are similarly.

Since L is a finite lattice, the process comes to an end at a certain point.

(ii) r is a {0, 1}-homomorphism of lattices:

r(0) = {a ∈ J(L) : a ≤ 0} = ∅ (a ∈ J(L)⇒ a 6= 0)

r(1) = {a ∈ J(L) : a ≤ 1} = J(L)

Since a ≤ x ∧ y ⇔ a ≤ x and a ≤ y, then r(x ∧ y) = r(x) ∩ r(y)

If a ≤ x or a ≤ y, then a ≤ x ∨ y. Thus r(x) ∪ r(y) ⊆ r(x ∨ y).

If a ≤ x∨ y ⇒ a = a∧ (x∨ y) = (a∧ x)∨ (a∧ y) and since a ∈ J(L), we have

either a = a ∧ x or a = a ∧ y (i.e. a ≤ x or a ≤ y), then a ∈ r(x) or a ∈ r(y).

Thus r(x ∨ y) ⊆ r(x) ∪ r(y) and then r(x ∨ y) = r(x) ∪ r(y).

(iii) Since L is a finite lattice and ∀a in J(L) a ≤ 1 ∈ C, πC is well defined.

πC is injective:

Let a, b ∈ J(L), x ∈ C, x ≺ πC(a) (i.e. x =
∨
{x ∈ C : x < πC(a)}), and

πC(a) = πC(b) (see Figure 1).

Then x ∨ a = πC(a) = πC(b) = x ∨ b, and

a = a ∧ πC(a) = a ∧ (x ∨ a) = a ∧ (x ∨ b) = (a ∧ x) ∨ (a ∧ b).
Therefore a = (a∧ x) or a = (a∧ b) (since a ∈ J(L)) and thus a ≤ x or a ≤ b.

If a ≤ x then πC(a) =
∧
{z ∈ C : z ≥ a} ≤ x and thus πC(a) ≤ x < πC(a),

which is a contradiction. Therefore a ≤ b. Similarly we can prove b ≤ a and

thus a = b.

πC is surjective:
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Figure 1:

Let y ∈ C and z ∈ C, z ≺ y. Since z ≺ y then z < y, therefore by (i) ∃a ∈ J(L)

such that a ≤ y and a � z. Thus πC(a) ≤ y (since y ∈ {x ∈ C : a ≤ x}) and

z < πC(a), (since z /∈ {x ∈ C : a ≤ x}. Therefore y = πC(a) and πC is a

surjective map.

(iv) Let A be the set {x ∈ L : x � a} and a ∈ J(L), then:

A is an ideal:

a ∈ J(L) ⇒ 0 < a ⇒ 0 � a ⇒ 0 ∈ A. If x ∈ A and y ≤ x then y ∈ A

otherwise a ≤ y ≤ x which is a contradiction since x ∈ A. If x ∈ A and y ∈ A
then x ∨ y ∈ A otherwise a ≤ x ∨ y then a = a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y)

and, since a ∈ J(L), a = a ∧ x or a = a ∧ y, therefore a ≤ x or a ≤ y which is

a contradiction since x ∈ A and y ∈ A.

A is a prime ideal:

If x /∈ A and y /∈ A then a ≤ x and a ≤ y hence a ≤ x∧ y and thus x∧ y /∈ A.

Therefore if x ∧ y ∈ A then either x ∈ A or y ∈ A.

Now suppose A is a prime ideal and a = x ∨ y. Hence x ∨ y /∈ A and, since

A an ideal, x /∈ A or y /∈ A and then a ≤ x or a ≤ y. Therefore either

x ≤ x∨y = a ≤ x or y ≤ x∨y = a ≤ y, i.e. x = a or y = a and thus a ∈ J(L).
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It only remains to show that a ∈ J(L)⇒ m(a) ∈M(L). Suppose that m(a) =

= x ∧ y. First note that x � a or y � a . Indeed if x ≥ a and y ≥ a then

a ≤ x ∧ y = m(a) which is a contradiction (see proof Lemma 1.1.16 (ii)),

i.e. either x ∈ A or y ∈ A hence x ≤
∨
A = m(a) = x ∧ y ≤ x or

y ≤
∨
A = m(a) = x ∧ y ≤ y then either x = m(a) or y = m(a) and thus

m(a) ∈M(L). 2

1.2 Boolean algebras [16] [10] [3] [15]

In a bounded lattice L, a is a complement of b iff

a ∧ b = 0

a ∨ b = 1

Lemma 1.2.1 In a bounded distributive lattice, an element can have only

one complement.

Proof. If b0 and b1 are both complements of a, then

b0 = b0 ∧ 1 = b0 ∧ (a ∨ b1) = (b0 ∧ a) ∨ (b0 ∨ b1) = 0 ∨ (b0 ∨ b1) = b0 ∨ b1

similarly, b1 = b0 ∨ b1, thus b0 = b1 2

We denote to complement of an element a by a′. Note that a′′ = a, 0′ = 1

and 1′ = 0.

A complemented lattice is a bounded lattice B in which every element has a

complement, i.e. ∀a ∈ B ∃a′ ∈ B such that a ∧ a′ = 0 and a ∨ a′ = 1 (L7).

A Boolean algebra is a distributive complemented lattice.

Thus a Boolean álgebra is a system: 〈B,∧,∨, ′, 0, 1〉 where ∧,∨ are binary

operations, ′ is a unary operation, and 0, 1 are nullary operations.

As in lattices, we can define a Boolean algebra in terms of the properties of

∧,∨, ′.

Theorem 1.2.2 Let B be a nonempty set and +, . two binary operations

and ′ a unary operation on B satisfying (L1), (L2), (L3), (L4), (L5), (L6) and

(L7) (see page 6, 8, 8, 17). Set a ≤ b iff a = a.b.
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Then B is a Boolean algebra and a ∨ b = a+ b and a ∧ b = a.b.

Proof. Theorem 1.1.6. 2

Example 1.2.3 The set P(X) of all subset of a set X, is a Boolean algebra

with the operations a ∨ b = a ∪ b , a ∧ b = a ∩ b , a′ = ac , 0 = ∅ , 1 = X .

Its atoms are the subset with only one element.

Example 1.2.4 Let 〈B,∧,∨, ′, 0, 1〉 be a Boolean algebra, let a be an element

of B and the interval [0, a] = {x ∈ B/0 ≤ x ≤ a}. Then 〈[0, a] ,∧,∨, c, 0, a〉 is

a Boolean algebra, where xc := x′ ∧ a.

Indeed, [0, a] is closed under ∨ and ∧, and a is its largest element.

If x ∈ [0, a] then xc ∧ x = (x′ ∧ a) ∧ x = (x′ ∧ x) ∧ a = 0 ∧ a = 0 and

xc ∨ x = (x′ ∧ a)∨ x = (x′ ∨ x)∧ (x∨ a) = 1∧ a = a (since B is a distributive

lattice and x ≤ a).

Example 1.2.5 Let (Aj)j∈J be a family of Boolean algebras. It is easy to see

that the product A =
∏

j∈J Aj is a Boolean algebra with the operations:

If a, b ∈ A (a ∨ b)j = aj ∨ bj (a ∧ b)j = aj ∧ bj a′ = (a′j)j∈J

1A = (1Aj
)j∈J and 0A = (0Aj

)j∈J .

Lemma 1.2.6 (De Morgan’s Identities) Let B be a Boolean algebra and

let a, b in B. Then

(i) (a ∨ b)′ = a′ ∧ b′ and

(ii) (a ∧ b)′ = a′ ∨ b′.

Proof.

(i) (a∨b)∨(a′∧b′) = a∨b∨(a′∧b′) ≥ a∨(b∧a′)∨(a′∧b′) = a∨(a′∧(b∨b′)) =

a ∨ (a′ ∧ 1) = a ∨ a′ = 1. Therefore (a ∨ b) ∨ (a′ ∧ b′) = 1. On the other hand,

(a∨ b)∧ (a′∧ b′) = (a∧ a′∧ b′)∨ (b∧ a′∧ b′) = 0∨ 0 = 0. Thus (a∨ b)′ = a′∧ b′.
(ii) Replacing a by a′ and b by b′ in (i) and using that ∀x ∈ B x′′ = x, then

(a ∧ b)′ = a′ ∨ b′. 2

Let B be a Boolean algebra and a, b ∈ B. We define a \ b = a ∧ b′.

The next Lemma will be used in Section 3.
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Lemma 1.2.7 Let B be a Boolean algebra and a, b, c, d ∈ B. Then:

(i) (a ∨ b) \ c = (a \ c) ∨ (b \ c).

(ii) (a ∧ b) \ c = (a \ c) ∧ (b \ c).

(iii) If c ≤ a, c ≤ b and a \ c = b \ c then a = b.

(iv) a \ b ≤ a.

(v) If a ≤ b ≤ c \ d then b \ a = ((b ∨ d) ∧ c) \ ((a ∨ d) ∧ c).

(vi) a ≤ b⇔ b′ ≤ a′.

(vii) If a ≤ c then (b \ c) \ (a \ c) = b \ a.

(viii) Let a0, a1, . . . , an ∈ B be such that 0 = a0 ≤ a1 ≤ . . . ≤ an, then

an = (an \ an−1)∨̇ . . . ∨̇(a2 \ a1)∨̇(a1 \ a0).

In particular, if an = 1 and we write bj = aj \ aj−1, 1 ≤ j ≤ n, we obtain

1 = bn∨̇ . . . ∨̇b2∨̇b1. Therefore for all x ∈ B,

x = (x∧bn)∨̇ . . . ∨̇(x∧b2)∨̇(x∧b1). We say that {bj}nj=1 is a decomposition

of unit in the Boolean algebra B.

(ix) Let a1, . . . , an, b1, . . . , bn, c1, . . . , cn in B be such that a1, b1 ≤ c1; . . .

. . . ; an, bn ≤ cn and ci ∧ cj = 0 for i 6= j 1 ≤ i, j ≤ n. Then

(a1 ∨ . . . ∨ an) ∧ (b1 ∨ . . . ∨ bn) = (a1 ∧ b1) ∨ . . . ∨ (an ∧ bn) and, if

a1 ∨ . . . ∨ an = b1 ∨ . . . ∨ bn then a1 = b1, . . . , an = bn.

Proof.

(i) (a ∨ b) \ c = (a ∨ b) ∧ c′ = (a ∧ c′) ∨ (b ∧ c′) = (a \ c) ∨ (b \ c).
(ii) (a ∧ b) \ c = (a ∧ b) ∧ c′ = (a ∧ c′) ∧ (b ∧ c′) = (a \ c) ∧ (b \ c).
(iii) a = a ∧ 1 = a ∧ (c ∨ c′) = (a ∧ c) ∨ (a ∧ c′) = c ∨ (a \ c) = c ∨ (b \ c) =

(b ∧ c) ∨ (b ∧ c′) = b ∧ (c ∨ c′) = b ∧ 1 = b.

(iv) a \ b = a ∧ b′ ≤ a.

(v) ((b ∨ d) ∧ c) \ ((a ∨ d) ∧ c) = ((b ∨ d) ∧ c) ∧ ((a ∨ d) ∧ c)′ =
= ((b ∧ c) ∨ (d ∧ c)) ∧ ((a′ ∧ d′) ∨ c′) =
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= (b ∧ c ∧ a′ ∧ d′) ∨ (b ∧ c ∧ c′) ∨ (d ∧ c ∧ a′ ∧ d′) ∨ (d ∧ c ∧ c′) =

= (b∧ c∧ a′ ∧ d′)∨ 0∨ 0∨ 0 = (b∧ a′)∧ (c∧ d′) = (b \ a)∧ (c \ d) = b \ a since,

by (iv) b \ a ≤ b and by hypothesis b ≤ c \ d.

(vi) a ≤ b ⇒ a = a ∧ b then, by De Morgan’s identities, a′ = a′ ∨ b′ and thus

b′ ≤ a′. Therefore a ≤ b imply b′ ≤ a′. In particular b′ ≤ a′ imply a′′ ≤ b′′ that

is a ≤ b.

(vii) (b\c)\(a\c) = (b∧c′)∧(a∧c′)′ = (b∧c′)∧(a′∨c) = (b∧c′∧a′)∨(b∧c′∧c) =

= b ∧ (c′ ∧ a′) ∨ 0 = b ∧ a′ = b \ a from a ≤ c and (vi).

(viii) We use induction on n. If n = 1, we have a1 = a1∧1 = a1∧0′ = a1 \0 =

a1 \ a0. Let a0, a1, . . . , an, an+1 ∈ B be such that 0 = a0 ≤ a1 ≤ . . . ≤ an ≤
an+1. Then, an+1 = an+1 ∧ 1 = an+1 ∧ (an∨̇a′n) = (an+1 ∧ an)∨̇(an+1 ∧ a′n) =

an∨̇(an+1 \ an) = (an \ an−1)∨̇ . . . ∨̇(a2 \ a1)∨̇(a1 \ a0)∨̇(an+1 \ an) (by the

induction hypothesis).

(ix) (a1∨. . .∨an)∧(b1∨. . .∨bn) =
∨n
i,j=1 ai∧bj. If i 6= j, ai∧bj ≤ ci∧cj = 0, thus

ai∧bj = 0 and we obtain (a1∨. . .∨an)∧(b1∨. . .∨bn) = (a1∧b1)∨. . .∨(an∧bn).

Now suppose a1∨. . .∨an = b1∨. . .∨bn, then aj∧(a1∨. . .∨an) = aj∧(b1∨. . .∨bn)

hence aj ∧ aj = aj ∧ bj (since for i 6= j, ai ∧ aj ≤ ci ∧ cj = 0 and

ai∧ bj ≤ ci∧ cj = 0). Therefore aj = aj ∧ bj and thus aj ≤ bj. Similarly bj ≤ aj

and then aj = bj 1 ≤ j ≤ n. 2

A subalgebra of a Boolean algebra B is a nonempty subset A of B satisfying

the following conditions:

(i) x ∈ A⇒ x′ ∈ A,

(ii) x, y ∈ A⇒ x ∧ y ∈ A and x ∨ y ∈ A.

Note that 0 ∈ A, 1 ∈ A and A is a Boolean algebra.

Theorem 1.2.8 Every bounded distributive lattice can be embedded in a

Boolean algebra.

Prof. Let L be a bounded distributive lattice and let X be the set of all prime

ideals of L. For a ∈ L, let r(a) = {P/ a /∈ P, P ∈ X}.
Let ψ be the map of L into P(X), ψ(a) = r(a).
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We claim that ψ is a {0, 1}-homomorphism of lattices of L into the lattice (the

Boolean algebra) P(X).

Since ∀P ∈ X, 0 ∈ P then r(0) = ∅.
Since every P in X is proper and Lemma 1.1.10, then r(1) = X.

r(a ∧ b) = r(a) ∩ r(b):
P ∈ r(a ∧ b) imply a ∧ b /∈ P , since a ∧ b ≤ a and P is a ideal, if a ∈ P then

a ∧ b ∈ P , wich is a contradiction, then a /∈ P . Similarly b /∈ P , thus P ∈ r(a)

and P ∈ r(b) that is r(a ∧ b) ⊆ r(a) ∩ r(b).
Conversely, P ∈ r(a) ∩ r(b) imply a /∈ P and b /∈ P . Since that P is a prime

ideal, a ∧ b ∈ P ⇒ a ∈ P or b ∈ P ,wich is a contradiction, then a ∧ b /∈ P
Therefore r(a) ∩ r(b) ⊆ r(a ∧ b) and thus r(a ∧ b) = r(a) ∩ r(b).
r(a ∨ b) = r(a) ∪ r(b):
P ∈ r(a ∨ b) imply a ∨ b /∈ P . Since P is a ideal, if a ∈ P and b ∈ P imply

a∨ b ∈ P , therefore either a /∈ P or b /∈ P . This is, either P ∈ r(a) or P ∈ r(b)
and r(a ∨ b) ⊆ r(a) ∪ r(b).
Since a ≤ a∨ b, b ≤ a∨ b, and P is a ideal, a∨ b ∈ P imply a ∈ P and b ∈ P ,

then a /∈ P or b /∈ P , imply a ∨ b /∈ P . This is r(a) ∪ r(b) ⊆ r(a ∨ b). Thus

r(a ∨ b) = r(a) ∪ r(b).
ψ is an injective map:

Let a, b ∈ L, by Corollary 1.1.15 there exist a prime ideal P such that a ∈ P
and b /∈ P , then P /∈ r(a) and P ∈ r(b), thus r(a) 6= r(b). 2

A homomorphism ϕ of Boolean algebras is a {0, 1}-homomorphism of lattices

that preseves the complement ′.

Remark: Let A,B be two Boolean algebras and let ϕ : A→ B be an

{0, 1}-homomorphism of lattices. Then ϕ preseves the complement ′.

Indeed, let a ∈ A, 0A = a ∧ a′ ⇒ ϕ(0A) = ϕ(a ∧ a′)⇒ 0B = ϕ(a) ∧ ϕ(a′).

1A = a ∨ a′ ⇒ ϕ(1A) = ϕ(a ∨ a′)⇒ 1B = ϕ(a) ∨ ϕ(a′).

Thus (ϕ(a))′ = ϕ(a′).

Lemma 1.2.9 Let ϕ : A→ B be a homomorphism of Boolean algebras.

Let a1, a2 ∈ A, then

(i) If a1 ≤ a2 ⇒ ϕ(a1) ≤ ϕ(a2) in B.
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(ii) ϕ(a1 \ a2) = ϕ(a1) \ ϕ(a2).

Proof. (i) Remark page 12.

(ii) ϕ(a1 \ a2) = ϕ(a1 ∧ a′2) = ϕ(a1) ∧ ϕ(a′2) = ϕ(a1) ∧ (ϕ(a2))′ =

= ϕ(a1) \ ϕ(a2). 2

A homomorphism ϕ : B1 → B2 of Boolean algebras is onto (or surjective) if

for every b2 ∈ B2 there is a b1 ∈ B1 with ϕ(b1) = b2.

A homomorphism ϕ of Boolean algebras is one-to-one (or injective) if

ϕ(a) = ϕ(b)⇒ a = b.

An isomorphism of Boolean algebras is a biyective (one-to-one and onto) ho-

mohorphism.

The notation A ∼= B means that there exist an isomorphism ϕ : A→ B.

An isomorphism of a Boolean algebra with itself is called an automorphism.

Let B be a Boolean algebra and let f : B → B be an automorphisms on B,

we write fn for f ◦ . . . ◦ f (n times) and f−n for f−1 ◦ . . . ◦ f−1 (n times) for

all n ∈ N.

Definition 1.2.10

• A Group 〈A,+, 0〉 is a non-empty set A with a binary operation + and

a constan 0 satisfying the following equations:

for all x, y, z ∈ A we have x+(y+z) = (x+y)+z, x+0 = 0+x = x,

∀x ∈ A there is an element −x ∈ A such that x+ (−x) = (−x) + x = 0.

• Let 〈A,+, 0〉 be a group and C ⊆ A. We say that C is a subgroup of A

if: 0 ∈ C x ∈ C ⇒ −x ∈ C and ∀x, y ∈ C x+ y ∈ C.

Example 1.2.11 It is easy to see that:

If B is a Boolean algebra, then id : B → B is an isomorphis on B where

id(b) = b for all b ∈ B (the identity map).

If B0, B1 and B2 are Boolean algebras, and ϕ : B0 → B1, φ : B1 → B2,

are two homomorphisms (isomorphisms) of Boolean algebras, then φ◦ϕ :

B0 → B2 is a homomorphism (isomorphism) of Boolean algebras.
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If B0, B1 are Boolean algebras, and ϕ : B0 → B1 is an isomorphism of

Boolean algebras, then ϕ−1 : B1 → B0 is an isomorphism of Boolean

algebras.

Let B be a Boolean algebra. We write Aut(B) for the set of all automorphisms

of B. From Example 1.2.11 it is easy to see that (Aut(B), ◦, id) is a group.

Example 1.2.12 Let (Aj)j∈J be a family of Boolean algebras. The map

pk : A =
∏
j∈J

Aj → Ak

defined by

pk((aj)j∈J) = ak

is called the projection map on the k th coordinate of
∏

j∈J Aj.

It is easy to check that pk is a surjective homomorphism of Boolean algebras.

1.3 Boolean algebras R-generated by a bounded
distributive lattice [10]

Let A be a nonempty set with two binary operations “ + ” and “.” .

A is called a ring if ∀a, b, c ∈ A:

(a+ b) + c = a+ (b+ c) ∃0 ∈ A such that ∀a ∈ A a+ 0 = a

a+ b = b+ a ∀a ∈ A ∃ − a ∈ A such that a+ (−a) = 0

(a.b).c = a.(b.c) a.(b+ c) = a.b+ a.c (a+ b).c = a.c+ b.c

A is called a commutative ring if A is a ring and ∀a, b ∈ A a.b = b.a.

A is called a ring with a unit if A is a ring and exists 1 ∈ A such that

∀a ∈ A a.1 = a.

Let A be a ring, and C ⊆ A.

C is a subring of A if:

0 ∈ C, a1, a2 ∈ C ⇒ a1 + a2 ∈ C and a1.a2 ∈ C, a ∈ C ⇒ −a ∈ C

Let A be a commutative ring, and I ⊆ A.

I is an ideal of A if:
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C 6= ∅, x, y ∈ I ⇒ x+ (−y) ∈ I, x ∈ A and c ∈ I ⇒ x.c ∈ I.

Let A and B be rings. A map f : A→ B is called a homomorphism if

∀a1, a2 ∈ A f(a1 + a2) = f(a1) + f(a2), f(a1.a2) = f(a1).f(a2),

and, furthermore, if A and B are rings with unit, then f(1) = 1.

The proofs of two next theorems are purely computational.

Theorem 1.3.1

(i) Let B be a Boolean algebra. We defined two binary operations in B:

a+ b = (a ∧ b′) ∨ (b ∧ a′) = (a \ b) ∨ (b \ a) ”symmetric difference”

a.b = a ∧ b

them BR = (B,+, 0, ., 1) is a conmutative ring satisfying x2 = x.x = x.

Furthermore ∀x ∈ B x+x = 0 and hence x = (−x) and x+y = x+(−y).

(ii) Conversely, let a (B,+, 0, ., 1) conmutative ring with unit satisfying x2 =

x.x = x, (a Boolean ring with unit). If we defined x ≤ y iff x = x.y, then

B become a Boolean algebra BL in which x ∧ y = x.y and x ∨ y =

x+ y + x.y.

(iii) Let B be a Boolean algebra, then (BR)L = B.

(iv) Let B be a Boolean ring with unit, then (BL)R = B.

2

Theorem 1.3.2 Let B0 and B1 be two Boolean algebras.

(i) Let I ⊆ B0. Then I is an ideal of B0 iff I is an ideal of (B0)R.

(ii) Let ϕ : B0 → B1. Then ϕ is a homomorphism of Boolean algebras of B0

into B1 iff ϕ is a homomorphism of (B0)R into (B1)R.

(iii) B0 is a subalgebra of B1 iff (B0)R is a subring of (B1)R.

2
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We will need the next Lemma.

Lemma 1.3.3 Let B be a Boolean algebra.

(i) If a, b ∈ B then a ∧ b = 0 iff a ≤ b′.

(ii) If a, b ∈ B and a∧ b = 0, then a+ b = a∨̇b (where ∨̇ is the disjoint join).

(iii) If a, b ∈ B and a ≤ b, then a+ b = b \ a.

(iv) If a, b, c ∈ B and a ≤ b, then a ∧ (c \ b) = 0.

(v) Let a1, a2, . . . , a2n ∈ B be such that a1 ≤ a2 ≤ . . . ≤ a2n. Then

a1 + a2 + . . .+ a2n = (a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1).

(vi) Let a1, a2, . . . , a2n−1 ∈ B be such that 0 < a1 ≤ a2 ≤ . . . ≤ a2n−1. Then

a1 + a2 + . . .+ a2n−1 = a1∨̇(a3 \ a2)∨̇ . . . ∨̇(a2n−1 \ a2n−2).

Proof. (i) If a ∧ b = 0 then a = a ∧ 1 = a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′) =

= 0∨ (a∧ b′) = a∧ b′, and thus a ≤ b′. On the other hand a ≤ b′ ⇒ a = a∧ b′

and then a ∧ b = (a ∧ b′) ∧ b = a ∧ (b′ ∧ b) = a ∧ 0 = 0.

