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Resumen

En la actualidad, la enfermedad del Chagas sigue siendo una epidemia de escala global.
Ésta se encuentra extendida en gran medida a lo largo de todo el continente americano
y con métodos de control que se concentran sobre las regiones infestadas por el vector
de transmisión. Los patrones de movilidad humana representan un factor importante
en la propagación geográfica de esta enfermedad. El movimiento de áreas de alta a
baja infestación es fortalecida por migraciones de tipo estacionales o de larga duración.
Usando datos anonimizados de llamados por telefonía celular, y en colaboración con la
Fundación Mundo Sano, en este trabajo se busca evaluar la relación entre los patrones
de uso celular y el de las migraciones humanas, explorando las relaciones sociales
subyacentes en las interacciones de telefonía móvil. Este análisis servirá para ayudar
en los esfuerzos de prevención del Chagas en Argentina y México, donde se lograron
identificar posibles focos endémicos de esta enfermedad fuera de la zona de infestación
vectorial. Para hacer esto, utilizamos diferentes modelos probabilísticos del subcampo
de Aprendizaje Automático. Para cada usuario más de 150 atributos fueron extraídos
de los datos y analizados para evaluar la probabilidad de que el usuario haya migrado
desde la zona endémica. Los resultados aquí expuestos sirven para discriminar
aquellos atributos más relevantes en la detección de estos movimientos, especialmente
en usuarios de fuertes lazos sociales con la región endémica, de alta movilidad y en
usuarios con un alto grado de movilidad. A través de visualizaciones geográficas,
logramos agregar estas relaciones sociales para mostrar locaciones tradicionalmente
no endémicas que potencialmente sean focos endémicos y que aún no son reconocidos
como tales.



Abstract

The Chagas disease continues to represent a global epidemiological problem, particu-
larly for the South American continent. Current control methods focus solely on the
vector-infested regions. Still, human mobility patterns represent an important factor
in the geographical spread of this disease, since its dissemination from high to low
infested regions is strengthened by seasonal and long-term migrations.

Using anonymized mobile phone data, and in collaboration with the Mundo
Sano Foundation, the objective of this work is to assess the relationship of calling
patterns and user behavior, with migrations. This analysis, in turn, helps for Chagas
prevention efforts in Argentina and Mexico, where we identified possible endemic
foci outside of vector-infested regions.

To do this, we evaluated different Machine Learning techniques as probabilistic
models. More than 150 features were extracted from the data and related to the
probability of having lived or moved from an endemic region.

The results here presented identify key features for the detection of these move-
ments, especially in users with strong ties to the endemic regions or with high mobility
patterns. By presenting geographic visualizations of social ties, we tag locations
outside the endemic region with a hypothetical higher prevalence rate.
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Chapter 1

Introduction

Chagas disease is a tropical parasitic epidemic of global reach, spread mostly across
21 Latin American countries. The World Health Organization (WHO) estimates
more than six million infected people worldwide (who2016). Caused by the Try-
panosoma cruzi parasite, its transmission occurs mostly in the American endemic
regions via the Triatoma infestans insect family. It is also known as “kissing bug”
and “vinchuca” in the local variation for Argentina, Bolivia, Chile and Paraguay.
In Central America the bug is more commonly known as “chinche”. In recent
years and due to globalization and migrations, the disease has become an issue
in other continents (schmunis2010chagas), particularly in countries that receive
Latin American immigrants such as Spain (navarro2012chagas) and the United
States (hotez2013unfolding). As a consequence this disease has become a global
health problem.

A crucial characteristic of the infection is that it may last 10 to 30 years in
an individual without being discovered (rassi2012american), which greatly com-
plicates effective detection and treatment. About 30% of individuals with chronic
Chagas disease will develop any type of symptoms which include life-threatening
cardiomyopathies or gastrointestinal disorders. Long-term human mobility, particu-
larly seasonal and permanent rural-urban migration, play a key role in the epidemic
spread (briceno2009chagas). Other relevant routes of transmission include blood
transfusion, congenital contagion –with an estimated 14,000 newborns infected each
year in the Americas (OPS2006chagas)–, organ transplants, accidental ingestion
of food contaminated by Trypanosoma cruzi, and laboratory accidents.