(ii) By (i) a ∧ b = 0⇒ a ≤ b′ and b ≤ a′, hence a+ b = (a ∧ b′)∨̇(b ∧ a′) =

= a∨̇b.
(iii) By (i) a ≤ b⇒ a∧ b′ = 0. Then a+ b = (a∧ b′)∨ (b∧ a′) = 0∨ (b∧ a′) =

= b ∧ a′ = b \ a.

(iv) Since a ≤ b, by (i), a∧ b′ = 0. Thus a∧ (c\ b) = a∧ (c∧ b′) = (a∧ b′)∧ c =

= 0 ∧ c = 0.

(v) We proceed by induction on n. If n = 1 we have a1 ≤ a2 and, by (iii),

a1 + a2 = a1 \ a2. Now suppose a1 ≤ a2 ≤ . . . ≤ a2n ⇒ a1 + a2 + . . .+ a2n =

= (a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1). Let a1 ≤ a2 ≤ . . . ≤ a2n ≤ a2n+1 ≤
≤ a2n+2. From the induction hypothesis and a2n+1 ≤ a2n+2 and (iii) we have

a1 + a2 + . . .+ a2n + a2n+1 + a2n+2 = (a1 + a2 + . . .+ a2n) + (a2n+1 + a2n+2) =

((a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1)) + (a2n+2 \ a2n+1). Note that

for all 1 ≤ i ≤ n , a2i \ a2i−1 ≤ a2i ≤ a2n+1 and thus

(a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1) ≤ a2n+1. Therefore, by (iv),

((a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1)) ∧ (a2n+2 \ a2n+1) = 0 and thus by (ii)
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((a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1)) + (a2n+2 \ a2n+1) =

= (a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1)∨̇(a2n+2 \ a2n+1). Therefore

a1 + a2 + . . .+ a2n + a2n+1 + a2n+2 = (a2 \ a1)∨̇(a4 \ a3)∨̇ . . . ∨̇(a2n \ a2n−1)∨̇
∨̇(a2n+2 \ a2n+1).

(vi) Let a0 = 0 then, by (v), a1 + a2 + . . .+ a2n−1 = 0 + a1 + a2 + . . .+ a2n−1 =

a0 + a1 + a2 + . . .+ a2n−1 = (a1 \ a0)∨̇(a3 \ a2)∨̇ . . . ∨̇(a2n−1 \ a2n) =

= (a1 \ 0)∨̇(a3 \ a2)∨̇ . . . ∨̇(a2n−1 \ a2n) = a1∨̇(a3 \ a2)∨̇ . . . ∨̇(a2n−1 \ a2n). 2

Definition 1.3.4 Let L a {0, 1} − sublattice of the Boolean algebra B. Then

L is said to R-generate B iff L generates B as a ring.

The next Lemma will be used in Section 2.

Lemma 1.3.5 Let L be a finite distributive lattice and r : L → 2J(L) as

Lemma 1.1.17. Then r(L) R-generates 2J(L).

Proof. From Remark page 12 r(L) is a sublattice of 2J(L).

Now, note that:

i) Let a ∈ J(L), z1 ≺ a and z2 ≺ a. Then z1 = z2.

z1 ≺ a and z2 ≺ a imply z1 < a, z2 < a and z1 ∨ z2 ≤ a. Thus z1 ≤
z1 ∨ z2 ≤ a. Since z1 ≺ a we have either z1 ∨ z2 = a or z1 ∨ z2 = z1.

z1∨ z2 = a⇒ z1 = a or z2 = a (since a ∈ J(L)) which is a contradiction.

Then z1 ∨ z2 = z1 and thus z2 ≤ z1. Similarly z1 ≤ z2 and thus z1 = z2.

ii) Let a ∈ J(L) and z ≺ a. Then z =
∨
{x ∈ L : x < a}.

0 ∈ {x ∈ L : x < a}. Since L is finite, {x ∈ L : x < a} = {x1, . . . , xn}
with xi < a, 1 ≤ i ≤ n, and thus x1 ∨ . . . ∨ xn ≤ a. Now

x1 ∨ . . . ∨ xn = a ⇒ ∃j 1 ≤ j ≤ n such that a = xj (since a ∈ J(L))

which is a contradiction. Therefore x1∨ . . .∨xn < a and thus x1∨ . . .∨xn
is a maximal element of {x ∈ L : x < a} that is

∨
{x ∈ L : x < a} ≺ a

and thus ,from i), z =
∨
{x ∈ L : x < a}.
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iii) Let a ∈ J(L) and z ≺ a. Then r(a) + r(z) = {a}.

z ≺ a⇒ z < a⇒ r(z) ⊆ r(a) and then r(a) + r(z) = r(a) \ r(z).

a ∈ r(a) and a /∈ r(z) (since z < a) then {a} ∈ r(a) \ r(z) = r(a) + r(z)

and thus {a} ⊆ r(a) + r(z).

x ∈ r(a) + r(z) = r(a) \ r(z)⇒ x ∈ J(L), x ≤ a and x � z. Also x ≤ a

and z < a ⇒ z ≤ x ∨ z ≤ a. Since z ≺ a either x ∨ z = z or x ∨ z = a.

x ∨ z = z ⇒ x ≤ z which is a contradiction. Therefore x ∨ z = a and

since a ∈ J(L) either z = a or x = a. Now, z = a is a contradiction, then

x = a and r(a) \ r(z) = r(a) + r(z) ⊆ {a}. Therefore r(a) + r(z) = {a}.

Now, let A ∈ 2J(L), A = {a1, . . . , an}.
Let z1, . . . , zn such that zi ≺ ai, 1 ≤ i ≤ n. Then, from iii) r(ai) + r(zi) = {ai}
1 ≤ i ≤ n and thus A = {a1, . . . , an} = {a1} ∪̇ . . . ∪̇ {an} = {a1}+ . . .+{an} =

= (r(a1) + r(z1)) + . . .+ (r(an) + r(zi)) = r(a1) + r(z1) + . . .+ r(an) + r(zi).

2

Lemma 1.3.6 Let B be R-generated by L. Then every a ∈ B can be ex-

pressed in the form a0 + a1 + . . . . . . + an−1 with a0 ≤ a1 ≤ . . . . . . ≤ an−1 and

a0, a1, . . . . . . an−1 ∈ L.

Proof. Let B1 denote the set of all elements that can be represented in the

form a0 + a1 + . . . . . .+ an−1, a0, a1, . . . . . . an−1 ∈ L.

Then L ⊆ B1, and B1 is closed under + and − (since x− y = x+ y).

Furthermore,

(a0 + . . . . . .+ an−1).(b0 + . . . . . .+ bn−1) =
∑

aibj (1)

and each term aibj = ai ∧ bj ∈ L, so B1 is closed under multiplication. We

conclude that B1 = B.

Note that L is a sublattice of B; therefore, for a, b ∈ L, a ∨ b in L is the same

as a ∨ b in B. Thus a ∨ b = a+ b+ ab, and so

a+ b = ab+ (a ∨ b) = (a ∧ b) + (a ∨ b).
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Take a0 + a1 + . . . . . . + an−1 ∈ B. We prove by induction on n that the

summands can be made to form an increasing sequence. We will prove that

a0 + a1 + . . . . . .+ an−1 = b0 + b1 + . . . . . .+ bn−1, where

bj =
∨

(

n−1−j∧
k=0

aik 0≤i0<i1<...<in−1−j≤n−1) (2)

and thus b0 ≤ . . . . . . ≤ bn−1 and bj ∈ L 0 ≤ j ≤ n− 1.

For example if n = 3 the formula 2 is:

a0+a1+a2 = (a0 ∧ a1 ∧ a2)︸ ︷︷ ︸
b0

+ ((a0 ∧ a1) ∨ (a0 ∧ a2) ∨ (a1 ∧ a2)︸ ︷︷ ︸
b1

+ (a0 ∨ a1 ∨ a2)︸ ︷︷ ︸
b2

.

For n = 2 we have a0 + a1 = (a0 ∧ a1) + (a0 ∨ a1).

Let a0 + a1 + . . . . . .+ an−1 + an.

a0 + a1 + . . . . . .+ an−1 + an = a0 + (a1 + . . . . . .+ an−1 + an). By the induction

hypothesis, a1 + . . . . . .+ an−1 + an = d1 + . . . . . .+ dn−1 + dn, where

dj =
∨

(

n−1−j∧
k=0

aik 1≤i1<i2<...<in−1−j≤n)

Now,

a0 + a1 + . . . . . .+ an−1 + an = a0 + (a1 + . . . . . .+ an−1 + an) =

= a0 + (d1 + . . . . . .+ dn−1 + dn) = a0 + d1 + . . . . . .+ dn−1 + dn =

= (a0 ∧ d1) + (a0 ∨ d1) + d2 + . . . . . .+ dn−1 + dn =

= (a0 ∧ d1) + ((a0 ∨ d1) ∧ d2) + ((a0 ∨ d1) ∨ d2) + d3 + . . . . . .+ dn−1 + dn =

= (a0 ∧ d1) + ((a0 ∨ d1) ∧ d2) + (a0 ∨ d2) + d3 + . . . . . .+ dn−1 + dn =

= (a0∧d1)+((a0∨d1)∧d2)+((a0∨d2)∧d3)+((a0∨d2)∨d3)+d4 . . . . . .+dn−1+dn =

= (a0∧d1)+((a0∨d1)∧d2)+((a0∨d2)∧d3)+(a0∨d3)+d4 . . . . . .+dn−1 +dn =
...

= (a0 ∧ d1) + ((a0 ∨ d1) ∧ d2) + . . . . . .+ ((a0 ∨ dn−1) ∧ dn) + (a0 ∨ dn),

and

a0 ∧ d1 = a0 ∧ (a1 ∧ . . . ∧ an−1 ∧ an) = a0 ∧ a1 ∧ . . . ∧ an−1 ∧ an = b0.

a0 ∨ dn = a0 ∨ (a1 ∨ . . . ∨ an−1 ∨ an) = a0 ∨ a1 ∨ . . . ∨ an−1 ∨ an = bn.

and, for j = 1, 2, . . . , n− 1,

(a0 ∨ dj) ∧ dj+1 = (a0 ∧ dj+1) ∨ (dj ∧ dj+1) = (a0 ∧ dj+1) ∨ dj =
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= (a0 ∧ (
∨

(

n−j−1∧
k=0

aik 1≤i0<i1<...<in−j−1≤n))) ∨ (
∨

(

n−j∧
k=0

aik 1≤i0<i1<...<in−j≤n)) =

= (
∨

(

n−j−1∧
k=0

a0 ∧ aik 1≤i1<i1<...<in−j−1≤n)) ∨ (
∨

(

n−j∧
k=0

aik 1≤i0<i1<...<in−j≤n)) =

= (
∨

(

n−j∧
k=0

aik 0=i0<i1<...<in−j−1≤n)) ∨ (
∨

(

n−j∧
k=0

aik 1≤i1<i2<...<in−j≤n)) =

=
∨

(

n−j∧
k=0

aik 0≤i0<i1<...<in−j−1≤n) = bj

2

Lemma 1.3.7 Let L be a bounded distributive lattice. Then there exist a

Boolean algebra R-generated by L.

Proof. By Lemma 1.2.8 L can be embedded in a Boolean algebra A.

Let [L] denote the set of all elements that can be represented in the form

a0 + a1 + . . . . . .+ an−1, a0, a1, . . . . . . an−1 ∈ L. Then

If a ∈ [L]⇒ a′ ∈ [L] since 1 ∈ L and a′ = a + 1 (a + 1 = (a ∧ 1′) ∨ (a′ ∧ 1) =

(a ∧ 0) ∨ (a′ ∧ 1) = 0 ∨ a′ = a′).

If x, y ∈ [L], then by formula (1) page 27, x ∧ y ∈ [L] and since x ∨ y =

x+ y + x ∧ y, x ∨ y ∈ [L].

Thus [L] is a subalgebra of the Boolean algebra A, in particular [L] is a Boolean

algebra. Furthermore, by definition, L ⊆ [L] and [L] is R-generate by L. 2

Lemma 1.3.8 Let B be a Boolean algebre R-generated by L.

Then |B| ≤ |L|+ ℵ0.

Proof. By Lemma 1.3.6, every element of B can be associated with a finite

sequence of elements of L ∪ {+}, and there are no more than |L| + ℵ0 such

sequences. 2
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Definition 1.3.9 Let L be a bounded distributive lattice. B is a Boolean

algebra freely R-generated by L if:

(i) B is a Boolean algebra.

(ii) B is R-generated by L.

(iii) If B1 is R-generated by L, then there is a homomorphism ϕ of B onto

B1 that is the identity map on L.

Theorem 1.3.10 Let L be a bounded distributive lattice. Then, there exist

a Boolean algebra B freely R-generated by L.

Proof. Let (Bj)j∈J the family of all Boolean algebras R-generated by L (from

Lemma 1.3.7 this family is not empty). For any Bj there exist

ij : L → Bj the inclusion. B has the property that, for any Bj (j ∈ J) there

exist a homomorphism ϕj of B onto Bj that is the identity map on L. To

construct B, we have to construct a Boolean algebra R-generated having this

property for all Bj.

How would we construct such a Boolean algebra R-generated for two (B1 and

B2)? Form the Boolean algebra B1×B2 (see example 1.2.5), and define a map

φ : L→ B1 ×B2 by φ(l) = (i1(l), i2(l)). Then

φ is a {0, 1}-homomorphism of lattices and φ is an injective map.

Thus, φ(L) ∼= L, and φ(L) is a bounded distributive lattice.

We identify l ∈ L with φ(l) = (i1(l), i2(l)) ∈ φ(L) ⊆ B1 ×B2.

Let N = [φ(L)] (N ⊆ B1 ×B2) as Lemma 1.3.7.

By construction, N is R-generated by L (by φ(L)).

Let ϕj : N → Bj (j = 1, 2) ϕj(b1, b2) = bj,

then ϕj(“l”) = ϕj(φ(l)) = ϕj(i1(l), i2(l)) = ij(l) = l in Bj, and

ϕj is a homomorphism of Boolean algebras (see example 1.2.12) of N onto Bj.

If we are given any number of Boolean algebras Bi R-generated by L, we can

proceed as before. There is only one problem. All Bi do not form a set, so their

direct product cannot be formed. Observe that, by lemma 1.3.8, in every Bj

we have |Bj| ≤ |L| + ℵ0. Thus, by choosing a large enough set S and taking

only those Bj that satisfy Bj ⊆ S, we can solve our problem.
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Now we are ready to proceed with the formal proof. Choose a set S satisfying

|S| = |L|+ℵ0. Note that for each Bj, since |Bj| ≤ |S|, we have a injective map

αj : Bj → S.

Let Sj = αj(Bj), and make Sj into a Boolean algebra by defining

0Sj
= αj(0Bj

), 1Sj
= αj(1Bj

), αj(b1) ∧ αj(b2) = αj(b1 ∧ b2),

αj(b1) ∨ αj(b2) = αj(b1 ∨ b2) and (αj(b))
′ = αj(b

′).

Then αj is an isomorphism of Boolean algebras, and Bj
∼= Sj.

Let A be the Boolean algebra A =
∏

j∈J Sj and φ : L→ A with

φ(l) = (αj(ij(l)))j∈J . φ is a injective {0, 1}-homomorphism of lattices.

As before, let B = [φ(L)] ⊆ A. Then, B is a Boolean algebra and B is R-

generated by L (by φ(L)). Also, let ϕk : B → Bk, ϕk = α−1
k ◦ pk (k ∈ J).

ϕk is a homomorphism of Boolean algebras of B onto Bk (see Example 1.2.11)

and, if we identify l ∈ L with φ(l) in B, then ϕk(“l”) = ϕk(φ(l)) =

= ϕk((αj(ij(l)))j∈J) = α−1
k ◦ pk((αj(ij(l)))j∈J) = α−1

k (αk(ik(l))) = ik(l) = l in

Bk 2

Lemma 1.3.11 Let a0, a1, . . . . . . , an−1 be elements of L such that

a0 ≤ a1 ≤ . . . . . . ≤ an−1. Let B be a Boolean algebra R-generated by L.

Then a0 + a1 + . . . . . .+ an−1 ≤ an−1 in B.

Proof. We proceed by induction on “n”.

The case n = 1 is trivial (a0 ≤ a0).

Let a0 + a1 + . . . . . .+ an−1 + an, a0 ≤ a1 ≤ . . . . . . ≤ an−1 ≤ an.

The induction hypothesis is a0 + a1 + . . . . . .+ an−1 ≤ an−1 .

Thus a0 + a1 + . . . . . .+ an−1 ≤ an−1 ≤ an, and then

(a0 + a1 + . . . . . .+ an−1) ∧ a′n = 0

Therefore,

a0 + a1 + . . . . . .+ an−1 + an = (a0 + a1 + . . . . . .+ an−1) + an =

= ((a0 + a1 + . . . . . .+ an−1)′ ∧ an) ∨ ((a0 + a1 + . . . . . .+ an−1) ∧ a′n) =

= ((a0 + a1 + . . . . . .+ an−1)′ ∧ an) ∨ 0 =

= (a0 + a1 + . . . . . .+ an−1)′ ∧ an ≤ an 2

Lemma 1.3.12 Let B be a Boolean algebra freely R-generated by L and let

B1 be a Boolean algebra R-generated by L. Then B ∼= B1.
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Proof. Since B a Boolean algebra freely R-generated by L, then there exist a

homomorphism ϕ of B onto B1 that is the identity map on L.

We will see that ϕ is one-to-one.

If a, b ∈ B and ϕ(a) = ϕ(b) then,

0 = ϕ(a) ∧ (ϕ(a))′ = ϕ(b) ∧ (ϕ(a))′ = ϕ(b) ∧ ϕ(a′) = ϕ(b ∧ a′).
Let c = b ∧ a′ ∈ B. By Lemma 1.3.6, if c 6= 0 then

c = l0 + l1 + . . . . . .+ ln−1,

where l0, l1, . . . . . . , ln−1 ∈ L and 0 < l0 ≤ l1 ≤ . . . . . . ≤ ln−1.

De todas las posibles escrituras de c, tomo

c = l0 + l1 + . . . . . .+ ln−1, l0, l1, . . . . . . , ln−1 ∈ L, 0 < l0 ≤ l1 ≤ . . . . . . ≤ ln−1

con n mı́nimo.

We have ϕ(c) = 0

ϕ(l0 + l1 + . . . . . .+ ln−2 + ln−1) = 0

ϕ(l0) + ϕ(l1) + . . . . . .+ ϕ(ln−2) + ϕ(ln−1) = 0 (by Theorem 1.3.2 (ii)).

ϕ(l0) + ϕ(l1) + . . . . . .+ ϕ(ln−2) = −ϕ(ln−1)

ϕ(l0) + ϕ(l1) + . . . . . .+ ϕ(ln−2) = ϕ(ln−1) (by Theorem 1.3.1 (i)).

Thus, by Lemma 1.3.11 and Lemma 1.2.9,

ϕ(ln−2) ≤ ϕ(ln−1) = ϕ(l0) + ϕ(l1) + . . . . . .+ ϕ(ln−2) ≤ ϕ(ln−2).

Hence ϕ(ln−2) = ϕ(ln−1) and since ϕ is the identity map on L, ln−2 = ln−1.

Therefore, c = l0 + l1 + . . . . . .+ ln−2 + ln−1 = l0 + l1 + . . . . . .+ ln−1 + ln−1 =

= l0 + l1 + . . . . . .+ (ln−1 + ln−1) = l0 + l1 + . . . . . .+ ln−3 + 0 =

= l0 + l1 + . . . . . .+ ln−3. Absurdo pues n era mı́nimo.

Then we have c = 0 that is b ∧ a′ = 0.

With the same argument a ∧ b′ = 0.

Now, b ∧ a′ = 0⇒ a ≤ b (by Lemma 1.3.3 (i)), and a ∧ b′ = 0⇒ b ≤ a.

Hence a = b 2

Theorem 1.3.13 Let B1 and B2 be two Boolean algebras R-generated by L.

Then B1
∼= B2.

Proof. By lemma 1.3.12 there exist ϕ1 : B → B1 and ϕ2 : B → B2

isomorphisms of Boolean algebras, where B is a Boolean algebra freely R-

generated by L. Therefore ϕ : B1 → B2, ϕ = ϕ2 ◦ (ϕ1)−1 is a isomorphism

of B1 into B2 2
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Remark: For a bounded distributive lattice L, we shall denote by B(L) a

Boolean algebra R-generated by L.

Example 1.3.14 For a bounded chain C an explicit representation of B(C)

is given as follows:

Let B [C] be the set of all subsets of C of the form

(a0] + (a1] + . . . . . .+ (an−1] ,

0 < a0 ≤ a1 ≤ . . . . . . ≤ an−1, a0, a1, . . . . . . , an−1 ∈ C,

where + is the symmetric difference and (a] = {c ∈ C/c ≤ a}. We consider

B [C] as a poset (partially ordered by ⊆). We identify a ∈ C with (a] for

a 6= 0, and 0 with ∅. Thus C ⊆ B [C].

Note that,

• a0 ≤ a1 ⇒ (a0] + (a1] = (a0, a1],

• if A,B are disjoint sets, then A+B = (Bc ∩ A) ∪ (B ∩ Ac) = A∪̇B,

• a0 ≤ a1 ≤ a2 ≤ a3 ⇒ (a0, a1] and (a2, a3] are disjoint sets.

Then

(a0] + (a1] + . . . . . .+ (a2n−2] + (a2n−1] =

= ((a0] + (a1]) + . . .+ ((a2n−1] + (a2n−2]) =

= (a0, a1] + . . . . . . . . .+ (a2n−2, a2n−1] =

= (a0, a1] ∪̇ . . . . . . . . . ∪̇ (a2n−2, a2n−1]

or

(a0] + (a1] + (a2] + . . . . . .+ (a2n−1] + (a2n] =

= (a0] + ((a1] + (a2]) + . . .+ ((a2n−1] + (a2n]) =

= (a0] + (a1, a2] + . . . . . . . . .+ (a2n−1, a2n] =

= (a0] ∪̇ (a1, a2] ∪̇ . . . . . . . . . ∪̇ (a2n−1, a2n] =

= (0, a0] ∪̇ (a1, a2] ∪̇ . . . . . . . . . ∪̇ (a2n−1, a2n].

Lemma 1.3.15 Let C a bounded chain. Then ({∅} ∪B [C]∪ {C} ,∪,∩, ∅, C)

is the Boolean algebra R-generated by C.

Proof. The proof is obvious by construction and by Theorem 1.3.13. 2
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Lemma 1.3.16 If [0, a]L is an interval in a bounded distributive lattice L,

then B([0, a]L) is naturally isomorphic to the interval [0, a]B(L).

Proof. We note that:

[0, a]B(L) is a Boolean algebra (see example 1.2.4),

[0, a]L is a sublattice of [0, a]B(L).

Moreover if x ∈ [0, a]B(L) then x = l1 + l2 + . . .+ ln with l1, l2, . . . , ln ∈ L and

0 ≤ x ≤ a. Then x = x ∧ a = (l1 + l2 + . . .+ ln) ∧ a = (l1 + l2 + . . .+ ln).a =

= l1.a+ l2.a+ . . .+ ln.a = l1∧ a+ l2∧ a+ . . .+ ln∧ a, and since lj ∧ a ∈ [0, a]L,

j = 1, . . . , n, we have that [0, a]B(L) is R-generate by [0, a]L.

Thus, by Theorem 1.3.13, B([0, a]L) ∼= [0, a]B(L).

Proposition 1.3.17 Let L1 and L2 be two bounded distributive lattices, and

let ϕ : L1 → L2 be a {0, 1}−homomorphism of lattices. Then ϕ uniquely

extends to a homomorphism of Boolean algebras ϕ̃ : B(L1)→ B(L2).

Proof. Let a ∈ B(L1), then a = a0 + a1 + . . .+ an−1. We define

ϕ̃(a) = ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1). We shall see that ϕ̃ is well defined.

First suppose that a0 + a1 + . . . + an−1 = 0, then by Lemma 1.3.6, a0 + a1 +

. . .+ an−1 can be expressed in the form

b0 + b1 + . . .+ bn−1 with b0 ≤ b1 ≤ . . . ≤ bn−1 and

bj =
∨

(

n−1−j∧
k=0

aik 0≤i0<i1<...<in−1−j≤n−1)

Thus b0 + b1 + . . .+ bn−1 = 0 with b0 ≤ b1 ≤ . . . ≤ bn−1.

If n is even, by Lemma 1.3.3 (v), b0 = b1; b2 = b3; . . . ; bn−4 = bn−3; bn−2 = bn−1,

and thus ϕ(b0) + ϕ(b1) + . . .+ ϕ(bn−1) =

= ϕ(b0) + ϕ(b0) + ϕ(b2) + ϕ(b2) + . . .+ ϕ(bn−1) + ϕ(bn−1) =

= (ϕ(b0)+ϕ(b0))+(ϕ(b2)+ϕ(b2))+. . .+(ϕ(bn−1)+ϕ(bn−1)) = 0+0+. . .+0 = 0.

If n is odd, by Lemma 1.3.3 (vi), b0 = 0; b1 = b2; b3 = b4; . . . ; bn−4 = bn−3;

bn−2 = bn−1, and thus ϕ(b0) + ϕ(b1) + . . .+ ϕ(bn−1) =

= ϕ(0) + ϕ(b1) + ϕ(b1) + ϕ(b3) + ϕ(b3) + . . .+ ϕ(bn−1) + ϕ(bn−1) =

= ϕ(0) + (ϕ(b1) + ϕ(b1)) + (ϕ(b3) + ϕ(b3)) + . . .+ (ϕ(bn−1) + ϕ(bn−1)) =
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= 0 + 0 + . . .+ 0 = 0.

Therefore, since ϕ a homomorphism of lattices and formula (2) page 28,

0 = ϕ(b0) + ϕ(b1) + . . .+ ϕ(bn−1) =

= ϕ(
∨

(
n−1∧
k=0

aik 0≤i0<...<in−1≤n−1))+ϕ(
∨

(
n−2∧
k=0

aik 0≤i0<...<in−2≤n−1))+. . .+ϕ(
∨

(
0∧

k=0

aik 0≤i0≤n−1)) =

=
∨

(
n−1∧
k=0

ϕ(aik) 0≤i0<...<in−1≤n−1)+
∨

(
n−2∧
k=0

ϕ(aik) 0≤i0<...<in−2≤n−1)+. . .+
∨

(
0∧

k=0

ϕ(aik) 0≤i0≤n−1) =

= ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) (again from formula (2)).

Thus, we have prove that

a0 + a1 + . . .+ an−1 = 0 ⇒ ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) = 0.

Now let a0 + a1 + . . .+ an−1 = c0 + c1 + . . .+ cm−1, then

a0 + a1 + . . .+ an−1 + c0 + c1 + . . .+ cm−1 = 0 hence

ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) + ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1) = 0 and thus

ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) = ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1). Therefore ϕ̃ is

well defined.

Moreover ϕ̃(0) = ϕ(0) = 0 ϕ̃(1) = ϕ(1) = 1 and if

a = a0 + a1 + . . .+ an−1 and c = c0 + c1 + . . .+ cm−1, then

ϕ̃(a+ c) = ϕ̃(a0 + a1 + . . .+ an−1 + c0 + c1 + . . .+ cm−1) =

= ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) + ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1) =

= (ϕ(a0)+ϕ(a1)+. . .+ϕ(an−1))+(ϕ(c0)+ϕ(c1)+. . .+ϕ(cm−1)) = ϕ̃(a)+ϕ̃(c).

ϕ̃(a.c) = ϕ̃((a0 + . . .+ an−1).(c0 + . . .+ cm−1)) = ϕ̃(
∑
aicj) =

∑
ϕ(aicj) =

=
∑

(ϕ(ai).ϕ(cj)) = (ϕ(a0)+. . .+ϕ(an−1)).(ϕ(c0)+. . .+ϕ(cm−1)) = ϕ̃(a).ϕ̃(c).

Therefore, by Theorem 1.3.2 (ii), ϕ̃ is a homomorphism of Boolean algebras.

Let ψ be another extension of ϕ, then if a = a0 + a1 + . . .+ an−1,

ψ(a) = ψ(a0 + a1 + . . .+ an−1) = ψ(a0) + ψ(a1) + . . .+ ψ(an−1) =

= ϕ(a0) +ϕ(a1) + . . .+ϕ(an−1) = ϕ̃(a) and thus the extension ϕ is unique. 2

Corollary 1.3.18 Let L1 and L2 be two bounded distributive lattices, and

let ϕ : L1 → L2 be an isomorphism of lattices. Then ϕ uniquely extends to an

isomorphism of Boolean algebras ϕ̃ : B(L1)→ B(L2).
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Proof. By Theorem 1.3.17 there is an extension ϕ̃ : B(L1)→ B(L2) where

ϕ̃(a) = ϕ(a0) + ϕ(a1) + . . . + ϕ(an−1) if a = a0 + a1 + . . . + an−1, aj ∈ L1

0 ≤ j ≤ n− 1.

ϕ̃ is surjective:

Let c ∈ B(L2), then c = c0 + c1 + . . .+ cn−1, cj ∈ L2, j = 0, 1, . . . , n− 1.

Since ϕ is an isomorphism of L1 onto L2, there exists a0, a2, . . . , an−1 ∈ L1

such that ϕ(aj) = cj, j = 0, 1, . . . , n− 1. Therefore

c = c0 + c1 + . . .+ cn−1 = ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) = ϕ̃(a),

with a = a0 + a1 + . . .+ an−1.

ϕ̃ is injective:

Let a0, a1, . . . , an−1, c0, c1, . . . , cm−1 ∈ L1 be such that

ϕ̃(a0 + a1 + . . .+ an−1) = ϕ̃(c0 + c1 + . . .+ cm−1), that is

ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1) = ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1) in B(L2).

Since ϕ−1 : L2 → L1 a homomorphism of lattices ,by Theorem 1.3.17, there is

an extension ˜ϕ−1 : B(L2)→ B(L1), ˜ϕ−1(d0 + d1 + . . .+ dn−1) =

= ϕ−1(d0) + ϕ−1(d1) + . . .+ ϕ−1(dn−1), d0, d1, . . . , dn−1 ∈ L2.

Since ˜ϕ−1 is well defined, if d0 +d1 + . . .+dn−1 = e0 +e1 + . . .+em−1 in B(L2),

then ˜ϕ−1(d0 + d1 + . . .+ dn−1) = ˜ϕ−1(e0 + e1 + . . .+ em−1) in B(L1).

In particular,

˜ϕ−1(ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1)) = ˜ϕ−1(ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1)).

Thus a0 + a1 + . . .+ an−1 = ϕ−1(ϕ(a0)) + ϕ−1(ϕ(a1)) . . .+ ϕ−1(ϕ(an−1)) =

= ˜ϕ−1(ϕ(a0) + ϕ(a1) + . . .+ ϕ(an−1)) = ˜ϕ−1(ϕ(c0) + ϕ(c1) + . . .+ ϕ(cm−1)) =

= ϕ−1(ϕ(c0)) + ϕ−1(ϕ(c1)) . . .+ ϕ−1(ϕ(cm−1)) = c0 + c1 + . . .+ cm−1. 2

1.4 Effect algebras [3]

An effect algebra is a partial algebra E= (E,⊕, 0, 1) such that ⊕ is a binary

partial operation and 0, 1, are nullary operations satisfying the following

conditions, where x, y, z denote arbitrary elements of E.

E1 If x⊕ y is defined, then y ⊕ x is defined and x⊕ y = y ⊕ x.

E2 If x⊕y and (x⊕y)⊕z are defined, then y⊕z and x⊕(y⊕z) are defined,

and (x⊕ y)⊕ z = x⊕ (y ⊕ z).
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E3 For every x ∈ E, there exist a unique x′ ∈ E such that x⊕ x′ = 1.

E4 If x⊕ 1 is defined, then x = 0.

We denot ”there exist a⊕ b” by a ⊥ b.

Example 1.4.1 Let E = [0, 1] be the real unit interval, or E = Q ∩ [0, 1], or

E = Ln =
{

0, 1
n−1

, 2
n−1

, . . . , n−2
n−1

, 1
}

(n ∈ N, n ≥ 2), and for all x, y ∈ E, x⊕y
is defined iff x ≤ 1− y. In this case we defined x⊕ y := x+ y.

It is easy to see that (E,⊕, 0, 1) is an effect algebras, where x′ = 1− x.

Also, if (n1 − 1) | (n2 − 1), then Ln1 ⊂ Ln2 ⊂ Q ∩ [0, 1] ⊂ [0, 1], where ⊂ is a

subalgebra inclusion.

Example 1.4.2 Let 〈B,∧,∨, c, 0, 1〉 be a Boolean algebra. For a, b in B we

say a ⊥ b iff a ∧ b = 0 and, if a ⊥ b, we define a⊕ b := a ∨ b.
Then (B,⊕, 0, 1) is an effect algebra, where x′ = xc.

Lemma 1.4.3 The following properties hold in every effect algebra E:

(i) For every x ∈ E, x′′ = x

(ii) 1′ = 0 and 0′ = 1

(iii) For each x ∈ E x⊕ 0 is defined and x⊕ 0 = x

(iv) If x⊕ y is defined, then y ⊕ (x⊕ y)′ is defined, and x = (y ⊕ (x⊕ y)′)′

(v) If x⊕ y and x⊕ z are defined and x⊕ y = x⊕ z, then y = z

(vi) If x⊕ y = 0, then x = y = 0

Proof. To prove (i), note that by E1 and E3, x′ ⊕ x = x⊕ x′ = 1.

Hence x′′ = x.

Since by E3 1⊕ 1′ is defined, E4 implies that 1′ = 0, and by (i) we have that

0′ = 1′′ = 1. This proves (ii).

To prove (iii), note first that by (ii) 1⊕ 0 = 1. Hence by E3, E1 and E2:
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1 = 1⊕ 0 = (x′ ⊕ x)⊕ 0 = x′ ⊕ (x⊕ 0). Then by E3 and (i) we conclude that

x⊕ 0 = x′′ = x, and (iii) is proved.

If x⊕ y is defined, then by E3 and E2 we have that

1 = (x⊕ y)⊕ (x⊕ y)′ = x⊕ (y ⊕ (x⊕ y)′),

and then (iv) follows from E3 and (i).

To show the cancellative property, suppose that x⊕ y = x⊕ z. By (iv) and E1

we have that y = (x⊕ (y ⊕ x)′)′ = (x⊕ (z ⊕ x)′)′ = z. This proves (v).

If x⊕ y = 0, then by (iv) and (ii), y ⊕ (x⊕ y)′ = y ⊕ 1 is defined, and by E4,

y = 0. Hence by (iii), 0 = x⊕ 0 = x. This completes the proof of (vi) 2

Let E be an effect algebra. The binary relation ≤ defined on E by the pre-

scription x ≤ y if there is z such that x⊕ z = y is a partial order on E, called

the natural order of E. Indeed, reflexivity follows from (iii) of Lemma 1.4.3,

transitivity from E2, and antisymmetry from (v) in Lemma 1.4.3.

Example 1.4.4 In Example 1.4.1 ≤ is the usual order of numbers of E, and

in Example 1.4.2 ≤ is the same as in B.

Lemma 1.4.5 Let E be an effect algebra and let x, y, z ∈ E. Then we have:

(i) x ≤ y if and only if y′ ≤ x′.

(ii) x⊕ y is defined if and only if x ≤ y′.

(iii) ∀x ∈ E, 0 ≤ x.

(iv) ∀x ∈ E, x ≤ 1.

(v) If x⊕ y is defined and z ≤ x then z ⊕ y is defined

(if x⊕ y is defined and z ≤ y then z ⊕ x is defined).

(vi) If x⊕ y is defined then x ≤ x⊕ y and y ≤ x⊕ y.

(vii) If x⊕ z and y ⊕ z are defined and x ≤ y, then x⊕ z ≤ y ⊕ z.
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Proof. Suppose x ≤ y, and take z such that x ⊕ z = y. By (iv) and (i) in

Lemma 1.4.3, x′ = z ⊕ (x ⊕ z)′ = z ⊕ y′, and this shows that y′ ≤ x′. On the

other hand, if y′ ≤ x′, by what we have just proved and (i) of Lemma 1.4.3,

we have x = x′′ ≤ y′′ = y. This completes the proof of (i).

To prove (ii), suppose first that x⊕y is defined. Then by (iv) in Lemma 1.4.3,

y′ = x⊕ (x⊕ y)′, hence x ≤ y′. Suppose now that x ≤ y′, i.e., that there is z

such that x⊕ z = y′. Then 1 = y⊕ y′ = y⊕ (x⊕ z), hence by E2 and E1, x⊕ y
is defined.

(iii) By Lemma 1.4.3 (iii) and definition of ≤.

(iv) By E3 and definition of ≤.

(v) By (ii) x ⊥ y ⇒ x ≤ y′, therefore z ≤ y′ and then, by (ii), z ⊥ y. The rest

follows by symmetry.

(vi) By definition of ≤.

(vii) x ≤ y ⇒ ∃s ∈ E such that x⊕ s = y. Then y ⊕ z = (x⊕ s)⊕ z =

= (s⊕ x)⊕ z = s⊕ (x⊕ z) (By E1 and E2), and thus x⊕ z ≤ y ⊕ z. 2

Let E be an effect algebra, it is possible to introduce a new partial

operation 	.

b	 a exists and equals c if and only if a⊕ c exists and equals b.

In other words, b	 a is defined iff a ≤ b and then a⊕ (b	 a) = b

(	 is well defined by Lemma 1.4.3 (v)).

Example 1.4.6 In example 1.4.1 if a ≤ b, b	 a = b− a, and in example 1.4.2

if a ≤ b, b	 a = b \ a (where b \ a = b ∧ a′ = b ∧ ac).

Remark: If a⊕ b is defined and a⊕ b = c, then a = c	 b and b = c	 a.

Also, since a⊕ b = a⊕ b, we have a = (a⊕ b)	 b and

b = (a⊕ b)	 a.

Lemma 1.4.7 Let E be an effect algebra and let a, b, c ∈ E.

(i) If a ≤ b, then b	 a ≤ b.

(ii) If a ≤ b then b	 (b	 a) is defined and b	 (b	 a) = a.

(iii) If a ≤ b ≤ c, then b	 a ≤ c	 a.
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(iv) a	 0 is defined and a	 0 = a.

(v) a	 a is defined and a	 a = 0.

(vi) If a ≤ b ≤ c, then (c	a)	 (b	a) is defined and (c	a)	 (b	a) = c	 b.

(vii) If a ≤ b ≤ c′, then (b ⊕ c), (a ⊕ c) and (b ⊕ c) 	 (a ⊕ c) are defined and

(b⊕ c)	 (a⊕ c) = b	 a.

(viii) If a ≤ b ≤ c, then c	 b ≤ c	 a.

(ix) If b ≤ c and a ≤ c	 b then b ≤ c	 a and (c	 b)	 a = (c	 a)	 b.

Proof.

(i) a ≤ b⇒ b	 a is defined and a⊕ (b	 a) = b ⇒ b	 a ≤ b.

(ii) If a ≤ b then b 	 a is defined and, by (i), b 	 (b 	 a) is defined. From

a⊕ (b	 a) = b and previous remark we have b	 (b	 a) = a.

(iii) a ≤ b⇒ ∃t ∈ E such that a⊕ t = b and, by previous remark, t = b	 a.

b ≤ c⇒ ∃s ∈ E such that b⊕ s = c, and s = c	 b. Therefore

c = b⊕ s = (a⊕ t)⊕ s = a⊕ (t⊕ s) (by E2), then (t⊕ s) = c	 a. Thus

(by Lemma 1.4.5 (vi)) b	 a = t ≤ t⊕ s = c	 a.

(iv) and (v) follows from Lemma 1.4.3 (iii) and previous remark.

(vi) b = (b	 a)⊕ a and c = (c	 b)⊕ b imply c = (c	 b)⊕ ((b	 a)⊕ a) =

= ((c 	 b) ⊕ (b 	 a)) ⊕ a then, by previous remark, (c 	 b) ⊕ (b 	 a) = c 	 a
and again by previous remark b	 a = (c	 a)	 (c	 b).
(vii) If a ≤ b ≤ c′ then, by (vii) and Lemma 1.4.5 (ii), (b ⊕ c), (a ⊕ c) and

(b⊕c)	(a⊕c) are defined. Since a ≤ b, by definition of	, we have b = (b	a)⊕a
then b ⊕ c = ((b 	 a) ⊕ a) ⊕ c = (b 	 a) ⊕ (a ⊕ c). Thus by previous remark

b	 a = (b⊕ c)	 (a⊕ c).
(viii) Since a ≤ c , b ≤ c and a ≤ b, ∃e ∈ E such that b = a⊕ e therefore

a⊕ (c	 a) = c = b⊕ (c	 b) = (a⊕ e)⊕ (c	 b) = a⊕ (e⊕ (c	 b)). Then , by

the cancellative property, c	 a = e⊕ (c	 b) and thus c	 b ≤ c	 a .

(ix) Since, by (i), a ≤ c	 b ≤ c then, by (viii), c	 (c	 b) ≤ c	 a hence, since

b ≤ c and (ii), we have b = c	(c	b) ≤ c	a. Moreover c	a = ((c	a)	b)⊕b,
then (c 	 a) ⊕ a = (((c 	 a) 	 b) ⊕ b) ⊕ a, hence c = (((c 	 a) 	 b) ⊕ a) ⊕ b
and, since c = (c 	 b) ⊕ b, we obtain (c 	 b) ⊕ b = (((c 	 a) 	 b) ⊕ a) ⊕ b.
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Therefore, by the cancellative property, (c 	 b) = ((c 	 a) 	 b) ⊕ a and thus

(c	 a)	 b = (c	 b)	 a. 2

Lemma 1.4.8 Let E be an effect algebra. If a⊕ b is defined, then

(a⊕ b)′ = a′ 	 b = b′ 	 a.

Proof. By Lemma 1.4.3 (iv) if a⊕ b is defined, then b⊕ (a⊕ b)′ is defined and

a = (b⊕ (a⊕ b)′)′. Thus a′ = ((b⊕ (a⊕ b)′)′)′ = b⊕ (a⊕ b)′.
From definition of 	, (a⊕ b)′ = a′ 	 b. The rest follows by symmetry. 2

Let E1, E2 be effect algebras. A mapping φ : E1 → E2 is called a

homomorphism of effect algebras iff

• φ(1) = 1

• The existence of a⊕ b implies the existence of φ(a)⊕ φ(b) and

φ(a⊕ b) = φ(a)⊕ φ(b)

Remark: Let a ∈ E1, then φ(a′) = (φ(a))′ in E2.

Lemma 1.4.9 Let E1, E2 be effect algebras and let φ : E1 → E2 be a

homomorphism of effect algebras.

(i) If a, b ∈ E1 and a ≤ b, then φ(a) ≤ φ(b).

(ii) If a, b ∈ E1 and a ≤ b, then φ(b	 a) = φ(b)	 φ(a).

Proof.

(i) a ≤ b ⇒ ∃c ∈ E1 such that b = a ⊕ c. Then φ(a) ⊕ φ(c) is defined in E2

and φ(b) = φ(a)⊕ φ(c). Thus φ(a) ≤ φ(b).

(ii) By (i) a ≤ b ⇒ φ(a) ≤ φ(b), and thus φ(b) 	 φ(a) is defined. From

b = (b	a)⊕a, we have φ(b) = φ(b	a)⊕φ(a) and thus φ(b	a) = φ(b)	φ(a).2

A homomorphism φ : E1 → E2 is full iff whenever φ(a) ⊥ φ(b) and

φ(a)⊕ φ(b) ∈ φ(E1), then there are a1, b1 ∈ E1 such that

φ(a) = φ(a1), φ(b) = φ(b1) and a1 ⊥ b1.
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A homomorphism φ : E1 → E2 is an isomorphism iff φ is bijective and full.

Note that even if E1 and E2 are lattice ordered, a homomorphism of effect

algebras need not to preserve joins and meets.

1.5 MV-effect algebras [7]

Definition 1.5.1 An MV-effect algebra is a lattice ordered effect algebra M

in which, for all a, b ∈M , (a ∨ b)	 a = b	 (a ∧ b).

Example 1.5.2 The examples 1.4.1 and 1.4.2 are MV-effect algebras

(see examples 1.4.4 and 1.4.6).

Proposition 1.5.3 Let M be an MV-effect algebra and let a, b, c ∈M.

(i) If a ≤ c and b ≤ c, then c	 (a ∨ b) = (c	 a) ∧ (c	 b).

In particular, if a ⊥ b, then (a⊕ b)	 (a ∨ b) = a ∧ b.

(ii) If c ≤ a and c ≤ b, then (a ∧ b)	 c = (a	 c) ∧ (b	 c).

(iii) ((a ∨ b)	 a) ∧ ((a ∨ b)	 b) = 0.

(iv) If c ≤ a and c ≤ b, then (a	 c) ∨ (b	 c) = (a ∨ b)	 c.

(v) If a ≤ c and b ≤ c then c	 (a ∧ b) = (c	 a) ∨ (c	 b).

In particular, if we put c = a ∨ b,

(a ∨ b)	 (a ∧ b) = ((a ∨ b)	 a) ∨ ((a ∨ b)	 b).

Proof.

(i)

From the inequalities a ≤ a ∨ b ≤ c and b ≤ a ∨ b ≤ c and Lemma 1.4.7

(viii) we have c 	 (a ∨ b) ≤ c 	 a and c 	 (a ∨ b) ≤ c 	 b. For any other

w ∈ M with w ≤ c 	 a and w ≤ c 	 b, by Lemma 1.4.7 (i), (ii) and (viii),

a = c	 (c	a) ≤ c	w and b = c	 (c	 b) ≤ c	w, therefore a∨ b ≤ c	w ≤ c,

and so w = c 	 (c 	 w) ≤ c 	 (a ∨ b), which implies that c 	 (a ∨ b) is the

greatest lower bound of the set {c	 a, c	 b}, which concludes the proof of (i).
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(ii)

c ≤ a and c ≤ b imply c ≤ a ∧ b ≤ a and c ≤ a ∧ b ≤ b then,

by Lemma 1.4.7 (iii), (a ∧ b)	 c ≤ a	 c and (a ∧ b)	 c ≤ b	 c.
If w ∈ M is such that w ≤ a 	 c and w ≤ b 	 c then, since (a 	 c) ⊕ c is

defined and Lemma 1.4.5 (v), w ⊕ c is defined and, by Lemma 1.4.5 (vii),

w ⊕ c ≤ (a	 c)⊕ c = a and w ⊕ c ≤ (b	 c)⊕ c = b.

Therefore c ≤ w⊕ c ≤ a∧ b and thus, by Lemma 1.4.7 (iii) and Remark page

39, w = (w⊕ c)	 c ≤ (a∧ b)	 c. Hence (a∧ b)	 c is the greatest lower bound

of {a	 c, b	 c}.
(iii)

In (i) put c = a ∨ b and Lemma 1.4.7 (v).

(iv)

From c ≤ a ≤ a ∨ b and c ≤ b ≤ a ∨ b we get, by Lemma 1.4.7 (iii), a 	 c ≤
(a ∨ b) 	 c and b 	 c ≤ (a ∨ b) 	 c. Let w ∈ M be such that a 	 c ≤ w and

b	 c ≤ w then a	 c ≤ w ∧ ((a ∨ b)	 c) ≤ (a ∨ b)	 c and thus

((a ∨ b) 	 c) 	 (w ∧ ((a ∨ b) 	 c)) ≤ ((a ∨ b) 	 c) 	 (a 	 c) = (a ∨ b) 	 a by

Lemma 1.4.7 (vi); similarly, ((a ∨ b)	 c)	 (w ∧ ((a ∨ b)	 c)) ≤ (a ∨ b)	 b.
Therefore ((a ∨ b)	 c)	 (w ∧ ((a ∨ b)	 c)) ≤ ((a ∨ b)	 a) ∧ ((a ∨ b)	 b) = 0

by (iii). Hence ((a ∨ b)	 c)	 (w ∧ ((a ∨ b)	 c)) = 0, then

(((a∨ b)	 c)	 (w∧ ((a∨ b)	 c)))⊕ (w∧ ((a∨ b)	 c)) = 0⊕ (w∧ ((a∨ b)	 c))
and thus (a ∨ b)	 c = w ∧ ((a ∨ b)	 c) ≤ w.