The spatial dissemination of a congenitally transmitted disease sidesteps the
available measures to control risk groups, and shows that individuals who have not
been exposed to the disease vector should also be included in detection campaigns.
To the best of our knowledge, current studies on human migration patterns in Latin
America can provide only coarse and outdated information on user flows at specific
municipal levels, without national territory coverage.
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In this work, we discuss and explore the use of mobile phone records –also known
as Call Detail Records (CDRs)– for the analysis of mobility patterns and the detection
of possible risk zones of Chagas disease in two Latin American countries. We rely on
key health expertise on the subject, provided by the Mundo Sano Foundation. To do
this, we will explore the data and rely on a set of different Machine Learning tools.
In the remainder of this chapter we will give some key aspects of Chagas disease,
and introduce some particular aspects of the countries of our study: Argentina and
Mexico. We will also give a very brief overview of the field of Machine Learning.

1.1 Mobile Phone Records, Mobility and Epidemiology

The scientific analysis of mobile phone datasets, collected by operators within their
network, is a recent field of study, with a corpus of published works starting in
2005, and a noticeable increase of publications from 2012 onward, as reported in
the survey of (naboulsi2015mobile). Other milestones of this increased interest of
the scientific community are the NetMob conferences, focused on mobile phone data
analysis (see (netmob)).

Mobile traffic contains information about the movement, interactions, and mobile
service consumption of individuals at unprecedented scales. This attracted scientists
from multiple disciplines: sociologists, epidemiologists, physicists, transportation
and telecommunication experts found in these datasets a clear opportunity to bring
their analyses to an unprecedented scale while retaining a high level of detail on each
individual. Thanks to the growing availability of datasets, collaborations between
academic research groups and network operators based on the analysis of real-world
mobile traffic have been flourishing. A significant example is the Data for Development
Challenges by Orange (d4d) in which CDRs from the telecommunication operator was
provided. This let international research laboratories compete under an innovation
challenge whose objective is to contribute to social welfare.

In CDR analysis one of the main research subjects is mobility analysis, where
calls can be located by means of knowing cellphone tower geolocalization and by
then matching calls to one of these points. This provides fine granularity projec-
tions of users trajectories and in this way users have been found to show a strong
regularity in their movement patterns, both in space and time, as described in
(gonzalez2008understanding).

In another study, (song2010limits) explore the limits of predictability in human
dynamics by studying the mobility patterns of anonymized mobile phone users. By
measuring the entropy of individuals trajectories, the authors found a 93% potential
predictability in user mobility across the whole user base.

Human mobility is also influenced by social components: (cho2011friendship)
observe that social relationships can explain about 10% to 30% of all human movement,
while periodic behavior explains 50% to 70%; whereas (ponieman2016mobility)
show how social ties can be used to improve mobility predictions, for the case of
people attendance to large social events.
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Mobility analysis has applications in diverse areas such as urban planning (see
(wang2012understanding)) and disaster recovery (see (lu2012predictability)).
In particular, mobile phone records contain information about the movements of large
subsets of the population of a country, and make them very useful to understand the
spreading dynamics of infectious diseases, while preserving the privacy of users.

For instance, CDRs have been used to understand the diffusion of malaria in Kenya
by (wesolowski2012quantifying) and in Ivory Coast by (enns2013human), in-
cluding the refining of infection models performed by (chunara2013large). The
cited works on Ivory Coast were presented using the “Data for Development” ((d4d))
challenge datasets released in 2013. (tizzoni2014use) compare different mobility
models using theoretical approaches, available census data and algorithms based on
CDRs interactions to infer people movements. They found that the models based
on CDRs and mobility census data are highly correlated, illustrating CDR use as
mobility proxies.

Mobile phone data has also been used to predict the geographic spread and timing
of Dengue epidemics by (wesolowski2015impact). This analysis was performed
for the country of Pakistan, which is representative of many countries on the verge
of countrywide endemic dengue transmission. Other works directly study CDRs to
characterize human mobility and other sociodemographic information. A complete
survey of mobile traffic analysis articles may be found in (naboulsi2015mobile),
which also reviews additional studies based on the Ivory Coast dataset mentioned
above.

In this work we intend to show how these data can help in the problem of Chagas
disease, by means of accurately describing people migrations and movements at
a national level. We expect to add more relevant information to the problem of
detecting foci of communities with high rates of prevalence, out of the endemic
region.

It is relevant to the purpose of this work to note that specifically tagging disease-
carriers is out of scope. We have no reason to believe that this dataset can provide
such information with accuracy and we have not found any data sources to cover
this missing information.

1.2 Machine Learning

Machine learning is a sub-field of computer science with broad theoretical intersections
with statistics and mathematical optimization. At present time, it has a wide range
of applications. A non-comprehensive list of its uses includes self-driving cars, Spam
detection systems, face and voice recognition, temperature prediction in weather,
AI opponents in games, disease detection in patients, text and audio language
translation, stock pricing, movie recommendation systems, etc. Examples of these
Machine Learning programs are now widespread to the point where their use today
has a direct impact on the daily lives of millions of people. Due to this, Machine
Learning has practical intersections with data and software engineering.
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(Mitchell-MLearning) gives the following definition of Machine Learning: “A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E”.