(v)

From the inequalities a ∧ b ≤ a ≤ c and a ∧ b ≤ b ≤ c it follows, by Lemma

1.4.7 (viii), that c 	 a ≤ c 	 (a ∧ b) and c 	 b ≤ c 	 (a ∧ b). For w ∈ M

with c 	 a ≤ w and c 	 b ≤ w, then c 	 a = (c 	 a) ∧ c ≤ w ∧ c ≤ c, which

gives c 	 (w ∧ c) ≤ c 	 (c 	 a) = a (by Lemma 1.4.7 (ii)), and similarly

c	 (w ∧ c) ≤ b, therefore, c	 (w ∧ c) ≤ a∧ b. Then, since a∧ b ≤ c, we obtain

c	 (a ∧ b) ≤ c	 (c	 (w ∧ c)) = w ∧ c ≤ w (by Lemma 1.4.7 (viii) and (ii)),

which implies that c	 (a∧ b) is the least upper bound of the set {c	 a, c	 b}.
2

Proposition 1.5.4 Let M be an MV-effect algebra and let a, b, c ∈M.

(i) If a⊕ b and a⊕ c are defined then a⊕ (b ∧ c) = (a⊕ b) ∧ (a⊕ c).
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(ii) If a⊕ b and a⊕ c are defined then a⊕ (b ∨ c) = (a⊕ b) ∨ (a⊕ c).

Proof.

(i)

By Proposition 1.5.3 (ii) ((a⊕b)∧(a⊕c))	a = ((a⊕b)	a)∧((a⊕c)	a) = b∧c,
therefore (((a⊕ b) ∧ (a⊕ c))	 a)⊕ a = (b ∧ c)⊕ a and thus

(a⊕ b) ∧ (a⊕ c) = (b ∧ c)⊕ a.

(ii)

By Proposition 1.5.3 (iv) ((a⊕b)∨(a⊕c))	a = ((a⊕b)	a)∨((a⊕c)	a) = b∨c,
whence (((a⊕ b) ∨ (a⊕ c))	 a)⊕ a = (b ∨ c)⊕ a, and thus

(a⊕ b) ∨ (a⊕ c) = (b ∨ c)⊕ a 2

Lemma 1.5.5 (De Morgan’s Identities) Let M be an MV-effect algebra

and let a, b in M . Then

(i) (a ∨ b)′ = a′ ∧ b′ and

(ii) (a ∧ b)′ = a′ ∨ b′.

Proof.

(i) By definition an MV-effect algebra is a lattice, by Lemma 1.4.5 (i) a ≤ b if

and only if b′ ≤ a′ and by Lemma 1.4.3 (i) a′′ = a. Thus, since a′ ∧ b′ ≤ a′ we

have a ≤ (a′ ∧ b′)′. Similarly b ≤ (a′ ∧ b′)′.
Suppose a ≤ e and b ≤ e then e′ ≤ a′ and e′ ≤ b′ therefore e′ = e′ ∧ e′ ≤ a′ ∧ b′

and thus (a′ ∧ b′)′ ≤ e, but this means a ∨ b = (a′ ∧ b′)′. Hence (a ∨ b)′ =

(a′ ∧ b′)′′ = a′ ∧ b′ which completes the proof of (i).

(ii) If we simultaneously replace a by a′ and b by b′ in (i), we obtain

(a′ ∨ b′)′ = a′′ ∧ b′′ = a ∧ b and then a′ ∨ b′ = (a ∧ b)′. 2

In section 4 is given the definition of MV-algebras and it is proved that there

is a natural, one-to-one correspondence between MV-effect algebras and MV-

algebras given by the following rules. Let (M,⊕, 0, 1) be an MV-effect algebra.

Let � be a total operation given by x� y = x⊕ (x′ ∧ y). Then (M,�,′ , 0) is

an MV-algebra.

Similarly, let (M,�,¬, 0) be an MV-algebra. Restrict the operation � to the

pairs (x, y) satisfying x ≤ y′ and call the new partial operation ⊕ . Then
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(M,⊕, 0, 1) is an MV-effect algebra.

Proposition 1.5.6 On each MV-effect algebra E the natural order deter-

mines a bounded distributive lattice structure.

Proof. En el apéndice se muestra que en la mencionada correspondencia en-

tre MV-álgebras y MV-effect álgebras, el orden en una MV-effect álgebra

(M,⊕, 0, 1) coincide con el orden de su respectiva MV-álgebra (M,�,¬, 0)

y como por la Proposición 4.1.6, (M,�,¬, 0) es un reticulado acotado y dis-

tributivo, entonces (M,⊕, 0, 1) también lo es. 2

Proposition 1.5.7 Let E be an MV-effect algebra. Then there exist the

Boolean algebra R-generated by E.

Proof. By Proposition 1.5.6 E is a bounded distributive lattice, and by Lemma

1.3.7 and Theorem 1.3.13 there exist the Boolean algebra R-generated by E.

2

2 The function φM [13]

Let M be an MV-effect algebra (and thus M is a bounded distributive lattice),

and let B(M) be the Boolean algebra R-generated by M .

For every element x of B(M), there exists a finite chain x1 ≤ . . . . . . ≤ xn in

M such that x = x1 + . . . . . . + xn (lemma 1.3.6). We then say than {xi}ni=1

is a M-chain representation of x. It is easy to see that every element of B(M)

has a M-chain representation of even length (if x1 ≤ . . . . . . ≤ xn is a M-

chain representation of odd length, then 0 ≤ x1 ≤ . . . . . . ≤ xn is a M-chain

representation of even length).

Theorem 2.0.8 (Main result). Let M be an MV-effect algebra.

The mapping φM : B(M)→M given by φM(x) =
⊕n

i=1(x2i 	 x2i−1),

where {xi}2n
i=1 is a M-chain representation of x, is a surjective homomorphism

of effect algebras.

We have divided the proof into a secuence of lemmas. We use the notation of

Lemmas 1.1.16 and 1.1.17.

45



Lemma 2.0.9 Let L be a finite sublattice of an MV-effect algebra M . Let

C be a maximal chain of L, let a ∈ J(L) and let x ∈ C, πC(a) �L x. Then

πC(a)	 x = a	 (a ∧m(a)).

Proof. Since M is a distributive lattice, L is distributive. By Lemma 1.1.16,

we have a∨x = πC(a) and a∧x = a∧m(a). Since M is an MV-effect algebra

πC(a)	 x = (a ∨ x)	 x = a	 (a ∧ x) = a	 (a ∧m(a)). 2

Lemma 2.0.10 Let L be a finite sublattice of an MV-effect algebra M . Let

C1, C2 be a maximal chains of L. There exists a bijection b : C1 → C2 such

that, for all x1, x2 ∈ C1 with x2 �L x1 , x2	 x1 = b(x2)	 y, where y ∈ C2 and

b(x2) �L y.

Proof. SinceM is distributive, L is distributive. Let us put b(x) = πC2(π
−1
C1

(x)).

By Lemma 1.1.17 (iii), b is a bijection. Write a = π−1
C1

(x2). By Corollary

2.0.9, πC1(a) 	 x1 = x2 	 x1 = a 	 (a ∧ m(a)). Similarly, by Lemma 2.0.9,

b(x2)	 y = πC2(a)	 y = a	 (a ∧m(a)). Thus x2 	 x1 = b(x2)	 y. 2

Lemma 2.0.11 Let L be a finite 0,1-sublattice of an MV-effect algebra M .

The mapping ψL : 2J(L) →M given by

ψL(X) =
⊕
a∈X

a	 (a ∧m(a))

is a homomorphism of effect algebras and, for all x ∈ L, ψL(r(x)) = x,

(note that the sum
⊕

is finite).

Proof. By definition ψL(∅) = 0. Let x ∈ L and write Lx = {y ∈ L : y ≤ x}
(Lx is a lattice). Note that r(x) = J(Lx). Let C = {0 = x0, x1, . . . , xn = x}
with xi+1 �L xi be a maximal chain of Lx. We claim that the sum

n⊕
i=1

xi 	 xi−1

exists in M and equals x.

We proceed by induction on n. If n = 1,
⊕n

i=1 xi 	 xi−1 = x1 	 x0 = x1 	 0

and this is defined and equals x1.
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Let C = {0 = x0, x1, . . . , xn, xn+1 = x} with xi+1 �L xi be a maximal chain of

Lx, then {0 = x0, x1, . . . , xn} is a maximal chain of Lxn with xi+1 �L xi. Then

by the induction hypothesis
⊕n

i=1 xi 	 xi−1 exists in M and equals xn. Thus⊕n+1
i=1 xi 	 xi−1 = (

⊕n
i=1 xi 	 xi−1)⊕ (xn+1 	 xn) = xn ⊕ (xn+1 	 xn) and (by

definition of 	 page 39 and xn ≤ xn+1) this is defined and equals xn+1, so the

claim is proved.

By Corollary 2.0.9 (replacing a by π−1
C (xi) and x by xi−1) we have

xi 	 xi−1 = π−1
C (xi)	 (π−1

C (xi) ∧m(π−1
C (xi))).

Since πC is a bijection , we have r(x) =
{
π−1
C (xi) : i ∈ {1, . . . , n}

}
, hence

ψL(r(x)) exists and equals x. As a consequence, ψL(2J(L))) = ψL(r(1)) = 1.

The additivity of ψL is trivial. 2

Since, for every finite lattice L, r(L) R-generates 2J(L) (Lemma 1.3.5), the

injective mapping r : L→ 2J(L) uniquely extends to an isomorphism of Boolean

algebras r̂ : B(L)→ 2J(L) (by Corollary 1.3.18).

Lemma 2.0.12 Let L be a finite 0,1-sublattice of an MV-effect algebra M .

Let ψL, r̂ be the mapping given above. Then ψL ◦ r̂ is a homomorphism of

effect agebras satisfying

ψL ◦ r̂(x1 + x2 + . . .+ x2n) =
n⊕
i=1

(x2i 	 x2i−1)

for every chain x1 ≤ . . . ≤ x2n of L.

Proof. Evidently, ψL ◦ r̂ : B(L) → M is a homomorphism of effect algebras.

Let x1 ≤ . . . ≤ x2n be a chain in L. Then

ψL(r̂(x1 + x2 + . . .+ x2n)) = ψL(r̂(x1) + r̂(x2) + . . .+ r̂(x2n)) =

= ψL(r(x1) + r(x2) + . . .+ r(x2n)).

Since r is a lattice homomorphism , r(x1) ≤ . . . ≤ r(x2n). Thus, in the Boolean

algebra 2J(L) we obtain (by Lemma 1.3.3 (v) and examples 1.4.2 and 1.4.6)

r(x1) + . . .+ r(x2n) =
n⊕
i=1

(r(x2i)	 r(x2i−1)).
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Finally, by Lemma 2.0.11 and since ψL is a homomorphism of Effect algebras

ψL(r(x1) + r(x2) + . . .+ r(x2n)) =
n⊕
i=1

ψL(r(x2i))	 ψL(r(x2i−1)) =

=
n⊕
i=1

(x2i 	 x2i−1) =

= φL(x1 + x2 + . . .+ x2n).

2

Proof of the main result. Let x1 ≤ . . . ≤ x2n, y1 ≤ . . . ≤ y2m be two chains

of M . Let L be the 0,1-sublattice of M generated by {x1, . . . , x2n, y1, . . . , y2m}.
Then B(L) is a Boolean subalgebra of B(M), {x1, . . . , x2n, y1, . . . , y2m} ⊆ B(L)

and, by Lemma 2.0.12, φL : B(L)→M is a homomorphism of effect algebras.

Let us prove that φM is well defined. Suppose that x1+. . .+x2n = y1+. . .+y2m.

By Lemma 2.0.12,
⊕n

i=1(x2i 	 x2i−1) =
⊕m

i=1(y2i 	 y2i−1), hence φM is well

defined on B(L) and hence on the whole set M . Moreover, φL is just the

restriction of φM to B(L).

Suppose now that x = x1 + . . . + x2n ⊥ y1 + . . . + y2m = y. Again by Lemma

2.0.12, φL(x)⊥φL(y) and φL(x⊕ y) = φL(x)⊕ φL(y). Obviously, φM(1) = 1.

For the proof of surjectivity, it suffices to observe that, for all x ∈M ,

φM(x) = x. 2

Example 2.0.13 Let x ∈ B([0, 1]) and let {xi}2n
i=1 be a M-chain representa-

tion of x of even length (see examples 1.5.2 and 1.3.14).

Then,

x = x1 + x2 + . . .+ x2n−1 + x2n = (x1] + (x2] + . . .+ (x2n−1] + (x2n] =

= (x1, x2] ∪̇ . . . . . . ∪̇ (x2n−1, x2n],

and

φM(x) = φM(x1 + . . . . . .+ x2n) = (x2 	 x1)⊕ . . . . . .⊕ (x2n 	 x2n−1) =

= (x2 − x1) + . . . . . .+ (x2n − x2n−1) = the “length” of x.
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3 From MV-effect algebras to MV-pairs

3.1 Effect algebra congruence [12]

A binary relation a ∼ b defined for arbitrary elements a, b of a non-empty set

A is an equivalence relation in A iff it is reflexive, symmetric and transitive,

i.e., for arbitrary elements a, b, c ∈ A :

a ∼ a,

if a ∼ b then b ∼ a,

if a ∼ b and b ∼ c then a ∼ c.

Let E be an effect algebra. A relation ∼ on E is a weak congruence iff the

following conditions are satisfied.

(C1) ∼ is an equivalence relation.

(C2) If a1 ∼ a2, b1 ∼ b2 and a1 ⊕ b1, a2 ⊕ b2 exist, then a1 ⊕ b1 ∼ a2 ⊕ b2.

We denote the class in E/ ∼ of a element a of E by |a|
(i.e. |a| = {b ∈ E/a ∼ b}).

|a| ⊕ |b| is defined on E/ ∼ iff there are a1, b1 ∈ E such that a1 ∼ a, b1 ∼ b

and a1 ⊕ b1 exist. In this case we define |a| ⊕ |b| := |a1 ⊕ b1|.

If E is an effect algebra and ∼ is a weak congruence on E, the quotient E/ ∼
need not to be a partial abelian monoid, since the associativity condition may

fail (c.f. [11]). This fact motivates the study of sufficient conditions for a weak

congruence to preserve associtivity. The following condition was considered in

[4].

(C5) If a ∼ b⊕ c, then there are b1, c1 such that b1 ∼ b, c1 ∼ c, b1 ⊕ c1 exists

and a = b1 ⊕ c1.

Lemma 3.1.1 Let P be a partial monoid and let ∼ be a weak congruence

satisfying (C5). Then, the quotient P/ ∼ is again a partial abelian monoid.
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Proof.

|a| ⊕ |b| is well defined by (C2).

Associativity:

Suppose |a| ⊕ |b| and (|a| ⊕ |b|)⊕ |c| are defined.

|a| ⊕ |b| is defined ⇒ ∃a1, b1 such that a1 ∼ a, b1 ∼ b and a1 ⊕ b1 is defined.

Then |a| ⊕ |b| := |a1 ⊕ b1|.
(|a| ⊕ |b|)⊕ |c| = (|a1 ⊕ b1|)⊕ |c| is defined ⇒ ∃d, c1 such that

c1 ∼ c, a1 ⊕ b1 ∼ d and d⊕ c1 is defined.

Then (|a| ⊕ |b|)⊕ |c| = |d⊕ c1|.
By (C5) ∃a2 ∼ a1, b2 ∼ b1 such that a2 ⊕ b2 is defined and d = a2 ⊕ b2.

Thus d⊕c1 = (a2⊕b2)⊕c1. Since P is a partial monoid, b2⊕c1 and a2⊕(b2⊕c1)

are defined, and d⊕ c1 = a2 ⊕ (b2 ⊕ c1).

Thus (|a| ⊕ |b|)⊕ |c| = |d⊕ c1| = |a2 ⊕ (b2 ⊕ c1)| = |a2| ⊕ (|b2| ⊕ |c1|) =

= |a| ⊕ (|b| ⊕ |c|). 2

Let E be an effect algebra, the (C1) (C2) (C5) properties of ∼ does not

guarantee that the ′ operation is preserved by ∼. The operation ′ is preserved

by ∼ if condition

(C6) If a ∼ b then a′ ∼ b′ is satisfied.

A relation on an effect algrbra satisfying (C1) (C2) (C5) (C6) is called an

effect algebra congruence.

Lemma 3.1.2 Let (E,⊕, 0, 1) be an effect algebra and let ∼ be an effect

algebra congruence, then

(i) (E/ ∼,⊕, |0| , |1|) is an effect algebra.

(ii) The mapping a→ |a| is a full morphism of effect algebras.

Proof.

(i)

(E1) If |a| ⊕ |b| is defined, then ∃a1 ∼ a, b1 ∼ b such that a1 ⊕ b1 exist. Since

E is a effect algebra b1 ⊕ a1 is defined and a1 ⊕ b1 = b1 ⊕ a1. Thus |b| ⊕ |a| is

defined and |a| ⊕ |b| = |a1 ⊕ b1| = |b1 ⊕ a1| = |b| ⊕ |a|.
(E2) Lemma 3.1.1
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(E3) We will show that |a|′ = |a′|. Let a ∈ E. Since a ⊕ a′ is defined, then

|a| ⊕ |a′| is defined and |a| ⊕ |a′| = |a⊕ a′| = |1|.
Unicity:

If |a| ⊕ |b| = |1|, then ∃a1 ∼ a, b1 ∼ b such that a1 ⊕ b1 is defined and

|1| = |a| ⊕ |b| = |a1 ⊕ b1|, thus a1 ⊕ b1 ∼ 1. By (C5) ∃a2 ∼ a1, b2 ∼ b1

such that a2⊕ b2 is defined and a2⊕ b2 = 1, then (since E is an effect algebra)

b2 = a′2. Now a2 ∼ a1 ∼ a ⇒ a2 ∼ a ⇒ a′2 ∼ a′ (by (C6)). Therefore

a′ ∼ a′2 = b2 ∼ b1 ∼ b⇒ b ∼ a′ ⇒ |b| = |a′|.
(E4) If |a| ⊕ |1| is defined, then ∃a1 ∼ a, b ∼ 1 such that a1 ⊕ b is defined.

By Lemma 1.4.3 (iv) b′ = (b⊕ a1)′ ⊕ a1.

On the other hand by (C6) b ∼ 1⇒ b′ ∼ 1′ = 0. Thus 0 ∼ (b⊕ a1)′ ⊕ a1.

By (C5) ∃u ∼ (b⊕ a1)′, v ∼ a1 such that u⊕ v is defined and 0 = u⊕ v.

By Lemma 1.4.3 (vi) v = 0. Therefore 0 = v ∼ a1 ∼ a⇒ 0 ∼ a⇒ |a| = |0|.
(ii)

It follows from definition of ⊕ on E/ ∼ . 2

Lemma 3.1.3 Let E be an effect algrbra and let ∼ be an effect algebra

congruence. For all x, y ∈ E, the following are equivalent.

(a) |x| ≤ |y|.

(b) There is x1 ∼ x such that x1 ≤ y.

(c) There is y1 ∼ y such that x ≤ y1.

Proof.

(b⇒ a)

x1 ≤ y ⇒ ∃a ∈ E such that x1 ⊕ a is defined and

y = x1 ⊕ a⇒ |y| = |x1| ⊕ |a| ⇒ |x| = |x1| ≤ |y|.
(c⇒ a)

Similar to b⇒ a.

(a⇒ b)

|x| ≤ |y| ⇒ ∃u ∈ E such that |x| ⊕ |u| is defined, and |x| ⊕ |u| = |y|.
Then ∃x0, u0 ∈ E such that x0 ∼ x, u0 ∼ u, x0 ⊕ u0 exists and x0 ⊕ u0 ∼ y.

By the (C5) property, there are x1, u1 such that x1 ∼ x0, u1 ∼ u0, x1 ⊕ u1

exists, and x1 ⊕ u1 = y. This proves a⇒ b.
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(a⇒ c)

By Lemma 3.1.2, Lemma 1.4.5 (i) and (C6) property, |y′| ≤ |x′|. As a ⇒ b

there is z ∼ y′ such that z ≤ x′ and this is equivalent with x ≤ z′. By the (C6)

property, z ∼ y′ iff z′ ∼ y and we can put y1 = z′. 2

3.2 MV-pairs [12]

Let B be a Boolean algebra. Let G be a subgroup of Aut(B). For a, b ∈ B we

write a ∼G b (or a ∼ b) iff there exists f ∈ G such that f(a) = b. Obviously

∼G is a equivalence relation. We write |a|G (or |a|) for the equivalence class of

an element a of B.

Also we denote B∼ = B∼G
= {|a|G : a ∈ B}.

For all a, b ∈ B we write:

L(a, b) = {a ∧ f(b) : f ∈ G}
L+(a, b) = {g(a) ∧ f(b) : f, g ∈ G}
max(L(a, b)) = {m ∈ L(a, b) : ∀x ∈ L(a, b) con x ≥ m⇒ x = m}

(the set of all maximal elements of L(a, b))

max(L+(a, b)) = {m ∈ L+(a, b) : ∀x ∈ L+(a, b) con x ≥ m⇒ x = m}
(the set of all maximal elements of L+(a, b))

Definition 3.2.1 Let B be a Boolean algebra and let G be a subgroup of

Aut(B). We say that (B,G) is an MV − pair iff the following two conditions

are satisfied:

(MVP1) For all a, b ∈ B, f ∈ G such that a ≤ b and f(a) ≤ b, there is h ∈ G
such that h(a) = f(a) and h(b) = b.

(MVP2) For all a, b ∈ B and x ∈ L(a, b) there exist m ∈ max(L(a, b)) with

m ≥ x.

Example 3.2.2 For every finite Boolean algebra B, (B; Aut(B)) is an

MV − pair.

Example 3.2.3 Let B be a Boolean algebra with three atoms a1, a2, a3. The

mapping f given by
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x 0 a1 a2 a3 ac1 ac2 ac3 1

f(x) 0 a2 a3 a1 ac2 ac3 ac1 1

is an automorphism ofB andG = {id, f, f 2} is a subgroup ofAut(B). However,

(B,G) is not an MV − pair. Indeed, we have a1 ≤ ac3 and f(a1) = a2 ≤ ac3,

but there is no h ∈ G such that h(a1) = f(a1) and h(ac3) = ac3.

Example 3.2.4 Let 2Z be the Boolean algebra of all subsets of Z. Then

(2Z, Aut(2Z)) is not an MV − pair. Indeed, let f ∈ Aut(2Z) be the automor-

phism of 2Z associated with the permutation f(n) = n + 1. Let A = B = N.

We see that f(A) = A \ {0}, A ⊆ B and f(A) ⊆ B. However, there is no

h ∈ Aut(2Z) such that h(A) = f(A) and h(B) = B, simply because A = B

implies that h(A) = h(B), but f(A) 6= B.

Lemma 3.2.5 Let B be a Boolean algebra, let G be a subgroup of Aut(B).

Then the following conditions are eqivalent:

(i) MV P2

(ii) For all a, b ∈ B there exist m ∈ max(L(a, b)) with m ≥ a ∧ b.

Proof.

(i)⇒ (ii) is clear.

(ii)⇒ (i) Let a, b ∈ B and f ∈ G. If g ∈ G we have a ∧ g(b) =

= a ∧ g(f−1(f(b))) = (g ◦ f−1)(f(b)). Therefore L(a, b) ⊆ L(a, f(b)). If g ∈ G
we have a ∧ g(f(b)) = a ∧ (g ◦ f)(b). Therefore L(a, f(b)) ⊆ L(a, b). Thus

L(a, f(b)) = L(a, b) and max(L(a, f(b))) = max(L(a, b)).

Now, let x ∈ L(a, b), then x = a ∧ f(b) for some f ∈ G. From (ii) there exist

m ∈ max(L(a, f(b))) with m ≥ a ∧ f(b).

Thus m ≥ x = a ∧ f(b) with m ∈ max(L(a, f(b))) = max(L(a, b)). 2

Lemma 3.2.6 Let B be a Boolean algebra, let G be a subgroup of Aut(B).

Then the following condition are equivalent.

(a) (MVP1).
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(b) For all a, b ∈ B, f ∈ G such that a ≤ b and a ≤ f(b), there is h ∈ G such

that h(b) = f(b) and h(a) = a.

(c) For all a, b ∈ B, f ∈ G such that a ∧ b = 0 and a ∧ f(b) = 0, there is

h ∈ G such that h(b) = f(b) and h(a) = a.

Proof.

(a) ⇒ (b): Replace a with bc and b with ac and apply the fact that f is an

automorphism.

(b)⇒ (c): Replace b with bc.

(c)⇒ (a): Replace b with a and a with bc. 2

3.3 From MV-effect algebras to MV-pairs [12]

Notation: In what follows, we will deal with an MV-effect algebra M and

a Boolean algebra B(M) such that M is a 0,1-sublattice of B(M). In this

particular situation, a small notational problem arises: both M and B(M) are

MV-effect algebras, but the ⊕,	 and ′ operations on B(M) and M differ.

To avoid confusion, we denote the partial operation of dijoint join (the ⊕
of Boolean algebras) on a Boolean algebra by ∨̇. The partial difference of

comparable elements and the complement in a Boolean algebra are denoted

by \ and c respectively.

The next Theorem is prved in [12] and in Guillermo Herrmann’s Licentiate

Dissertation.

Theorem 3.3.1 [12] Let (B,G) be an MV-pair, then (B∼,⊕, 0, 1) es una MV-

effect algebra, where 0 = |0| = {0}, 1 = |1| = {1} and |a|⊕|b| is defined iff there

are a1 ∼ a , b1 ∼ b such that a1 ∧ b1 = 0 and in this case |a| ⊕ |b| := |a1∨̇b1|.
Furthermore |a|′ = |¬a| and |a|∧|b| = |a ∧ f(b)| with a∧f(b) ∈ max(L+(a, b)).

Remark 3.3.2 |a| ∧ |b| = max(L+(a, b)) where the = is a set equality.

The last Theorem prove that for every MV-pair (B,G) there is an MV-effect

algebra A(B,G) arising from it. The next Theorem prove that for every MV-

effect algebra M there is a MV-pair (B,G) such that A(B,G) ∼= M . Let M
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be an MV-effect algebra. Let S be a subset of B(M) (the Boolean algebra R-

generated by M). We say that a mapping f : S → B(M) is φM − preserving
iff for all x ∈ S, φM(x) = φM(f(x)) or, in other words, φM restricted to S

equals φM ◦ f . Let G(M) be the set of all φM -preserving automorphisms of

B(M). It is easy to see that G(M) is a subgroup of Aut(B).

Theorem 3.3.3 Let M be an MV-effect algebra. Let G(M) be the set of all

φM -preserving automorphisms of B(M). Then (B(M), G(M)) is an MV-pair

and A(B(M), G(M)) is isomorphic to M .

As in Section 2, we have divided the proof into a sequence of lemmas. In this

section, M is an MV-effect algebra and G(M) is the subgroup of Aut(B(M))

described in Theorem 3.3.3.

Lemma 3.3.4 Let c, d ∈M , d ≤ c. There is a φM -preserving isomorphism

ψ : B([0, c	 d]M)→ [0, c \ d]B(M) .

Proof. Consider the mapping ψ0 : [0, c	 d]M → [0, c \ d]B(M), given by

ψ0(x) = (x⊕ d) \ d. Note that d ≤ c′⊕ d ≤ x′ (since that x ≤ c	 d = (c′⊕ d)′)

and thus x⊕ d is defined. We see that ψ0(0) = 0 and ψ0(c	 d) = c \ d.

ψ0 preserves joins and meets:

By Proposition 1.5.4 (ii) and 1.2.7 (i) ψ0(x ∨ y) = ((x ∨ y)⊕ d) \ d =

= ((x⊕ d) ∨ (y ⊕ d)) \ d = ((x⊕ d) \ d) ∨ ((y ⊕ d) \ d) = ψ0(x) ∨ ψ0(y).

By Proposition 1.5.4 (i) and 1.2.7 (ii) ψ0(x ∧ y) = ((x ∧ y)⊕ d) \ d =

= ((x⊕ d) ∧ (y ⊕ d)) \ d = ((x⊕ d) \ d) ∧ ((y ⊕ d) \ d) = ψ0(x) ∧ ψ0(y).

From Lemma 1.2.7 (iii) and Lemma 1.4.3 (v) ψ0 is injective, hence ψ0 is a

{0, 1}-lattice embedding of [0, c	 d]M into [0, c \ d]B(M).

We shall prove that the range of ψ0 R-generates the Boolean algebra

[0, c \ d]B(M). ψ0 then uniquely extends to an isomorphism (by Corollary 1.3.18).

ψ : B([0, c	 d]M)→ [0, c \ d]B(M).

Let x ∈ [0, c \ d]B(M). Let {xi}2n
i=1 be an M-chain representation of x. For all

1 ≤ i ≤ n, x2i\x2i−1 ≤ c\d (since, by Lemma 1.2.7 (iv), x2i\x2i−1 ≤ x2i ≤ c\d).

Then, by Lemma 1.2.7 (v)

x2i \ x2i−1 = ((x2i ∨ d) ∧ c) \ ((x2i−1 ∨ d) ∧ c).
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For all 1 ≤ j ≤ 2n, (xj∨d)∧c ∈ [d, c]. By Lemma 1.3.3 (v) x = x1 + . . .+x2n =

= (x2n\x2n−1)∨̇ . . . ∨̇(x2\x1) = (y2n\y2n−1)∨̇ . . . ∨̇(y2\y1) = y1+. . .+y2n (where

yj = (xj ∨ d)∧ c). Therefore x has a M-chain representation {yj}2n
j=1 ⊆ [d, c]M .

Since for all 1 ≤ i ≤ n, d ≤ y2i−1 ≤ y2i ≤ c then, by Lemma 1.2.7 (vii),

y2i \ y2i−1 = (y2i \ d) \ (y2i−1 \ d)

and {yi \ d}2n
i=1 is a chain representation of x. It remain to observe that, for all

1 ≤ i ≤ 2n,

yi \ d = ((yi 	 d)⊕ d) \ d = ψ0(yi 	 d)

and that yi 	 d ∈ [0, c	 d]M (since d ≤ yi ≤ c and Lemma 1.4.7 (iii)). Thus,

every element of [0, c \ d]B(M) has a ψ0([0, c	 d]M)-chain representation.

Let us prove that ψ is a φM -preserving mapping. Let z ∈ B([0, c	 d]M), let

{zi}2n
i=1 be a [0, c	 d]M -chain representation of z. Then, by Lemma 1.3.3 (v)

and since ψ is a homomorphism of lattices and φM is a homomorphism of effect

algebras

φM(ψ(z)) = φM(ψ(∨̇ni=1(z2i \ z2i−1))) =

= φM(∨̇ni=1ψ(z2i \ z2i−1)) =
⊕n

i=1 φM(ψ(z2i \ z2i−1))

and for all 1 ≤ i ≤ n (by Lemma 1.2.7 (vii), Lemma 1.4.9 (ii), Lemma 1.4.7

(vii), and since ∀x ∈M φM(x) = x)

φM(ψ(z2i \ z2i−1)) = φM(ψ(z2i) \ (ψz2i−1)) =

= φM(((z2i ⊕ d) \ d) \ ((z2i−1 ⊕ d) \ d)) =

= φM((z2i ⊕ d) \ (z2i−1 ⊕ d)) = φM(z2i ⊕ d)	 φM(z2i−1 ⊕ d) =

= (z2i ⊕ d)	 (z2i−1 ⊕ d) = z2i 	 z2i−1 = φM(z2i \ z2i−1),

so we obtain

φM(ψ(z)) =
⊕n

i=1 φM(ψ(z2i \ z2i−1)) =
⊕n

i=1 φM(z2i \ z2i−1) = φM(z).

2
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Corollary 3.3.5 Let c1, d1, c2, d2 ∈ M be such that c1 ≥ d1, c2 ≥ d2 and

c1 	 d1 = c2 	 d2. There is a φM -preserving isomorphism

ψ : [0, c1 \ d1]B(M) → [0, c2 \ d2]B(M).

Proof.

By Lemma 3.3.4 there are φM -preserving isomorphisms

ψ1 : B([0, c1 	 d1]M)→ [0, c1 \ d1]B(M) and

ψ2 : B([0, c2 	 d2]M)→ [0, c2 \ d2]B(M).

Since c1 	 d1 = c2 	 d2 we can take

ψ = ψ2 ◦ ψ−1
1 : [0, c1 \ d1]B(M) → [0, c2 \ d2]B(M), and ψ is a φM -preserving

isomorphism (since G(M) is a subgroup of Aut(M)). 2

Lemma 3.3.6 For every a ∈ B(M), there is a φM -preserving isomorphism of

Boolean algebras ψ : B([0, φM(a)]M)→ [0, a]B(M).

Proof. Let {ai}2n
i=1 be an M-chain representation of a. Then {a2i \ a2i−1}2n

i=1 is

a decomposition of unit in the Boolean algebra [0, a]B(M) (see Lemma 1.3.3 (v)

and Lemma 1.2.7 (viii)) and φM(a) =
⊕n

i=1(a2i 	 a2i−1). For j ∈ {0, . . . , n},
write bj =

⊕j
i=1(a2i 	 a2i−1). Then {bj}nj=0 is a finite chain in [0, φM(a)]M

with b0 = 0 and bn = φM(a). Thus {bj \ bj−1}ni=1 is a decomposition of unit

in the Boolean algebra B([0, φM(a)]M). For every x ∈ B([0, φM(a)]M), x =∨̇n

j=1x ∧ (bj \ bj−1). Since, for all j, bj 	 bj−1 = a2j 	 a2j−1, Corollary 3.3.5

implies that, for all 1 ≤ j ≤ n, there is a φM -preserving isomorphism

ψj : [0, bj \ bj−1]B(M) → [0, a2j \ a2j−1]B(M).

Define ψ : B([0, φM(a)]M)→ [0, a]B(M), ψ(x) =
∨̇n

j=1ψj(x ∧ (bj \ bj−1)).

ψ(x) is a homomorphism of Boolean algebras:

ψ(0) =
∨̇n

j=1ψj(0 ∧ (bj \ bj−1)) =
∨̇n

j=1ψj(0) =
∨̇n

j=10 = 0.

ψ(φM(a)) =
∨̇n

j=1ψj(φM(a) ∧ (bj \ bj−1)) =
∨̇n

j=1ψj(bj \ bj−1) =

=
∨̇n

j=1(a2j \ a2j−1) = an + . . .+ a1 = a.

ψ(x ∨ y) =
∨̇n

j=1ψj((x ∨ y) ∧ (bj \ bj−1)) =

=
∨̇n

j=1ψj((x ∧ (bj \ bj−1)) ∨ (y ∧ (bj \ bj−1))) =

=
∨̇n

j=1ψj(x ∧ (bj \ bj−1)) ∨ ψj(y ∧ (bj \ bj−1)) =

= (
∨̇n

j=1ψj(x ∧ (bj \ bj−1))) ∨ (
∨̇n

j=1ψj(y ∧ (bj \ bj−1))) = ψ(x) ∨ ψ(y).

ψ(x ∧ y) =
∨̇n

j=1ψj((x ∧ y) ∧ (bj \ bj−1)) =
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=
∨̇n

j=1ψj((x ∧ (bj \ bj−1)) ∧ (y ∧ (bj \ bj−1))) =

=
∨̇n

j=1(ψj(x ∧ (bj \ bj−1)) ∧ ψj(y ∧ (bj \ bj−1))) =

= (
∨̇n

j=1ψj((x ∧ (bj \ bj−1)))) ∧ (
∨̇n

j=1ψj((y ∧ (bj \ bj−1)))) = ψ(x) ∧ ψ(y) (by

Lemma 1.2.7 (ix)).

Thus ψ(x) is a homomorphism of Boolean algebras (see Remark page 21).

ψ(x) is injective:

ψ(x) = ψ(y) ⇒
∨̇n

j=1ψj(x ∧ (bj \ bj−1)) =
∨̇n

j=1ψj(y ∧ (bj \ bj−1)). Then, by

Lemma 1.2.7 (ix), ψj(x ∧ (bj \ bj−1)) = ψj(y ∧ (bj \ bj−1)) and thus , since

ψj an isomorphism, x ∧ (bj \ bj−1) = y ∧ (bj \ bj−1) 1 ≤ j ≤ n. Therefore

x =
∨̇n

j=1x ∧ (bj \ bj−1) =
∨̇n

j=1y ∧ (bj \ bj−1) = y.

ψ(x) is surjective:

Let y ∈ [0, a]B(M), then y =
∨̇n

j=1y ∧ (a2j \ a2j−1). Since for all 1 ≤ j ≤ n

y ∧ (a2j \ a2j−1) ≤ a2j \ a2j−1 and ψj : [0, bj \ bj−1]B(M) → [0, a2j \ a2j−1]B(M)

an isomorphism, there exist xj ∈ [0, bj \ bj−1]B(M) such that ψj(xj) =

= y ∧ (a2j \ a2j−1). Let x =
∨̇n

j=1xj. Then x ∈ B([0, φM(a)]M) and

ψ(x) =
∨̇n

j=1ψj(x ∧ (bj \ bj−1)) =
∨̇n

j=1ψj((
∨̇n

k=1xk) ∧ (bj \ bj−1)) =

=
∨̇n

j=1ψj(xj ∧ (bj \ bj−1)) =
∨̇n

j=1ψj(xj) =
∨̇n

j=1y ∧ (a2j \ a2j−1) = y.

ψ is φM -preserving:

Let x ∈ B([0, φM(a)]M), then φM(ψ(x)) = φM(
∨̇n

j=1ψj(x ∧ (bj \ bj−1))) =

=
⊕n

j=1(φM(ψj(x ∧ (bj \ bj−1)))) = (since ψj is φM -preserving)

=
⊕n

j=1(φM(x ∧ (bj \ bj−1))) = φM(
∨̇n

j=1x ∧ (bj \ bj−1)) = φM(x). 2

Corollary 3.3.7 Let a, b ∈ B(M) be such that φM(a) = φM(b). Then there

is a φM -preserving isomorphism ψ : [0, a]B(M) → [0, b]B(M).

Proof. Use Lemma 3.3.6 twice. 2

Lemma 3.3.8 Let u, v ∈ B(M), u∧v = 0 and φM(u) = φM(v). Then there is

a φM -preserving automorphism f of B(M) such that f(u) = v, f(v) = u and

for all x ≤ (u∨̇v)c, f(x) = x.

Proof. By Corollary 3.3.7, there is an isomorphism ψ : [0, u]B(M) → [0, v]B(M).

Let f : B(M)→ B(M) be a mapping given by

f(x) = ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇(x ∧ (u∨̇v)c).

58



It is easy to check that, for all x ∈ B(M), f(f(x)) = x. Thus f is a bijection.

Moreover, we see that f(0) = 0, f(1) = 1 and for all x, y ∈ B(M)

f(x ∨ y) = ψ−1((x ∨ y) ∧ v)∨̇ψ((x ∨ y) ∧ u)∨̇((x ∨ y) ∧ (u∨̇v)c) =

= ψ−1((x ∧ v) ∨ (y ∧ v))∨̇ψ((x ∧ u) ∨ (y ∧ u))∨̇((x ∧ (u∨̇v)c) ∨ (y ∧ (u∨̇v)c)) =

= (ψ−1(x∧ v)∨̇ψ(x∧u)∨̇(x∧ (u∨̇v)c))∨ (ψ−1(y∧ v)∨̇ψ(y∧u)∨̇(y∧ (u∨̇v)c)) =

= f(x) ∨ f(y).

and

f(xc) = ψ−1(xc ∧ v)∨̇ψ(xc ∧ u)∨̇(xc ∧ (u∨̇v)c) =

= ψ−1(v \ (x ∧ v))∨̇ψ(u \ (x ∧ u))∨̇(xc ∧ (u∨̇v)c) =

= (u \ ψ−1(x ∧ v))∨̇(v \ ψ(x ∧ u))∨̇(xc ∧ (u∨̇v)c) =

= (ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇(x ∧ (u∨̇v)c))c = (f(x))c.

The latter equality follows by elementary Boolean calculus.

Since f preserves 0, 1,∨ and c, it is a homomorphism of Boolean algebras. 2

Lemma 3.3.9 Let u, v ∈ B(M), φM(u) = φM(v). Then there is a

φM -preserving automorphism f of B(M) such that f(u) = v, f(v) = u and

for all x ≤ (u∨̇v)c, f(x) = x.

Proof. Put u0 = u \ u ∧ v and v0 = u \ u ∧ v then

φM(u0)⊕ φM(u ∧ v) = φM(u) = φM(v) = φM(v0)⊕ φM(u ∧ v)and thus

φM(u0) = φM(v0). Since u0 ∧ v0 = 0, by Lemma 3.3.8, there is f ∈ G(M) such

that f(u0) = v0, f(v0) = u0 and for all x ∈ B(M) such that x ≤ (u0∨̇v0)c we

have f(x) = x. Since u ∧ v ≤ (u0∨̇v0)c, f(u ∧ v) = u ∧ v. Therefore,

f(u) = f(u0∨̇u ∧ v) = f(u0)∨̇(u ∧ v) = v0∨̇(u ∧ v) = v

and similarly, f(v) = u.

Let x ≤ (u ∨ v)c. Since x ≤ (u0 ∨ v0)c, f(x) = x. 2

Corollary 3.3.10 For all u, v ∈ B(M), u ∼G(M) v iff φM(u) = φM(v).

Proof. One implication follows by the definition of G(M), the other one follows

by Lemma 3.3.9. 2

Corollary 3.3.11 For all u ∈ B(M), u ∼G(M) φM(u).
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Proof. Put v = φM(u) in Corollary 3.3.10. 2

Proof of Theorem 3.3.3.

(MV P1): Let a, b ∈ B(M), f ∈ G(M) be such that a ≤ b, a ≤ f(b). Let

u = b \ (b ∧ f(b)), v = f(b) \ (b ∧ f(b)). We have

φM(u) = φM(b \ (b ∧ f(b))) = φM(b)	 φM(b ∧ f(b)) =

= φM(f(b))	 φM(b ∧ f(b)) = φM(f(b) \ b ∧ f(b)) = φM(v).

By Lemma 3.3.8, there is a φM -preserving automorphism h of B(M) with

h(u) = v. Moreover, since a ∧ u = a ∧ v = 0 we have h(a) = a (a ∧ u = 0 and

a ∧ v = 0 imply a ∧ (u ∨ v) = 0 and then, by Lemma 1.3.3 (i), a ≤ (u ∨ v)c).

Similarly, since (b∧f(b))∧u = (b∧f(b))∧v = 0 we have h(b∧f(b)) = b∧f(b).

This implies that

h(b) = h((b ∧ f(b))∨̇u) = h((b ∧ f(b)))∨̇h(u) = (b ∧ f(b))∨̇u = f(b).

Thus, there is h ∈ G(M) such that h(a) = a and h(b) = f(b). By Lemma

3.2.6, this implies (MV P1).

(MV P2): Let a ∧ f(b) be an element of L(a, b). By Corollary 3.3.11, there is

f1 ∈ G(M) such that f1(a) = φM(a). Since f1 is φM−preserving,

φM(f1(a∧ f(b))) = φM(a∧ f(b)). By Corollary 3.3.11, there is g ∈ G(M) such

that g(f1(a ∧ f(b))) = φM(a ∧ f(b)).

Since

f1(a ∧ f(b)) ≤ f1(a) = φM(a)

and

g(f1(a ∧ f(b))) = φM(a ∧ f(b)) ≤ φM(a),

(MV P1) implies that there is h ∈ G(M) such that h(f1(a ∧ f(b))) =

= φM(a ∧ f(b)) and h(φM(a)) = φM(a).

Put y = a ∧ f−1
1 (h−1(φM(f(b)))). We shall prove that y ≥ a ∧ f(b) and that y

is a maximal element of L(a, b).

Indeed, we have
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h(f1(a)) = h(φM(a)) = φM(a),

therefore

h(f1(y)) = h(f1(a ∧ f−1
1 (h−1(φM(f(b)))))) =

= h(f1(a)) ∧ h(f1(f−1
1 (h−1(φM(f(b)))))) =

= φM(a) ∧ φM(f(b)) = φM(a) ∧ φM(b)

and

h(f1(a ∧ f(b))) = φM(a ∧ f(b)) ≤ φM(a) ∧ φM(f(b)) = h(f1(y)).

Since both h and f1 are automorphisms of B(M), the latter inequality cleary

implies that a ∧ f(b) ≤ y. Moreover, since h and f1 are φM−preserving and

φM restricted to M is the identity mapping, we obtain

φM(y) = φM(h(f1(y))) = φM(φM(a) ∧ φM(b)) = φM(a) ∧ φM(b).

Let us prove that y is maximal in L(a, b). Suppose that z ∈ L(a, b), z ≥ y.

Since z = a ∧ f2(b) for some f2 ∈ G(M), we see that

φM(z) = φM(a ∧ f2(b)) ≤ φM(a) ∧ φM(f2(b)) = φM(a) ∧ φM(b) = φM(y).

This implies that φM(z) = φM(y). As φM(z \ y) = φM(z)	φM(y) = 0 and φM

is faithful (i.e. φM(x) = 0⇒ x = 0), z \ y = 0 and thus (since y ≤ z) z = y.

Let us prove that A(B(M), G(M)) is isomorphic to M .

The isomorphism ψ : A(B(M), G(M))→M is given by

ψ(|a|G(M)) = φM(a).

By Corollary 3.3.10, ψ is well-defined and injective. Since, for all a ∈ M ,

ψ(|a|G(M)) = a, ψ is surjecective. Obviously, ψ(|1|G(M)) = 1. Let |a|G(M),

|b|G(M) ∈ A(B(M), G(M)) be such that |a|G(M) ⊥ |b|G(M). We may always

select the elements a, b ∈ B(M) so that a∨̇b exists, that means, a ∧ b = 0.

Since φM is a morphism of effect algebras, φM(a)⊕ φM(b) exists in M and we

may compute
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ψ(|a|G(M) ⊕ |b|G(M)) = ψ(|a∨̇b|G(M)) = φM(a∨̇b)

= φM(a)⊕ φM(b) = ψ(|a|G(M))⊕ ψ(|b|G(M)),

hence ψ is a morphism of effect algebras. It remains to prove that ψ is a full

morphism. Suppose that ψ(|a|G(M)) ⊕ ψ(|b|G(M)) exists in M . Consider the

elements φM(a) and (φM(a)⊕ φM(b)) \ φM(a). We see that

φM(a) ∧ ((φM(a)⊕ φM(b)) \ φM(a)) = 0,

that means, φM(a)∨̇((φM(a) ⊕ φM(b)) \ φM(a)) exists in B(M). This implies

that φM(a)⊕ ((φM(a)⊕ φM(b)) \ φM(a)) exists in A(B(M), G(M)). Finally,

ψ(|φM(a)|G(M)) = φM(φM(a)) = φM(a) = ψ(|a|G(M))

and

ψ((φM(a)⊕ φM(b)) \ φM(a)) = φM((φM(a)⊕ φM(b)) \ φM(a)) =

= φM((φM(a)⊕ φM(b)))	 φM(φM(a)) = (φM(a)⊕ φM(b))	 φM(a) =

φM(b) = ψ(|b|G(M)). 2

Example 3.3.12 Let M be the MV-effect algebra [0, 1] ( or M as in example

1.5.2). Then (see examples 1.5.2, 1.3.14 y 2.0.13) if a ∈ B(M),

a = (x1, x2] ∪̇ . . . . . . ∪̇ (x2n−1, x2n],

and

φM(a) = (x2 − x1) + . . . . . .+ (x2n − x2n−1) = the “length” of x.

Therefore |a| = |b| ⇔ the “length” of a = the “length” of b,

and ψ : B(M)/G(M) → [0, 1] , ψ(|a|) = the “length” of a,

is an isomorphism of effect-algebras.

Also

|a|′ = |ac| = {x ∈ B(M) : the “length” of x = 1− ( the “length” of a)} , and

|a| ⊕ |b| is defined ⇔ the “length” of a ≤ 1− (the “length” of b)⇔
⇔ ∃a1 ∼ a y b1 ∼ b such that a1 ∩ b1 = ∅,
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Figure 2:

and, in this case, |a| ⊕ |b| = |a1∪̇b1| ={x ∈ B(M) : the “length” of x =

(the “length” of a) + (the “length” of b) }

For example,

Let a = (a0, a1] ∪̇ (a2, a3] ∪̇ (a4, 1] and f : [0, 1] → [0, 1] as in Figure 2 to the

left, and let f̃ : B(M)→ B(M), f̃(y) = f(y) (the “image of y” by f).

Then , f̃ ∈ Aut(M), f̃ is φM -preserving and

f̃(a) = (0, the “length” of a] (Figure 2 to the right).