For our purposes it is clear though that this definition1 is not a mathematical
one. However it serves to convey the idea of algorithms that automatically learn to
do a specific task better over time and with more data. Note that the “goodness” of
their performance is inherently subjected to the evaluation criteria chosen for the
task. Because of this, the concept of learning within this context is less associated
with the cognitive definition and more related to an optimization based approach.

In this thesis we break down our purpose of work into different tasks to generate
predictions of population movements between regions. We give a broad presentation
of tools that are necessary to carry out this task and, additionally, we give an
introduction to the field’s vocabulary, theory and practical notes on how it can be
used for this kind of problems.

We later start solving the tasks as we introduce a set of supervised classification
algorithms. All along this work, the idea will be to exemplify the concepts as much
as we can with actual work on the CDR data. Also, we will try to assess what are
the best attributes that can be extracted from the data for the prediction tasks.

The problem of long-term human migrations will provide a proxy to understand
the spread of Chagas disease. This work’s objective is to show that geolocalized call
records are rich in social and individual information, which can in turn be used to
determine whether an individual has lived in an epidemic area. We present two case
studies, in Argentina and in Mexico, using data provided by mobile phone companies
from each country. To the best of our knowledge, this is the first work that leverages
mobile phone data to better understand the diffusion of the Chagas disease.

1.3 Key Facts on Chagas Disease

1.3.1 Chagas Disease in Argentina

For more than 50 years, vector control campaigns have been underway in Argentina
as the main epidemic counter-measure. The Gran Chaco, situated in the northern
part of the country is home to the disease-carrying triatomines. This region is
hyper-endemic for the disease (OPS2014mapa). A map of this ecoregion is shown
in Figure 1.3.1.

The ecoregion’s low socio-demographic conditions further support the parasite’s
life-cycle, where domestic interactions between humans, triatomines and animals
foster the appearance of new infection cases, particularly among rural and poor
areas. This region is considered as the endemic zone EZ in the analysis described in
Chapter 2 and Chapter 3.

1. Other authors might reference to Machine Learning as statistical learning.
See (hastie-elemstatslearn) as an example.
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Figure 1.3.1 The Gran Chaco ecoregion in South America.

The dynamic interaction of the triatomine infested areas and the human mobility
patterns create a difficult scenario to track down individuals or spots with high
prevalence of infected people or transmission risk. Available methods of surveying the
Chagas disease state in Argentina are nowadays limited to screenings of individuals.

Recent national estimates indicate that there exist between 1.5 and 2 million
people carrying the parasite, with more than seven million exposed. National health
systems face many difficulties to effectively treat the disease. In Argentina, less than
1% of infected people are diagnosed and treated (the same statistic holds at the
world level).

Even though governmental programs have been ongoing for years now (plan_nacional_chagas),
data on the issue is scarce or of difficult access. This presents a real obstacle to
ongoing research and coordination efforts to tackle the disease in the region.

1.3.2 Chagas Disease in Mexico

In 2004, the joint work of Instituto Nacional de Cardiología “Ignacio Chávez” and
Instituto de Biología de la UNAM resulted in a Chagas disease database for Mexico
((cruz2006chagmex)). Reviewing positive serology in blood banks and human
reported cases per state, an epidemic risk map description was produced to geograph-
ically situate the disease. Based on this data, we defined the Mexican epidemic area,
selecting the states having the top 25% prevalence rates nationwide. The resulting
risk region is shown in Figure 1.3.2. It covers most of the Southern region of the
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country and includes the states of Jalisco, Oaxaca, Veracruz, Guerrero, Morelos,
Puebla, Hidalgo and Tabasco. This region is considered as the endemic zone EZ for
the Mexican case in the analysis described in Chapter 2 and Chapter 3.

Figure 1.3.2 Endemic region EZ for Mexico.

The authors of (carabarin2013chagas) provide an extensive review of the
research reports on Chagas disease in Mexico. The review is very critical, stating
that there are no effective vector control programs in Mexico; and that the actual
prevalence of the disease can only be estimated because no official reporting of cases
is performed.