4 Correspondence between MV-algebras and

MV-effect algebras

4.1 MV-algebras [2]

An MV-algebra is an algebra 〈A,⊕,¬, 0〉 with a binary operation ⊕, a unary

operation ¬ and a constan 0 satisfying the following equations:

MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z
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MV2) x⊕ y = y ⊕ x

MV3) x⊕ 0 = x

MV4) ¬¬x = x

MV5) x⊕ ¬0 = ¬0

MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

Following tradition, we denote an MV-algebra 〈A,⊕,¬, 0〉 by its universe A.

On each MV-algebra A we define the constant 1 and the operations � and 	
as follows:

1 := ¬0

x� y := ¬(¬x⊕ ¬y)

x	 y := x� ¬y ( = ¬(¬x⊕ y) )

The following identities are inmediate consequences of MV4):

MV7) ¬1 = 0

MV8) x⊕ y = ¬(¬x� ¬y)

Axioms MV5) and MV6) can now be written as:

MV5’) x⊕ 1 = 1, and

MV6’) (x	 y)⊕ y = (y 	 x)⊕ x.

Setting y = ¬0 in MV6) we obtain:

MV9) x⊕ ¬x = 1.

Lemma 4.1.1 Let A be an MV-algebra and x, y ∈ A. Then the following

conditions are equivalent:

(i) ¬x⊕ y = 1;
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(ii) x� ¬y = 0;

(iii) y = x⊕ (x	 y);

(iv) there is an element z ∈ A such that x⊕ z = y.

Proof. (i)⇒ (ii) By MV4) and MV7). (ii)⇒ (iii) Inmediate from MV3) and

MV6’). (iii)⇒ (iv) Take z = y 	 x. (iv)⇒ (i) By MV9), ¬x⊕ x⊕ z = 1. 2

Let A be an MV-algebra. For any two element x and y of A let us agree to

write

x ≤ y

iff x and y satisfy the above equivalent conditions (i)−(iv). It follows that ≤ is

a partial order, called the natural order of A. Indeed, reflexivity is equivalent

to MV9), antisymetry follows from conditions (ii) and (iii), and transitivity

follows from condition (iv).

Lemma 4.1.2 Let A be an MV-algebra. For each a ∈ A, ¬a is the unique

solution x of the simultaneous equations:{
a⊕ x = 1

a� x = 0

Proof. By Lemma 4.1.1, these two equations amount to writing

¬a ≤ x ≤ ¬a. 2

Lemma 4.1.3 In every MV-algebra A the natural order ≤ has the following

properties:

(i) x ≤ y if and only if ¬y ≤ ¬x;

(ii) If x ≤ y then for each z ∈ A, x⊕ z ≤ y ⊕ z and x� z ≤ y � z;

(iii) x� y ≤ z iff x ≤ ¬y ⊕ z;

(iv) y ≤ x⊕ y;

65



(v) x� y ≤ y.

(vi) 0 ≤ x ∀x ∈ A

(vii) x ≤ 1 ∀x ∈ A

Proof. (i) This follows from Lemma 4.1.1 (i), since ¬x⊕ y = ¬¬y ⊕ ¬x. (ii)

The monotonicity of ⊕ is an easy consequence of Lemma 4.1.1 (iv); using (i),

one inmediately proves the monotonicity of �. (iii) It is sufficient to note that

x� y ≤ z is equivalent to 1 = ¬(x� y)⊕ z = ¬x⊕¬y⊕ z. (iv) It is inmediate

from definition of ≤, Lemma 4.1.1 (iv). (v) By (iv) ¬y ≤ ¬x ⊕ ¬y, then by

(i) ¬(¬x ⊕ ¬y) ≤ y and thus x � y ≤ y. (vi) It is inmediate from definition

of ≤, Lemma 4.1.1 (iv) and MV3). (vii) It is inmediate from definition of ≤,

Lemma 4.1.1 (iv) and MV5’) 2

Proposition 4.1.4 On each MV-algebra A the natural order determines a

bounded lattice structure. Specifically, the join x∨ y and the meet x∧ y of the

elements x and y are given by

x ∨ y = (x� ¬y)⊕ y = (x	 y)⊕ y = ¬(¬x⊕ y)⊕ y, (3)

x ∧ y = ¬(¬x ∨ ¬y) = x� (¬x⊕ y). (4)

Proof. To prove 3, by MV6’), MV9) and Lemma 4.1.3 (ii), x ≤ (x 	 y) ⊕ y
and y ≤ (x 	 y) ⊕ y. Suppose x ≤ z and y ≤ z. By (i) and (iii) in Lemma

4.1.1, ¬x⊕ z = 1 and z = (z 	 y)⊕ y. Then by MV6’) we can write

¬((x	 y)⊕ y)⊕ z = (¬(x	 y)	 y)⊕ y ⊕ (z 	 y) =

= (y 	 ¬(x	 y))⊕ ¬(x	 y)⊕ (z 	 y) =

= (y 	 ¬(x	 y))⊕ ¬x⊕ y ⊕ (z 	 y) =

= (y 	 ¬(x	 y))⊕ ¬x⊕ z = 1.

It follows that ((x 	 y) ⊕ y) ≤ z, which completes the proof of (3). We now

inmediately obtain (4) as a consequence of (3) together with Lemma 4.1.3 (i).

Also A is a bounded lattice by Lemma 4.1.3 (vi) and (vii). 2
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Proposition 4.1.5 The following equations hold in every MV-algebra:

(i) x� (y ∨ z) = (x� y) ∨ (x� z),

(ii) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

(iii) ¬(x ∧ y) = ¬x ∨ ¬y

(iv) ¬(x ∨ y) = ¬x ∧ ¬y

Proof. By MV6’) and Lemma 4.1.3 (ii), x�y ≤ x�(y∨z) and x�z ≤ x�(y∨z).

Suppose x � y ≤ t and x � z ≤ t. Then by 4.1.3 (iii), y ≤ ¬x ⊕ t and

z ≤ ¬x⊕ t, whence y ∨ z ≤ ¬x⊕ t. One more application of Lemma 4.1.3 (iii)

yield (y ∨ z) � x ≤ t, which completes the proof of (i). It is now easy to see

that (ii) is a consequence of (i), using Lemma 4.1.3 (i), together with MV4)

and MV8). (iii) It follows that Proposition 4.1.4 (4) and MV4). (iv) By 4.1.4

(4) ¬x ∧ ¬y = ¬(¬¬x ∨ ¬¬y) = ¬(x ∨ y) by MV4). 2

Proposition 4.1.6 Let A be an MV-algebra. Then A with the natural order

is a bounded distributive lattice.

Proof. By Proposition 4.1.4, A is a bounded lattice. Now

a ∧ (b ∨ c) = (a⊕ ¬(b ∨ c))� (b ∨ c) By Proposition 4.1.4 (4)

= (a⊕ (¬b ∧ ¬c))� (b ∨ c) By Proposition 4.1.5 (iv)

= ((a⊕ ¬b) ∧ (a⊕ ¬c))� (b ∨ c) By Proposition 4.1.5 (ii)

= (((a⊕ ¬b) ∧ (a⊕ ¬c))� b) ∨ (((a⊕ ¬b) ∧ (a⊕ ¬c))� c)
By Proposition 4.1.5 (i)

= (((a⊕ ¬c)⊕ ¬(a⊕ ¬b))� (a⊕ ¬b)� b)
∨ (((a⊕ ¬b)⊕ ¬(a⊕ ¬c))� (a⊕ ¬c)� c) By Proposition 4.1.4 (4)

= (((a⊕¬c)⊕¬(a⊕¬b))�(a∧b))∨(((a⊕¬b)⊕¬(a⊕¬c))�(a∧c))
By Proposition 4.1.4 (4)

≤ (a ∧ b) ∨ (a ∧ c). By Lemma 4.1.3 (v)

On the other hand, a ∧ b ≤ a ∧ (b ∨ c), a ∧ c ≤ a ∧ (b ∨ c) imply

(a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c), and therefore

(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c).
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Replacing a by b ∨ a in a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) we obtain

(b ∨ a) ∧ (b ∨ c) = ((b ∨ a) ∧ b) ∨ ((b ∨ a) ∧ c) =

= b ∨ ((b ∨ a) ∧ c) (since (b ∨ a) ∧ b = b)

= b ∨ ((b ∧ c) ∨ (a ∧ c)) = (b ∨ (b ∧ c)) ∨ (a ∧ c) =

= b ∨ (a ∧ c) (since b ∨ (b ∧ c) = b). 2

4.2 Correspondence between MV-algebras and

MV-effect algebras

Proposition 4.2.1 Let (M,�,¬, 0) be an MV-algebra. Restrict the operation

� to the pairs (x, y) satisfying x ≤ ¬y and call the new partial operation ⊕ .

Then MP = (M,⊕, 0, 1) is an MV-effect algebra (where 1 = ¬0).

Proof.

MP = (M,⊕, 0, 1) is an effect algebra :

E1

If x⊕ y is defined then x ≤ ¬y, hence (by Lemma 4.1.3 (i) and MV4) y ≤ ¬x.

Therefore y ⊕ x is defined and (by MV2) x⊕ y = x� y = y � x = y ⊕ x.

E2

Let a, b, c in M such that b ⊕ c and a ⊕ (b ⊕ c) are defined (i.e. b ≤ ¬c and

a ≤ ¬(b⊕c)). By lemma 4.1.3 (iv) b ≤ b�c = b⊕c. By hypothesis a ≤ ¬(b⊕c),
then (b⊕ c) ≤ ¬a and thus b ≤ (b⊕ c) ≤ ¬a. Therefore b ≤ ¬a and then a⊕ b
is defined.

By hypothesis a ≤ ¬(b⊕c), then by Lemma 4.1.3 (ii) and since a⊕b is defined,

a⊕b = a�b ≤ ¬(b⊕c)�b = ¬(b�c)�b = ¬(b�¬(¬c))�b = ¬(¬b�¬c)�¬c
(by MV6).

On the other hand, by hypothesis b ≤ ¬c, then by Lemma 4.1.1 (i) 1 = ¬c�¬b.
Therefore a⊕b ≤ ¬(¬b�¬c)�¬c = ¬1�¬c = 0�¬c = ¬c and thus (a⊕b)⊕c
is defined and (a⊕ b)⊕ c = (a� b) � c = a� (b� c) = a⊕ (b⊕ c).
E3

Let x ∈M , then there exist a unique ¬x in M such that x�¬x = 1 (see MV9

and Lemma 4.1.2). Also, since x ≤ x and ¬¬x = x, x ⊕ ¬x is defined and

x⊕ ¬x = x� ¬x = 1.

Remark. x′ in MP is ¬x in M .
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E4

If x⊕ 1 is defined then x ≤ ¬1 and thus x ≤ 0. By Lemma 4.1.3 (vi) x = 0.

The natural order of the MV-algebra M and the natural order of the

effect-algebra MP are the same:

In other words a ≤ b in M iff a ≤ b in MP .

Let a ≤ b in M . then ∃z ∈M such that a� z = b (Lemma 4.1.1 (iv)).

Since z ∧ ¬a ≤ ¬a then a ≤ ¬(z ∧ ¬a) . Thus a⊕ (z ∧ ¬a) is defined and

a⊕ (z ∧ ¬a) = a� (z ∧ ¬a) = (a� z) ∧ (a� ¬a) (by Proposition 4.1.5 (ii))

= (a� z) ∧ 1 = a� z = b.

Therefore a ≤ b in MP .

Now assume that a ≤ b in MP , then ∃z ∈ MP (z ∈ M) such that a ⊕ z is

defined and b = a⊕ z = a� z.

Therefore a ≤ b in M .

MP is a bounded distributive lattice:

The MV-algebra M is a bounded distributive lattice (Proposition 4.1.6) and

since the natural order of the MV-algebra M and the natural order of the

effect-algebra MP are the same, then MP is a bounded distributive lattice.

If a ≤ b in MP , then b	 a in MP is b� a in M :

a ≤ ¬b� a ⇒ ¬(¬b� a) ≤ ¬a , i.e. b� a ≤ ¬a.

Thus a⊕ (b� a) is defined in MP .

Also, a ≤ b in MP ⇒ a ≤ b in M ⇒ (Lemma 4.1.1 (iii)) a� (b� a) = b.

Therefore, if a ≤ b, a⊕(b�a) = a�(b�a) = b , i.e. a ≤ b ⇒ b	a = b�a.

The lattice ordered effect algebra MP satisfies the ecuation

(a ∨ b)	 a = b	 (a ∧ b):
(a ∨ b)	 a = (a ∨ b) � a = ¬(¬(a ∨ b) � a) = ¬((¬a ∧ ¬b) � a) =

= ¬((¬a� a) ∧ (¬b� a)) ( by Proposition 4.1.5 (ii))

= ¬(1 ∧ (¬b� a)) = ¬(¬b� a) = (b� a).

b	 (a ∧ b) = b� (a ∧ b) = ¬(¬b� (a ∧ b)) = ¬((¬b� a) ∧ (¬b� b)) =

= ¬(¬b� a) ∧ 1) = ¬(¬b� a) = (b� a).

Therefore (a ∨ b)	 a = b	 (a ∧ b).
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This completes the proof of Proposition 4.2.1. 2

Proposition 4.2.2 Let M = (M,⊕, 0, 1) be an MV-effect algebra. Let � be

a total operation given by x� y = x⊕ (x′ ∧ y). Then MT = (M,�, ′, 0) is an

MV-algebra.

Proof.

MV2)

x� y = x⊕ (x′ ∧ y) = (x′ 	 (x′ ∧ y))′ = (Lemma 1.4.8)

= ((x′ ∨ y)	 y)′ = (since M an MV-effect algebra)

= y ⊕ (x′ ∨ y)′ = y ⊕ (x ∧ y′) = y � x (by De Morgan’s Identities).

MV1)

We will need the next results. We define a total binary operation on M given

by a� b = a	 (a ∧ b).

Lemma 4.2.3 Let M an MV-effect algebra and a, b, c ∈M , then

(i) If b ≤ a then a� b = a	 b.

(ii) a� (b ∧ c) = (a� b) ∨ (a� c).

(iii) (a� b) � c = a� (b� c).

(iv) a� b = (a′ � b)′ = (b′ � a)′.

Proof.

(i) a� b = a	 (a ∧ b) = a	 b (since b ≤ a).

(ii) (a� b) ∨ (a� c) = (a	 (a ∧ b)) ∨ (a	 (a ∧ c)) =

= a	 ((a ∧ b) ∧ (a ∧ c)) = (by Lemma 1.5.3 (v))

= a	 (a ∧ (b ∧ c)) = a� (b ∧ c).
(iii) (a� b) � c = (a� b)	 ((a� b)∧ c) = (a	 (a∧ b))	 ((a	 (a∧ b))∧ c) =

= (a	 ((a	 (a ∧ b)) ∧ c))	 (a ∧ b) = (by Lemma 1.4.7 (ix))

= (a� ((a� (a ∧ b)) ∧ c))	 (a ∧ b) = (by (i))

= ((a� (a� (a ∧ b))) ∨ (a� c))	 (a ∧ b) = (by (ii))

= ((a	 (a	 (a ∧ b))) ∨ (a� c))	 (a ∧ b) = (by (i))
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= ((a ∧ b) ∨ (a� c))	 (a ∧ b) = (by Lemma 1.4.7 (ii))

= (a� c)	 ((a ∧ b) ∧ (a� c)) = (since M an MV-effect algebra)

= (a� c)	 ((a� c) ∧ b) = (since, by Lemma 1.4.7 (i), a� c ≤ a)

= (a� c) � b.

(iv) a� b = a⊕ (a′ ∧ b) = (a′ 	 (a′ ∧ b))′ = (by Lemma 1.4.8)

= (a′ � b)′. The rest follows by symmetry and MV 2. 2

Now, we will prove MV1).

By Lemma 4.2.3 (iv), (a� b) � c = ((a� b)′ � c)′ = (((b′ � a)′)′ � c)′ =

= ((b′ � a) � c)′ = ((b′ � c) � a)′ = (by Lemma 4.2.3 (iii))

= ((b� c)′ � a)′ = ((((b� c)′)′ � a)′)′ = (b� c) � a = a� (b� c) (by MV 2).

MV3)

x� 0 = x⊕ (x′ ∧ 0) = x⊕ 0 = x. (Lemma 1.4.3 (iii))

MV4)

By Lemma 1.4.3 (i) x′′ = x.

MV5)

x� 0′ = x⊕ (x′ ∧ 0′) = x⊕ (x′ ∧ 1) = x⊕ x′ = 1 = 0′

(by E3 and Lemma 1.4.3 (ii)).

MV6)

By MV2) (x′ � y)′ � y = y � (y � x′)′ = y ⊕ [y′ ∧ (y ⊕ (y′ ∧ x′))′] =

= y ⊕ (y ⊕ (y′ ∧ x′))′ (since (y ⊕ (y′ ∧ x′))′ ≤ y′)

= y ⊕ (y′ 	 (y′ ∧ x′)) = (y′ 	 (y′ 	 (y′ ∧ x′)))′ = ((y′ ∧ x′))′ (by Lemma 1.4.7

(ii))

= y ∨ x.

Thus (x′ � y)′ � y = y ∨ x and by symmetry (y′ � x)′ � x = x ∨ y.

Therefore (x′ � y)′ � y = (y′ � x)′ � x. 2

The natural order of the MV-effect algebra M and the natural order

of the MV- algebra MT are the same:

If a ≤ b in M ⇒ ∃z ∈M such that a⊕ z is defined and a⊕ z = b.

a⊕ z is defined ⇒ a ≤ z′ ⇒ z ≤ a′ ⇒ a′ ∧ z = z.
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Thus a� z = a⊕ (a′ ∧ z) = a⊕ z = b, and then a ≤ b in MT .

a ≤ b in MT ⇒ ∃z ∈M such that a� z = b that is a⊕ (a′ ∧ z) = b.

Therefore a ≤ b in M .

Proposition 4.2.4

(i) Let (M,⊕, 0, 1) be an MV-effect algebra, then (MT )P = M ,

(ii) Let (M,�,¬, 0) be an MV algebra, then (MP)T = M .

Proof.

(i)

Let a, b in (MT )P such that a⊕(MT )P b is defined, i.e. a ≤ b′ in (MT )P .

Now a ≤ b′ in (MT )P ⇔ a ≤ b′ in MT ⇔ a ≤ b′ in M .

Then b ≤ a′ in M and thus a′ ∧ b = b.

Therefore a⊕(MT )P b = a�MT b = a⊕M (a′ ∧ b) = a⊕M b.

(ii)

a�(MP )T b = a⊕MP (a′ ∧ b) =

= a�M (a′ ∧ b) (since a ≤ (a′ ∧ b)′ in MP ⇒ a ≤ (a′ ∧ b)′ in M)

= (a�M a′) ∧ (a�M b) (Proposition 4.1.5 (ii))

= 1 ∧ (a�M b) =

= a�M b. 2

5 Appendix

Let M an MV-algebra, we call radical of M (Rad(M)) the intersection of all

maximal ideals of M . An element a in M is said to be infinitely small or

infinitesimal if and only if a 6= 0 and na ≤ ¬a for each integer n ≥ 0 (where

na is a � . . . � a n-times). The set of all infinitesimals in M will be denoted

by Infinit(M). An MV-algebra M is said to be semisimple if and only if

Rad(M) = {0}.

Remark 5.0.5 It is proved in [2, Proposition 3.6.4] that

Rad(M) = {0} ∪ Infinit(M).
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Example 5.0.6 Let C = [0, 1], then it is easy to see that C = (C,�,¬, 0) is

an MV-algebra where for all x, y in C x�y = min(x+y, 1) and ¬x = 1−x. It

is called the standard MV-algebra. Also the natural order on the MV-algebra C

is the usual order of numbers of C and C is semisimple since Infinit(M) = ∅.

Remark 5.0.7 Let C = [0, 1] as example 5.0.6 and CP as Proposition 4.2.1.

Then CP = (C,⊕, 0, 1) where a⊕ b is defined if and only if a ≤ 1− b and, in

this case, a⊕ b = a+ b. Also a′ = 1− a and a	 b is defined if and only if b ≤ a

and, in this case, a	 b = a− b.

Example 5.0.8 It is proved in [2] Proposition 3.6.1 (page 72) that an MV-

algebra M is semisimple if and only if M is a subdirect product of subalgebras

of the standard MV-algebra [0, 1], that is, there is an injective homomorphism

of MV-algebras h : M →
∏

i∈I Ci such that for each j ∈ I, Cj is subalgebra

of [0, 1] and pj ◦ h : M → Cj is a homomorphism onto Cj, where pj is the

jth projection.

We identify M with the subalgebra (and the sublattice) h(M) ⊆
∏

i∈I Ci and

MP with h(M)P ⊆
∏

i∈I Ci. Thus, we can think of the elements x ∈ MP as

elements (xl)l∈I with xl ∈ C l l ∈ I and if (xl)l∈I , (y
l)l∈I ∈ MP we have that

(xl)l∈I⊕ (yl)l∈I is defined in MP if and only if (xl)l∈I ≤ 1− (yl)l∈I = (1−yl)l∈I
(i.e. for all l ∈ I xl ≤ 1− yl) and, in this case, (xl)l∈I ⊕ (yl)l∈I = (xl + yl)l∈I .

Also (xl)l∈I 	 (yl)l∈I is defined in MP if and only if (xl)l∈I ≥ (yl)l∈I (i.e. for

all l ∈ I xl ≥ yl) and, in this case, (xl)l∈I 	 (yl)l∈I = (xl − yl)l∈I .

Example 5.0.9 Let M be a semisimple MV-algebra, then (see example 5.0.8)

MP ⊆
∏

i∈I Ci. It is easy to see that the map f :
∏

i∈I Ci →
∏

i∈I B(Ci) defined

by f((xl)l∈I) = ((0, xl])l∈I (see example 1.3.14 and Lemma 1.3.15) is an order

isomorphism onto the sublattices f(MP) of
∏

i∈I B(Ci). Then ([10] II.4 Corol-

lary 8) B(MP) ∼= B(f(MP)) ∼= B where B is the subalgebra of
∏

i∈I B(Ci)

R-generate by f(MP). Thus, we can think of the elements x ∈ B(MP) as

elements in
∏

i∈I B(Ci). Furthermore, let x ∈ B(MP), then x = x1 + . . .+ x2n

with x1, . . . , x2n ∈MP and x1 ≤ . . . ≤ x2n and φMP (x) =
⊕n

i=1(x2i	 x2i−1) =⊕n
i=1(xl2i − xl2i−1)l∈I =

[∑n
i=1(xl2i − xl2i−1)

]
l∈I . Thus if we think in B(Ci) the

element xi1 + . . .+xi2n as (xi1, x
i
2] ∪̇ . . . ∪̇

(
xi2n−1, x

i
2n

]
(see example 1.3.14) then

φMP (x) is in each coordinate i the “length” of (xi1, x
i
2] ∪̇ . . . . . . ∪̇

(
xi2n−1, x

i
2n

]
.
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5.1 Vetterlein’s Boolean ambiguity algebras

A Boolean algebra B = (B,∧,∨, c, 0, 1) with a countable dense subset is

called separable. Furthermore, for g ∈ Aut(B) and a ∈ B, we denote by g|a
the restriction of g to the interval [0, a]. We define a→ b = ¬a∨ b for a, b ∈ B.

We furthermore write a⊥b if there are no non-zero a0 ≤ a and b0 ≤ b such

that a0 ∼ b0. Let B be a separable Boolean algebra, and G be a group of

automorphisms of B. Then we call the pair (B,G) a Boolean ambiguity

algebra. Given (B,G), we introduce the following notions:

i We call G compact if for all non-zero a ∈ B, every set of pairwise disjoint

elements of the form g(a), where g ∈ G, is finite.

ii Let B be a σ−complete Boolean algebra. We call G full if for any two

partitions of unity (ai)i≤λ and (bi)i≤λ, where λ ≤ ω, and a system gi ∈ G,

i ≤ λ, such that g(bi) = ai, the automorphism g defined by g|ai
= gi|ai

,

belong to G as well.

iii We call G f-full if for any two partitions of unity (ai)i<l and (bi)i<l, where

l < ω, and a system gi ∈ G, i < l, such that g(bi) = ai, the automorphism

g defined by g|ai
= gi|ai

for each i < l, belong to G as well.

iv We say that G has the decomposition property, or (DP) for short, if for

any a, b ∈ B, there are c ≤ a and d ≤ b such that c ∼ d and a \ c ⊥ b \ d.

A Boolean ambiguity algebra (B,G) will be called complete ifB is σ−complete

and G is compact and full, and it is called normal if G is compact f-full and

fulfils (DP).

Remark 5.1.1 As a matter of fact, all the results concerning normal ambi-

guity algebras stated in this paper do not depend on the separability of the

corresponding Boolean algebras. Hence this condition can be eliminated from

the definition of normal ambiguity algebras.

Let (B,G) be a complete Boolean ambiguity algebra or a normal Boolean

ambiguity algebra then it is proved in [17, Propositions 2.8 and 4.5] that

(B∼G
,≤, 0, 1) is a lattice with smallest element 0 = |0| = {0}, greatest element
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1 = |1| = {1} and |a| ≤ |b| if and only if there exist a1 ∼ a and b1 ∼ b such that

a1 ≤ b1. Moreover, for any a, b ∈ B, there is a b1 ∼ b such that |a ∧ b1| = |a|∧|b|
and |a ∨ b1| = |a|∨|b|. Furthermore if a, b ∈ B, then {|a1 ∧ b1| : a1 ∼ a, b1 ∼ b}
has a minimal element, and {|a1 → b1| : a1 ∼ a, b1 ∼ b} has a maximal element.

Let (B,G) be a complete Boolean ambiguity algebra or a normal Boolean

ambiguity algebra. We define:

|a| � |b| =
∧
{|a1 ∧ b1| : a1 ∼ a, b1 ∼ b}, ¬ |a| = |a| → 0 = |ac|,

|a| → |b| =
∨
{|a1 → b1| : a1 ∼ a, b1 ∼ b}, |a| ⊕ |b| = ¬(¬ |a| � ¬ |b|).

Proposition 5.1.2 [17, Propositions 2.12 and 4.7] Let (B,G) be a complete

Boolean ambiguity algebra or a normal Boolean ambiguity algebra. Let a, b ∈
B such that |a|∧ |b| = |a ∧ b|. Then |a|�|bc| = |a ∧ bc| and |a| → |b| = |a→ b|.

Theorem 5.1.3 [17, Theorems 2.14 and 4.8] Let (B,G) be a complete Boolean

ambiguity algebra or a normal Boolean ambiguity algebra. Then (B∼,⊕,¬, 0)

is an MV-algebra.

5.2 Normal Boolean ambiguity algebras and MV-pairs

Let us start this section by showing that if (B,G) is a Normal Boolean ambi-

guity algebra then (B,G) is an MV-pair. We need first to prove the following

lemmas:

Lemma 5.2.1 Let (B,G) be a Boolean ambiguity algebra with G compact,

let f ∈ G and let x, a, b ∈ B such that a ∧ b = 0, x ≤ a and fn(x) ≤ b for all

n ∈ N. Then x = 0.

Proof. Since x ≤ a, a∧b = 0 and fn(x) ≤ b for all n ∈ N we have x∧fn(x) = 0

for all n ∈ N, then f i(x) ∧ f j(x) = 0 for all i 6= j i, j ∈ N. Since G is com-

pact {fn(x) : n ∈ N} is finite, i.e. {fn(x) : n ∈ N} =
{
f 1(x), f 2(x), . . . , fk(x)

}
.

Let fk+1(x), then ∃j, 1 ≤ j ≤ k such that fk+1(x) = f j(x), therefore

f−j(fk+1(x)) = f−j(f j(x)), that is fk+1−j(x) = x (note that k + 1 − j > 0)

then x = 0 since fk+1−j(x) ≤ b, x ≤ a and a ∧ b = 0. 2

Lemma 5.2.2 Let (B,G) be a Boolean ambiguity algebra and let a, b ∈ B,

then the following conditions are equivalent:
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(i) a⊥b

(ii) for all h ∈ G h(a) ∧ b = 0

Proof.

(i)⇒ (ii): If h(a) ∧ b 6= 0, let b0 = h(a) ∧ b and let a0 = h−1(b0) = a ∧ h−1(b).

Then 0 6= a0 ≤ a, 0 6= b0 ≤ b and a0 ∼ b0 which contradicts a⊥b.
(ii) ⇒ (i): Let a0 ≤ a, b0 ≤ b and a0 ∼ b0. Then there exist h ∈ G with

b0 = h(a0), therefore b0 = b0 ∧ b = h(a0) ∧ b ≤ h(a) ∧ b = 0 and thus b0 = 0

and a0 = 0. 2

Remark 5.2.3 Let (B,G) be a complete Boolean ambiguity algebra or a nor-

mal Boolean ambiguity algebra. Then it is proved in [17] Lemmas 2.3 and 4.4

that if a, b ∈ B are such that a ∼ b and a ≤ b, then a = b.

Lemma 5.2.4 Let (B,G) be a complete Boolean ambiguity algebra or a nor-

mal Boolean ambiguity algebra and let a, b, b′ ∈ B such that b ∼ b′ and

|a ∧ b′| = |a| ∧ |b|. Then a ∧ b′ ∈ max(L+(a, b)).

Proof.

Let f, g ∈ G such that a ∧ b′ ≤ g(a) ∧ f(b). Then we have:

|g(a) ∧ f(b)| ≤ |a| and |g(a) ∧ f(b)| ≤ |b|, thus |g(a) ∧ f(b)| ≤ |a| ∧ |b|.

a ∧ b′ ≤ g(a) ∧ f(b) imply |a ∧ b′| ≤ |g(a) ∧ f(b)|.

Therefore |a| ∧ |b| = |a ∧ b′| ≤ |g(a) ∧ f(b)| ≤ |a| ∧ |b| and then

|a ∧ b′| = |g(a) ∧ f(b)|.
Since a ∧ b′ ≤ g(a) ∧ f(b) and a ∧ b′ ∼ g(a) ∧ f(b) then, by Remark 5.2.3,

a ∧ b′ = g(a) ∧ f(b) and thus a ∧ b′ ∈ max(L+(a, b)). 2

Proposition 5.2.5 Let (B,G) be a normal Boolean ambiguity algebra, then

(B,G) is an MV-pair.

Proof.

MVP1

Let (B,G) be a normal Boolean ambiguity algebra, a, b ∈ B and f ∈ G such

that a ≤ b and f(a) ≤ b.
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• If a = b then f(a) = f(b) ≤ b and then, by Remark 5.2.3, f(a) = f(b) =

b = a. Therefore h = id satisfy the requirement.

• If f(a) = b then a ∼ b and a ≤ b. As above we have a = b. Therefore

f(a) = b = a and again h = id satisfy the requirement.

• If a < b and f(a) < b it is proved in [17, Lemma 4.3] that ∃h ∈ G such

that h(b) = b and h|a = f |a. In particular h(b) = b and h(a) = f(a).

MVP2 Let (B,G) be a complete Boolean ambiguity algebra. From Lemma

3.2.5 it suffices to prove that for all a, b ∈ B there exist m ∈ max(L(a, b))

such that m ≥ a∧ b. Let a, b ∈ B. Since (B,G) is a normal Boolean ambiguity

algebra, we can apply (DP) property to a\b and b\a and we obtain that there

are

c ≤ a \ b, d ≤ b \ a and g ∈ G with g(d) = c and (a \ b) \ c ⊥ (b \ a) \ d (5)

(note that c∧d = 0). Since G is f-full the automorphism g̃ defined by g̃|d = g|d,
g̃|c = g−1|c and g̃|(c∨d)c = id|(c∨d)c is in G. Let b′ = g̃(b). It is easy to see that

b′ = (b \ d)∨̇c, a ∧ b′ = (a ∧ b)∨̇c, b′ \ a = (b \ a) \ d and a \ b′ = (a \ b) \ c,

and thus, a ∧ b ≤ a ∧ b′ and, from (5), b′ \ a ⊥ a \ b′. (6)

We claim that for all b′′ ∼ b there exist an h ∈ G such that h(a ∧ b′′) ≤ a ∧ b′.
Indeed, since b′ ∼ b′′, it is proved in [17] Lemma 4.3 (ii) that there exist an

h ∈ G such that

h(b′′ \ b′) = b′ \ b′′, h(b′ \ b′′) = b′′ \ b′ and h|b′∧b′′ = id|b′∧b′′ . (7)

By (6) and Lemma 5.2.2 h(a\b′)∧(b′\a) = 0 that is h(a∧b′c)∧b′∧ac = 0, and

we also obtain h(a∧ b′c∧ b′′)∧ b′∧ac∧ b′′c = 0. Since, from (7), h(a∧ b′c∧ b′′) ≤
h(b′′ \ b′) = b′ \ b′′ = ((b′ \ b′′)∧ a)∨̇((b′ \ b′′)∧ ac) = (b′ ∧ b′′c ∧ a)∨̇(b′ ∧ b′′c ∧ ac)
we have that h(a ∧ b′c ∧ b′′) ≤ b′ ∧ a ∧ b′′c ≤ b′ ∧ a.

On the other hand, by (7), h(a∧ b′ ∧ b′′) = id(a∧ b′ ∧ b′′) = a∧ b′ ∧ b′′ ≤ a∧ b′.
Therefore h(a∧ b′′) = h(a∧ b′′ ∧ b′)∨̇h(a∧ b′′ ∧ b′c) ≤ a∧ b′ ∨ a∧ b′ = a∧ b′ and

the claim is proved.
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We will prove that |a ∧ b′| = |a|∧|b|. It is clear that |a ∧ b′| ≤ |a| and |a ∧ b′| ≤
|b|. Let x ∈ B such that |x| ≤ |a| and |x| ≤ |b|, then there are f1, f2 ∈ G such

that f1(x) ≤ a and x ≤ f2(b′) (and thus f1(x) ≤ f1(f2(b′))). Therefore

f1(x) ≤ a ∧ f1(f2(b′)). From the claim, there is an h ∈ G such that

h(a ∧ f1(f2(b′))) ≤ a ∧ b′, that is a ∧ f1(f2(b′)) ≤ h−1(a ∧ b′). Then

f1(x) ≤ h−1(a ∧ b′), and thus (h ◦ f1)(x) ≤ a ∧ b′ that is |x| ≤ |a ∧ b′|.
Therefore |a ∧ b′| = |a| ∧ |b|.

Finally, from Lemma 5.2.4, a∧ b′ ∈ max(L+(a, b)) and, by (6), a∧ b ≤ a∧ b′.2

Summing up, we have:

Let (B,G) be a normal Boolean ambiguity algebra then,

(I) From Theorem 5.1.3, (B∼,�,¬, 0) is an MV-algebra. We call it V(B,G).

(II) From Proposition 5.2.5 (B,G) is an MV-pair and then, from Theorem

3.3.1, M = (B∼,⊕, 0, 1) is an MV-effect algebra . Therefore from Propo-

sition 4.2.2, MT = (B∼, �̂, ¬̂, 0) is an MV-algebra. We call it J (B,G).

Proposition 5.2.6 Let (B,G) be a normal Boolean ambiguity algebra and

let the MV-algebras V(B,G) and J (B,G) as (I) and (II).

Then V(B,G) = J (B,G).

Proof. In V(B,G) and J (B,G) we have 0 = |0| = {0}. Let |a| ∈ B∼, in

V(B,G) ¬ |a| = |ac| and in J (B,G) ¬̂ |a| = |a|′ = |ac|. Thus ¬̂ = ¬ on B∼.

So we only need to show that � = �̂ on B∼.

|a|�|b| = ¬(¬ |a|�¬ |b|) = ¬(|ac|�|bc|) = ¬(|ac ∧ f(b)c|) where, by Proposition

5.1.2, f(b) is such that |ac ∧ f(b)| = |ac| ∧ |b| and then, from Lemma 5.2.4

ac ∧ f(b) ∈ max(L+(ac, b)). Then we have

|a|� |b| = ¬(|ac ∧ f(b)c|) = |(ac ∧ f(b)c)c| = |a ∨ f(b)| with

ac ∧ f(b) ∈ max(L+(ac, b))

On the other hand

|a| �̂ |b| = |a| ⊕ (|a|′ ∧ |b|) = |a| ⊕ (|ac| ∧ |b|) = |a| ⊕ |ac ∧ g(b)| with

ac ∧ g(b) ∈ max(L+(ac, b)). From Remark 3.3.2 |ac ∧ g(b)| = |ac ∧ f(b)|,
and thus |a| �̂ |b| = |a| ⊕ |ac ∧ g(b)| = |a| ⊕ |ac ∧ f(b)| =
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= |a∨̇ac ∧ f(b)| = |a ∨ f(b)|. 2

Let us proceed with this section by showing that the MV-algebras obtained in

Proposition 5.2.6 are semisimple.

Let (B,G) be an MV-pair and let M = (B∼,⊕, 0, 1) be the MV-effect algebra

as in Theorem 3.3.1. Let |a| ∈M , we write n |a| (n ∈ N) for |a| ⊕ . . .⊕ |a| (n
times) provided |a| ⊕ . . .⊕ |a| (n times) is defined. Then:

Lemma 5.2.7 Let M and a as above, then 2 |a|, 3 |a|, . . . , n |a|, are defined

in M if and only if there are f1, . . . , fn ∈ G such that fi(a) ∧ fj(a) = 0 for all

i 6= j i, j = 1, . . . , n. In this case n |a| = |f1(a)∨̇ . . . ∨̇fn(a)|.

Proof. We use induction on n. If n = 2, from Theorem 3.3.1 |a|⊕|a| is defined

if and only if there are f1, f2 ∈ G such that f1(a) ∧ f2(a) = 0 and in this case

|a| ⊕ |a| = |f1(a)∨̇f2(a)|. Suppose that 2 |a|, 3 |a|, . . . , n |a|, (n + 1) |a| are

defined in M . By the induction hypothesis, there are g1, . . . , gn ∈ G such that

gi(a) ∧ gj(a) = 0 for all i 6= j i, j = 1, . . . , n and n |a| = |g1(a)∨̇ . . . ∨̇gn(a)|.
Therefore (n+1) |a| = |g1(a)∨̇ . . . ∨̇gn(a)|⊕|a| and this is defined if and only if

there are h1, h2 ∈ G such that h1(g1(a)∨̇ . . . ∨̇gn(a))∧h2(a) = 0, that is, if and

only if h1(gi(a))∧h1(gj(a)) = 0 ∀i 6= j i, j = 1, . . . , n and h1(gi(a))∧h2(a) =

0 i = 1, . . . , n and (n + 1) |a| = |h1(gj(a))∨̇ . . . . . . ∨̇h1(gj(a))∨̇h2(a)|. The

induction is complete if we call fi = h1 ◦ gi i = 1, . . . , n and fn+1 = h2 . 2

Lemma 5.2.8 Let (B,G) be a normal Boolean ambiguity algebra, let

M = (B∼,⊕, 0, 1) be the MV-effect algebra as in (II) and let 0 6= |a| ∈M .

Then there exist n ∈ N such that 2 |a|, 3 |a|, . . . , (n− 1) |a|, are defined in M

and n |a| is not defined in M .

Proof. If m |a| is defined for all m ∈ N then, from Lemma 5.2.7, there are

f1, f2, . . . ∈ G such that fi(a) ∧ fj(a) = 0 for all i 6= j i, j ∈ N wich is a

contradiction since a 6= 0 and G is compact. 2

Corollary 5.2.9 Let (B,G) be a normal Boolean ambiguity algebra and let

M = (B∼,⊕, 0, 1) be the MV-effect algebra as in (II). Then for all a ∈ B,

a 6= 0, there exist n ∈ N such that m |a| ≤ |a|′ m = 1, . . . , n−1 and n |a| � |a|′

in M .
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Proof. Let E be an effect algebra and let x, y ∈ E, it is easy to see that x⊕ y
is defined if and only if y ≤ x′. Therefore |a|⊕ |a| is defined in M if and only if

|a| ≤ |a|′, (|a| ⊕ |a|)⊕ |a| is defined if and only if |a| ⊕ |a| ≤ |a|′, . . ., in general

m |a| is defined if and only if (m − 1) |a| ≤ |a|′. Therefore the proof follows

from Lemma 5.2.8. 2

Proposition 5.2.10 Let (B,G) be a normal Boolean ambiguity algebra and

let V(B,G) as in (I). Then V(B,G) is a semisimple MV-algebra.

Proof. Let 0 6= a ∈ B. Let M = (B∼,⊕, 0, 1) be the MV-effect algebra as in

(II), then from Corollary 5.2.9, there exist n ∈ N such that n |a| � |a|′ in M .

Since |a|′ = ¬̂ |a| in J and, from Proposition 4.2.2, the order in M and MT =

J (B,G) are the same we obtain that, in J (B,G), n |a| = |a| �̂ . . . �̂ |a| =

|a| ⊕ . . .⊕ |a| � ¬̂ |a|.
By Proposition 5.2.6 the MV-algebras J (B,G) = (B∼, �̂, ¬̂, 0) and V(B,G) =

(B∼,�,¬, 0) are equals and thus we have that for all 0 6= |a| ∈ V(B,G)

there exist n ∈ N such that n |a| � ¬̂ |a| in V that is Infinit(V(B,G)) = ∅.
Therefore, from Remark 5.0.5, Rad(V(B,G)) = 0 and V(B,G) is semisimple.2

Finally we will see that if we build on a semisimple MV-algebra and obtain,

through Proposition 4.2.2 and Theorem 3.3.3, an MV-pair, the latter is a nor-

mal Boolean ambiguity algebra.

To prove that G(MP) is compact we need the following results:

Let Ci be a subalgebra of the standard MV-algebra [0, 1] as example 5.0.6 and

let B(Ci) be the Boolean algebra R-generate by Ci. Let a ∈ B(Ci),

a = a1 + a2 + . . . + a2n−1 + a2n with a1, . . . , a2n ∈ Ci a1 ≤ . . . ≤ a2n then (see

example 1.3.14) we can represent a as (a1, a2] ∪̇ . . . ∪̇ (a2n−1, a2n]. We denote

lenght(a) for (a2 − a1) + . . .+ (a2n − a2n−1).

Remark 5.2.11 Let Ci and B(Ci) as above, and a = (a1, a2] ∪̇ . . . ∪̇ (a2n−1, a2n]

and b = (b1, b2] ∪̇ . . . ∪̇ (b2m−1, b2m] in B(Ci), then a ∧ b = 0 if and only if

(a2r−1, a2r] ∩ (b2s−1, b2s] = ∅ for all 0 ≤ r ≤ n and 0 ≤ s ≤ m.

Lemma 5.2.12 Let Ci and B(Ci) as above and let {ar}r∈N be a secuence of

pairwise disjoint elements in B(Ci) with the same lenght l = lenght(a1) =

lenght(a2) = . . .. Then l = 0 (and thus a1 = ∅, a2 = ∅, . . .).

80



Proof.

It follows from Remark 5.2.11, that

a1 ∧ a2 = 0 imply that l ≤ 1
2
.

In the same form, if {a1, a2, a3} are pairwise disjoint, then l ≤ 1
3
,

...

if {a1, a2, . . . , an} are pairwise disjoint, then l ≤ 1
n
,

and thus l = 0. 2

Corollary 5.2.13 Let Ci and B(Ci) as above and let {aj}j∈J be a secuence

of pairwise disjoint elements in B(Ci) with the same lenght l = lenght(aj) for

all j ∈ J and l > 0. Then J is finite.

Proposition 5.2.14 Let M be a semisimple MV-algebra, let MP as in Propo-

sition 4.2.2 and let (B(MP), G(MP)) be the MV-pair as Theorem 3.3.3 . Then

(B(MP), G(MP)) is a normal Boolean ambiguity algebra.

Proof.

G(MP) is compact:

From examples 5.0.8 and 5.0.9 we have that MP ⊆
∏

i∈I Ci and B(MP) ⊂∏
i∈I B(Ci) where, for all i ∈ I, Ci is a subalgebra of MV-algebra [0, 1]. Let

x ∈ B(MP), x = x1+. . .+x2n with x1, . . . , x2n ∈MP and x1 ≤ . . . ≤ x2n. Note

that if f ∈ G(MP) then φMP (f(x)) = φMP (x) and thus, if f(x) = y1+. . .+y2m

with y1, . . . , y2m ∈ MP and y1 ≤ . . . ≤ y2m, we have that (see example 5.0.9)

for all i ∈ I (yi2−yi1) + . . .+ (yi2m−yi2m−1) = (xi2−xi1) + . . .+ (xi2n−yi2n−1) > 0

that is for all i ∈ I (xi1, x
i
2] ∪̇ . . . ∪̇

(
xi2n−1, x

i
2n

]
and (yi1, y

i
2] ∪̇ . . . ∪̇

(
yi2m−1, y

i
2m

]
have the same length in B(Ci), that is, for all i ∈ I lenght(xi) = lenght(f(x)i)

in B(Ci).

Now, let x ∈ B(MP), x 6= 0 and let {fα(x)}α∈A be a set of pairwise disjoint el-

ements with fα ∈ G(MP) for all α ∈ A. Since x 6= 0 then, from Theorem 3.3.3,

φMP (x) 6= 0 in
∏

i∈I Ci and thus ∃j ∈ I such that pj(φMP (x)) = (φMP (x))j 6= 0

in Cj, that is,
∑n

i=1(xj2i − x
j
2i−1) > 0 that is lenght(xj) > 0 in B(Cj). On the

other hand (since, fα(x) ∈ B(MP) ⊂
∏

i∈I B(Ci) for all α ∈ A) {fα}α∈A are

pairwise disjoint if and only if for all i ∈ I {(fα)i}α∈A are pairwise disjoint

in B(Ci). In particular {(fα)j}α∈A are pairwise disjoint in B(Cj) and, from
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above, 0 < lenght(xj) = lenght((fα(x))j) in B(Cj) for all α ∈ A. Therefore

from Corollary 5.2.13 A is finite.

G(MP) is f-full:

Let a1, . . . , an and b1, . . . , bn be two partitions of unity of B(MP), let g1, . . . , gn

in G(MP) such that gk(ak) = bk k = 1, . . . , n and let g defined by g|ai
= gi|ai

.

Then φMP (g(x)) = φMP (g(x ∧ a1∨̇ . . . ∨̇x ∧ an)) =

= φMP (g1(x∧a1)∨̇ . . . ∨̇gn(x∧an)) and, since φMP is a homomorphism of effect

algebras and the sum operation in B(MP) is ∨̇, we have that

φMP (g(x)) =
⊕n

k=1 φMP (gk(x ∧ ak)) =
⊕n

k=1 φMP (x ∧ ak) (since gk is

φM − preserving k = 1, . . . , n). Therefore φMP (g(x)) =
⊕n

k=1 φMP (x ∧ ak) =

= φMP (x ∧ a1∨̇ . . . ∨̇x ∧ an) = φMP (x) and thus g ∈ G(MP) and G(MP) is

f-full.

(B(MP), G(MP)) fulfils (DP):

It is proved in [12] Lemma 4.4 that for every a ∈ B(M), there is a

φM -preserving isomorphism of Boolean algebras

ψ : B([0, φM(a)]M)→ [0, a]B(M). Let a, b ∈ B(MP) and let

t = φMP (a) ∧ φMP (b), then there are two φMP -preserving isomorphisms of

Boolean algebras h1 : B([0, φMP (a)]MP )→ [0, a]B(MP ) and

h2 : B([0, φMP (b)]MP )→ [0, b]B(MP ) (note that t ∈ [0, φMP (a)]MP and

t ∈ [0, φMP (b)]MP ), let c = h1(t) and d = h2(t) then 0 ≤ c ≤ a and 0 ≤ d ≤ b

and c ∼ d since h1 and h2 are φMP -preserving and Theorem 3.3.3. Let r, s ∈
B(MP) be such that 0 ≤ r ≤ a \ c, 0 ≤ s ≤ b \ d and r ∼ s (and thus by

Theorem 3.3.3, φMP (r) = φMP (s)) then φMP (0) ≤ φMP (r) ≤ φMP (a \ c) and

φMP (0) ≤ φMP (s) ≤ φMP (b \ d). Now, in the effect algebra B(MP) the partial

difference is defined if and only if x ≤ y and it is x \ y and, since φMP is a

homomorphism of effect algebras, we obtain 0 ≤ φMP (r) ≤ φMP (a) 	 φMP (c)

and 0 ≤ φMP (s) ≤ φMP (b) 	 φMP (d) in MP . Therefore , since φMP (r) =

φMP (s), 0 ≤ φMP (r) ≤ (φMP (a)	 φMP (c)) ∧ (φMP (b)	 φMP (d)).

On the other hand φMP (a)	 φMP (c) = φMP (a)	 φMP (h1(t)) =

= φMP (a)	 φMP (t) = φMP (a)	 t = φMP (a)	 (φMP (a) ∧ φMP (b)) =

= (φiMP (a)− φiMP (a) ∧ φiMP (b))i∈I and
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φiMP (a)− φiMP (a) ∧ φiMP (b) =

{
0 if φiMP (a) ≤ φiMP (b)

φiMP (a)− φiMP (b) if φiMP (a) > φiMP (b)

Similarly φMP (b)	 φMP (d) = (φiMP (b)− φiMP (a) ∧ φiMP (b))i∈I and

φiMP (b)− φiMP (a) ∧ φiMP (b) =

{
0 if φiMP (b) ≥ φiMP (b)

φiMP (b)− φiMP (a) if φiMP (a) < φiMP (b)

Thus (φMP (a)	φMP (c))∧(φMP (b)	φMP (d)) = 0 in MP and then φMP (r) = 0.

Therefore r = 0 and s = 0 and thus (B(MP), G(MP)) fulfils (DP).

5.3 Complete Boolean ambiguity algebras and MV-pairs

Let us start this section by showing that if (B,G) is a Complete Boolean

ambiguity algebra then (B,G) is an MV-pair. However, we need first to prove

the following lemma:

Lemma 5.3.1 Let (B,G) be a complete Boolean ambiguity algebra, let a, b ∈
B and let g ∈ G with g(b) ≤ a. Then there is an automorphism ḡ ∈ G such

that ḡ(b) ≤ a and ḡ(a ∧ b) = a ∧ b.

Proof.

It is clear if a ∧ b = 0. Suppose that a ∧ b 6= 0.

To define ḡ let us build an appropriate partition of the unit, appropriate au-

tomorphisms, and based on the fact that G is full. The proof is quite simple

when the Boolean algebra is atomic; in general, the idea is the same but the

operations are more cumbersome.

Let us start by defining certain elements bj in B so that in the event that the

Boolean algebra should be atomic, then bj would be the set of atoms x in set

b \ a such that gi(x) ∈ a ∧ b i = 1, . . . , j − 1 and gj(x) ∈ a \ b. See Figure 3.

Let b1 = b ∧ ac ∧ g−1(a \ b), b2 = b ∧ ac ∧ bc1 ∧ g−2(a \ b), . . .

. . ., bj = b ∧ ac ∧ bc1 ∧ . . . ∧ bcj−1 ∧ g−j(a \ b), . . .

We have divided the proof into a sequence of remarks.
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R1) If i 6= j it is clear from definition, that bi ∧ bj = 0.

R2) b \ a =
∨∞

1 bi.

Let r = (b\a)\(
∞∨
1

bi). We note that g(r) ≤ g(b) ≤ a and, for all i ∈ N r∧bi = 0.

(8)

We claim that for all i ∈ N, gi(r) ≤ a ∧ b. We use induction on i.

Let i = 1 and t = g(r)∧(a\b). Then g−1(t) = r∧g−1(a\b) ≤ (b\a)∧g−1(a\b) =

b∧ac∧g−1(a\b) = b1 and g−1(t) ≤ r. Therefore g−1(t) ≤ r∧b1 = 0 (by (8)) and

thus g−1(t) = 0 and t = 0. Finally 0 = t = g(r)∧ (a\ b) imply g(r) ≤ (a\ b)c =

ac ∨ b and since by (8) g(r) ≤ a, we obtain g(r) = g(r) ∧ a ≤ (ac ∨ b) ∧ a, and

then g(r) ≤ a ∧ b.

Induction hypothesis: gk(r) ≤ a ∧ b, k = 1, 2, . . . , i. Let t = gi+1(r) ∧ (a \ b),
then

g−1(t) = gi(r) ∧ g−1(a \ b) ≤ gi(r) ≤ a ∧ b,
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...
...

...

g−i(t) = g1(r) ∧ g−i(a \ b) ≤ g1(r) ≤ a ∧ b.

Thus, for 0 ≤ k ≤ i− 1, we have g−i+k(t) ≤ a ∧ b .

If we take infimum with gk+1(b ∧ ac ∧ bc1 ∧ . . . ∧ bck) ∧ (a \ b) in both side to

the last inequality we obtain g−i+k(t)∧ gk+1(b∧ ac ∧ bc1 ∧ . . .∧ bck)∧ (a \ b) = 0

(since that (a \ b) ∧ a ∧ b = 0) and then

g−k−1(g−i+k(t) ∧ gk+1(b ∧ ac ∧ bc1 ∧ . . . ∧ bck) ∧ (a \ b)) = g−k−1(0) that is

g−i−1(t) ∧ (b ∧ ac ∧ bc1 ∧ . . . ∧ bck) ∧ g−k−1(a \ b)︸ ︷︷ ︸
bk+1

= 0 for 0 ≤ k ≤ i− 1.

Therefore g−i−1(t) ∧ b1 = 0, and thus g−i−1(t) ≤ bc1,

g−i−1(t) ∧ b2 = 0, and thus g−i−1(t) ≤ bc2,
...

...
...

g−i−1(t) ∧ bi = 0, and thus g−i−1(t) ≤ bci .

On the other hand g−i−1(t) = g−i−1(gi+1(r) ∧ (a \ b)) = r ∧ g−i−1(a \ b).
Thus g−i−1(t) ≤ r ≤ b \ a = b ∧ ac and g−i−1(t) ≤ g−i−1(a \ b).
Therefore g−i−1(t) ≤ b ∧ ac ∧ bc1 ∧ bc2 . . . ∧ bci ∧ g−i−1(a \ b) = bi+1.

Then, we have: g−i−1(t) ≤ bi+1 and g−i−1(t) ≤ r. Therefore g−i−1(t) ≤
bi+1 ∧ r = 0 (by (8)) and thus g−i−1(t) = 0 and t = 0.

Since g(b) ≤ a and, by induction hypothesis, gi(r) ≤ a ∧ b ≤ b , we have

gi+1(r) ≤ a. But 0 = t = gi+1(r) ∧ (a \ b) and gi+1(r) ≤ a imply (as before, in

case i = 1) gi+1(r) ≤ a∧ b. Thus the induction is complete and we have proved

that gi(r) ≤ a ∧ b ∀i ∈ N.

Finally, we have r ≤ b \ a and gi(r) ≤ a ∧ b ∀i ∈ N, then from Lemma 5.2.1

r = 0.

Since r = (b \ a) \ (
∨∞

1 bi) and
∨∞

1 bi ≤ b \ a, we obtain b \ a =
∨∞

1 bi.

We intend to prove that if i 6= j then gi(bi) ∧ gj(bj) = 0, but we need first to

prove the following observation.

R3) Let r 6= 0 and r ≤ bi for some i ∈ N, then

g(r) ∧ (a ∧ b) 6= 0,

g[g(r) ∧ (a ∧ b)] ∧ (a ∧ b) = g2(r) ∧ g(a ∧ b) ∧ (a ∧ b) 6= 0,
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g {g[g(r) ∧ (a ∧ b)] ∧ (a ∧ b)}∧ (a∧b) = g3(r)∧g2(a∧b)∧g(a∧b)∧ (a∧b) 6= 0,
...

gi−1(r) ∧ gi−2(a ∧ b) ∧ . . . ∧ g(a ∧ b) ∧ (a ∧ b) 6= 0 (see Figure 4).

Suppose that gl(r)∧gl−1(a∧b)∧. . .∧g(a∧b)∧(a∧b) = 0 for some 1 ≤ l ≤ i−1.

Let k = min
{
l : gl(r) ∧ gl−1(a ∧ b) ∧ . . . ∧ g(a ∧ b) ∧ (a ∧ b) = 0,

1 ≤ l ≤ i− 1}.

Now, 0 = gk(r) ∧ gk−1(a ∧ b) ∧ . . . ∧ g(a ∧ b) ∧ (a ∧ b) =

= g[gk−1(r) ∧ gk−2(a ∧ b) ∧ . . . ∧ g(a ∧ b) ∧ (a ∧ b)] ∧ (a ∧ b).
We call m = gk−1(r) ∧ gk−2(a ∧ b) ∧ . . . ∧ g(a ∧ b) ∧ (a ∧ b).

We have that g(m) ≤ a (since m ≤ b and then g(m) ≤ g(b) ≤ a) and

g(m) ∧ (a ∧ b) = 0. Then

g(m) ≤ a \ b. Also m 6= 0 (since k − 1 < k). (9)

Let z = g−k+1(m) = r ∧ g−1(a ∧ b) . . . ∧ g−k+2(a ∧ b) ∧ g−k+1(a ∧ b) ≤ r ≤ bi.

Therefore z ≤ bi = b ∧ ac ∧ bc1 ∧ . . . ∧ bck−1 ∧ . . . ∧ bci−1 ∧ g−i(a \ b) ≤
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≤ b∧ ac∧ bc1∧ . . .∧ bck−1. On the other hand gk(z) = g(m) ≤ a \ b (by (9)), and

thus z ≤ g−k(a\ b). Therefore z ≤ b∧ac∧ bc1∧ . . .∧ bck−1∧g−k(a\ b) = bk. Then

z ≤ bk and z ≤ bi and thus z ≤ bk∧bi = 0 (since k 6= j) which is a contradiction

since (by (9)) m 6= 0. Therefore gk(r) ∧ gk−1(a ∧ b) . . . ∧ g(a ∧ b) ∧ (a ∧ b) 6= 0

for all k = 1, 2, . . . , i− 1.

R4) Now we will prove that if i 6= j then gi(bi) ∧ gj(bj) = 0. Suppose that

gi(bi) ∧ gj(bj) 6= 0 with i 6= j and suppose i > j (the other case is similar).

Let 0 6= t = gi(bi) ∧ gj(bj). Since t ≤ gi(bi) we have 0 6= g−i(t) ≤ bi. Let

0 6= r = g−i(t).

From R3) gk(r)∧gk−1(a∧b) . . .∧g(a∧b)∧ (a∧b) 6= 0 for all k = 1, 2, . . . , i−1.

Let 0 6= mi−1 = gi−1(r) ∧ gi−2(a ∧ b) . . . ∧ g(a ∧ b) ∧ (a ∧ b) ≤ a ∧ b,
0 6= mi−2 = g−1(mi−1) = gi−2(r)∧gi−3(a∧b) . . .∧(a∧b)∧g−1(a∧b) ≤ a∧b,
0 6= mi−3 = g−1(mi−2) = gi−3(r)∧. . .∧(a∧b)∧g−1(a∧b)∧g−2(a∧b) ≤ a∧b,

...

0 6= m1 = g−1(m2) = g(r)∧ (a∧ b)∧g−1(a∧ b)∧ . . .∧g−i+2(a∧ b) ≤ a∧ b,

0 6= s = g−1(m1) = r ∧ g−1(a∧ b)∧ . . .∧ g−i+1(a∧ b) ≤ r see Figure 5. (10)

Note that by construction gi−j(s) = mi−j ≤ a ∧ b and by (10) gi(s) ≤ gi(r) =

= gi(g−i(t)) = t = gi(bi) ∧ gj(bj) ≤ gj(bj) and thus gi−j(s) ≤ bj ≤ b \ a.

Therefore gi−j(s) ≤ (a ∧ b) ∧ (b \ a) = 0 and then gi−j(s) = 0 and s = 0 wich

contradict (10).

Therefore gi(bi) ∧ gj(bj) = 0 for all i 6= j.

Thus we have proved that

b1, b2, b3 . . . , g(b1), g2(b2), g3(b3), . . . , ((
∨̇∞
i=1bi)∨̇(

∨̇∞
i=1g

i(bi)))
c is a partition of

unity (note that a ∧ b ≤ ((
∨̇∞
i=1bi)∨̇(

∨̇∞
i=1g

i(bi)))
c).

Since (B,G) is a complete Boolean ambiguity algebra, the automorphism ḡ

defined by ḡ|bi = gi|bi , ḡ|gi(bi) = g−i|gi(bi), and

ḡ|((∨̇∞i=1bi)∨̇(
∨̇∞

i=1g
i(bi)))c = id|((∨̇∞i=1bi)∨̇(

∨̇∞
i=1g

i(bi)))c belong to G as well.

Also ḡ(a ∧ b) = id(a ∧ b) = a ∧ b and ḡ(b) = ḡ((
∨̇∞
i=1bi)∨̇(a ∧ b)) =
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= (
∨̇∞
i=1g

i(bi))∨̇id(a ∧ b) ≤ (
∨̇∞
i=1(a \ b))∨̇(a ∧ b) = (a \ b)∨̇(a ∧ b) = a. 2

Proposition 5.3.2 Let (B,G) be a complete Boolean ambiguity algebra, then

(B,G) is an MV-pair.

Proof.

MVP1 As Proposition 5.2.5 (we only must to use [17] Lemma 2.4 instead of

[17] Lemma 4.3).

MVP2

Let (B,G) be a complete Boolean ambiguity algebra. From Lemma 3.2.5 it

suffices to prove that for all a, b ∈ B there exist m ∈ max(L(a, b)) such that

m ≥ a ∧ b.
Vetterlein, in [17] Section 2, make use of parts of theory developed by Kawada

in [14]. Lemma 16 [14] and Lemma 2.7 [17], It shows that there is a pair e, f ∈ B
of disjoint elements wich are invariant under G and g1, g2, g3 ∈ G such that

g1(a∧e) ≤ b∧e, g2(b∧f) ≤ a∧f and g3(a∧(e∨f)c) = b∧(e∨f)c. From Lemma

5.3.1 there is ḡ2 ∈ G such that ḡ2(b ∧ f) ≤ a ∧ f and ḡ2((b ∧ f) ∧ (a ∧ f)) =

(b ∧ f) ∧ (a ∧ f) = a ∧ b ∧ f .
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Therefore we have

a ∧ e ≤ g−1
1 (b ∧ e), a ∧ (e ∨ f)c = g−1

3 (b ∧ (e ∨ f)c), (11)

ḡ2(b ∧ f) ≤ a ∧ f (12)

and ḡ2((b ∧ f) ∧ (a ∧ f)) = (b ∧ f) ∧ (a ∧ f) = a ∧ b ∧ f (13)

(see Figure 6).

Since (B,G) is full and the elements e and f are invariant under G, the auto-

morphism g defined by

g|e = g−1
1 |e, g|(e∨f)c = g−1

3 |(e∨f)c and g|f = ḡ2|f is in G. (14)

We call b′ = g(b). From (11), (12), (13) and (14) we have:
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a ∧ b ∧ e ≤ a ∧ e ≤ g−1
1 (b ∧ e) = g(b ∧ e) =

= g(b) ∧ g(e) = g(b) ∧ e = b′ ∧ e, (15)

a ∧ b ∧ (e ∨ f)c ≤ a ∧ (e ∨ f)c = g−1
3 (b ∧ (e ∨ f)c) = g(b ∧ (e ∨ f)c) =

= g(b) ∧ g((e ∨ f)c) = g(b) ∧ (e ∨ f)c = b′ ∧ (e ∨ f)c ,and

a ∧ b ∧ f = ḡ2(a ∧ b ∧ f) ≤ ḡ2(b ∧ f) = g(b ∧ f) = g(b) ∧ g(f) = (16)

= g(b) ∧ f = b′ ∧ f,

Therefore (a∧b∧e)∨(a∧b∧(e∨f)c)∨(a∧b∧f) ≤ (b′∧e)∨(b′∧(e∨f)c)∨(b′∧f)

that is a ∧ b ≤ b′ and then a ∧ b ≤ a ∧ b′.

We will prove that |a ∧ b′| = |a| ∧ |b|.
It is clear thah |a ∧ b′| ≤ |a| and |a ∧ b′| ≤ |b|. Let x ∈ B such that |x| ≤ |a|
and |x| ≤ |b|, then ∃f1, f2 ∈ G such that f1(x) ≤ a and f2(x) ≤ b. We have:

f1(x ∧ e) = f1(x) ∧ f1(e) = f1(x) ∧ e ≤ a ∧ e ≤ b′ ∧ e (by(15)) and thus

f1(x ∧ e) ≤ a ∧ b′ ∧ e. (17)

Let f3 = g ◦ f2. Note that ec = (e ∨ f)c ∨ f (since e ∧ f = 0) and e and f are

invariant under G, then from (11),(12) and (14) we have that

f3(x∧ec) = f3(x)∧f3(ec) = f3(x)∧ec = g(f2(x))∧ec = g(f2(x))∧((e∨f)c∨f) ≤
g(b)∧ ((e∨ f)c∨ f) = (g(b)∧ (e∨ f)c)∨ (g(b)∧ f) = g(b∧ (e∨ f)c)∨ g(b∧ f) =

g−1
3 (b∧ (e∨ f)c)∨ ḡ2(b∧ f) = (a∧ (e∨ f)c)∨ ḡ2(b∧ f) ≤ (a∧ (e∨ f)c)∨a∧ f =

a∧((e∨f)c∨f) = a∧ec. Furthermore f3(x∧ec) ≤ f3(x) = g(f2(x)) ≤ g(b) = b′.

Therefore

f3(x ∧ ec) ≤ a ∧ b′ ∧ ec. (18)

Since G is full and e and f are invariant under G, the automorphism h defined

by h|e = f1|e and h|ec = f3|ec is in G. Then by (17) and (18)

h(x) = h((x ∧ e) ∨ (x ∧ ec)) = h(x ∧ e) ∨ h(x ∧ ec) = f1(x ∧ e) ∨ f3(x ∧ ec) ≤
≤ (a ∧ b′ ∧ e) ∨ (a ∧ b′ ∧ ec) = a ∧ b′.
Therefore |x| ≤ |a ∧ b′| and then |a ∧ b′| = |a| ∧ |b|.

Finally, from Lemma 5.2.4, we have that a ∧ b′ ∈ max(L+(a, b)). 2
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As previous section, let (B,G) be a Complete Boolean ambiguity algebra then,

(I) From Theorem 5.1.3, (B∼,�,¬, 0) is an MV-algebra. We call it V(B,G).

(II) From Proposition 5.3.2 (B,G) is an MV-pair and then, from Theorem

3.3.1, M = (B∼,⊕, 0, 1) is an MV-effect algebra . Therefore from Propo-

sition 4.2.2, MT = (B∼, �̂, ¬̂, 0) is an MV-algebra. We call it J (B,G).

Proposition 5.3.3 Let (B,G) be a normal Boolean ambiguity algebra and

let the MV-algebras V(B,G) and J (B,G) as (I) and (II).

Then V(B,G) = J (B,G) and It are semisimple.

Proof. It is proved in exactly the same form that Proposition 5.2.6, Lemma

5.2.8, Corollary 5.2.9 and Proposition 5.2.10. 2

We will see now that if we build on a semisimple MV-algebra and obtain,

through Proposition 4.2.2 and Theorem 3.3.3, an MV-pair it does not neces-

sarily constitute a Complete Boolean ambiguity algebra.

Lemma 5.3.4 Let C = [0, 1] the semisimple MV-algebra as examlpe 5.0.6

and CP as example 5.0.7. Let B(CP) be the Boolean algebra R-generated by

CP then B(CP) is not σ−complete.

Proof. ([10] II.4 Lemma 25) Let 0 < x1 < x2 < . . . < xn < . . . < 1 (for

example xn = n
n+1

, n ∈ N) and let an = x1+x2+. . .+x2n, n ∈ N. We claim that∨
{an, n ∈ N} does not exist. Indeed, let a be an upper bound for {an, n ∈ N}.

By example 1.3.14 we can represent an as (x1, x2] ∪ (x3, x4] ∪ . . . ∪ (x2n−1, x2n]

and a as (a1, a2] ∪ (a3, a4] ∪ . . . ∪ (a2m−1, a2m] with 0 ≤ a1 < a2 < . . . <

a2m < 1. Since a contains each an, there must exist an n and j < m such that

both (x2n−1, x2n] and (x2n+1, x2n+2] are contained in (a2j−1, a2j]. Therefore, the

interval (x2n, x2n+1] can be deleted from a, and it will still contain all the ai,

that is, a+ x2n+1 + x2n+2 is an upper bound for {an, n ∈ N} and

a + x2n+1 + x2n+2 < a. We conclude that {an, n ∈ N} does not have a least

upper bound. 2
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Corollary 5.3.5 Let CP as above and let (B(CP), G(CP)) be the MV-pair

as

Theorem 3.3.3, then (B(CP), G(CP)) is not a complete Boolean ambiguity

algebra.

Proof. Lemma 5.3.4. 2

5.4 Final remark

We have proved (Propositions 5.2.5 and 5.2.10) that if (B,G) is a normal

Boolean ambiguity algebra, then (B,G) is an MV-pair and there is a semisim-

ple MV-algebra MT = (B∼, �̂, ¬̂, 0) arising from it. Following [6], we denote it

B∼G
. Furthermore if M is a semisimple MV-algebra then as shown in Proposi-

tions 5.2.14, the pair (B(MP), G(MP)) is a normal Boolean ambiguity algebra

(and thus an MV-pair). Following again [6], we denote it (B(M), G(M)).

We want to show that these constructions are functorial. The followings defi-

nitions and results are taken from [6].

Let (B1, G1) and (B2, G2) be MV-pairs, we say that ψ is a morphism of MV-

pairs iff

(i) ψ : B1 → B2 is a morphism of Boolean algebras.

(ii) For all x, y ∈ B1, x ∼G1 y implies ψ(x) ∼G2 ψ(y).

(iii) For all x, y ∈ B1 and f2 ∈ G2 there exists f1 ∈ G1 such that

|ψ(x) ∧ f2(ψ(y))|G2
≤ |ψ(x ∧ f1(y))|G2

.

The class of MV-pairs equipped with morphisms of MV-pairs forms a category

P .

It is proved that if M1 and M2 are MV-algebras then the map ψM : B1∼G1
→

B2∼G2
given by ψM(|x|G1

) = |ψ(x)|G2
is a morphism of MV-algebras. Moreover

the map ∆ : P → M (where M is the category of MV-algebras) given by

∆((B,G)) = B∼G
and ∆(ψ) = ψM is a functor.

On the other hand using the fact [10] that all morphisms of bounded distribu-

tive lattices ϕ : M1 → M2 uniquely extends to a homomorphism of Boolean
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algebras ϕB : B(M1) → B(M2) (where B(M1) and B(M2) are the Boolean

algebras R-generates by M1 and M2) it is proved in [6] that ϕB is a morphism

between the MV-pairs (B(M1), G(M1)) and (B(M2), G(M2)), and the map

∇ : M → P given by ∇(M) = (B(M), G(M)) and ∇(ϕ) = ϕB is a faithful

functor.

Note that if M is an MV-algebra then ∆(∇(M)) = B(M)∼G(M)
. Therefore

from Theorem 3.3.3 ∆(∇(M)) = B(M)∼G(M)
∼= M and the map ηM : M →

B(M)∼G(M)
defined by ηM(x) = |x|G(M) is an isomorphism of MV-algebras.

Furthermore it is proved in [6] that if ψ : M1 −→ M2 is a morphism of MV-

algebras then the diagram

M1 ∆(∇(M1))

M2 ∆(∇(M2))
?

ψ

-
ηM1

?

∆(∇(ψ))

-
ηM2

commutes. Therefore η : 1MV ≈ ∆∇ is a natural equivalence, where 1MV is

the identity functor on M.

Let N denote the full subcategory of P whose objects are the normal Boolean

ambiguity algebras, and let S denote the full subcategory ofM whose objects

are the semisimple MV-algebras. Propositions 5.2.10 and 5.2.14 show that we

can consider the restrictions of the functors ∆ and ∇ to N and S. Formally:

Let (B,G), (B1, G1) and (B2, G2) be normal Boolean ambiguity algebras

and let ψ : (B1, G1) −→ (B2, G2) be a morphism of MV-pairs. We call ∆̃

to the map ∆̃ : N → S given by ∆̃((B,G)) = B∼G
and ∆̃(ψ) = ψM .

Let M,M1 and M2 be semisimple MV-algebras and let ϕ : M1 →M2 be

a morpfism of MV-algebras. We call ∇̃ to the map ∇̃ : S → N given by

˜∇(M) = (B(M), G(M)) and ∇̃(ϕ) = ϕB.

We immediately obtain that ∆̃ : N → S is a functor, ∇̃ : S → N is a faithful

functor and η : 1S ≈ ∆̃∇̃ is a natural equivalence, where 1S is the identity

functor on S.
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