According to (dumonteil1999update), there are a total of 18 endemic areas
in Mexico, located in the southeast, and these areas include the states of Oax-
aca, Jalisco, Yucatán, Chiapas, Veracruz, Puebla, Guerrero, Hidalgo, and Morelos,
all of them with rural areas. Chiapas, Oaxaca, Puebla, Veracruz and Yucatán
are among the most affected states (where the prevalence may exceed 10%), al-
though cases have been reported in most areas of the country ((cruz2006chagmex;
dumonteil1999update)). Despite the lack of official reports, an estimate for
the number of Trypanosoma cruzi infections by state in the country indicates
that the number of potentially affected people in Mexico is roughly 5.5 million
(see (carabarin2013chagas)). Mexico, together with Bolivia, Colombia, and Cen-
tral America, are among the countries most affected by this neglected tropical disease
(NTD), as reported by (hotez2013innovation). For what we know, nowadays
the disease spreads across borders: Chagas and other neglected tropical diseases
present in the north of Mexico remain highly endemic in the south of Texas as well
((hotez2012texas)).

In recent years there has been a focus on treating the disease with two available
medications, benznidazole or nifurtimox. A study that explores the access to these
two drugs in Mexico shows that less than 0.5% of those who are infected with the
disease received treatment in Mexico in years ((manne2013barriers)).

People from endemic areas of Chagas disease tend to migrate to industrialized
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cities of the country, mainly Mexico City, in search of jobs. In accordance with this
movement, (guzman2001epidemiology) showed that infected children under 5
year of age are frequently distributed in urban rather than in rural areas, indicating
that the disease is becoming urbanized in Mexico. Therefore, as in the Argentinian
case, the study of long-term mobility is crucial to understand the spread of Chagas
disease in Mexico.

1.4 Thesis Structure
Chapter 2 will present the data sources and give the main idea behind how we process
the data. It will also show some basic descriptive aspects of the information that can
be found in the CDR logs and how it compares to other data sources. Finally, the
chapter will develop the methodology used to construct chagasic national disease risk
maps from the data logs. Examples of maps will be shown to illustrate the results
found.

In Chapter 3 we will give a more in-depth introduction to Machine Learning
theory, describing use cases, ideas and concepts from this field. Our long-term
migration prediction tasks will be formulated in a way that can be used in a binary
classification problem that can be later input to a statistical model. Added to this,
we will introduce Machine Learning theory along with examples of applications on
the processed dataset. We will use various examples with the Logistic Regression
classifier in order to illustrate the concepts involved.

Chapter 4 will further expand concepts from the field of Machine Learning that
will be used throughout our analyses. We will also give an overview of different
strategies to select the best statistical models.

Chapter 5 will concentrate on specific tree-based algorithms for Supervised
Machine Learning Classification tasks. We will introduce the minimal formulations
for the models, as well as their applications. For each of these, we will dive into
their main benefits and drawbacks, and we will compare all of them under a common
classification problem. Finally, along with the presentation of each method, we
will show specific long-term human migration experiments on the CDR data, For
each case we will show the results of these applications and the discoveries made.
Additionally, we will introduce the Naive Bayes as a model on which to benchmark.

We close this work with a summary of results in Chapter 6 where key information
from the previous chapters’ output is recollected. We then give this work’s conclusions
in Chapter 7, along with drawbacks from the methodology used and possible lines of
future work.



Chapter 2

Data Description and Risk Maps

This chapter will give a technical explanation of what raw Call Detail Records
(CDR) are and how they will be used throughout this work. The preprocessing and
manipulation of the data will be explained in depth, with all the details necessary
to build the epidemic risk maps that are presented in this chapter. All necessary
vocabulary and definitions will be introduced, along with the ideas used to build the
user-level covariates from the CDRs. Finally, some descriptive facts on both datasets
will be given, concerning data size, volume of transactions, feature correlations and a
comparison of telecommunication (TelCo) user distribution with national population
distributions.

2.1 Mobile Phone Data Sources

Our data source is anonymized traffic information from two mobile operators, in
Argentina and Mexico. Both companies service phone calls at the national level and
to a number of customers that amounts to a user base that sizes in the order of
millions. All of this information is contained in two different CDR datasets.

We make an important remark here that in the data the users’ privacy is ensured
by not providing a direct identifier of the persons. All users are distinguished
with their user_id which is information given by the TelCo with a salted hash
transformation. In this way, we are unable to use these identifiers in other data
sources other than the specific one used for this work.

For our purposes, each record is represented as a tuple 〈i, j, t, d, l〉, where user
i is the caller, user j is the callee, t is the date and time of the call, d is the call
direction (incoming or outgoing, with respect to the mobile operator client), and l is
the location of the tower that routed the communication.

The dataset does not include personal information from the users, such as name,
phone number, home address, etc. The users privacy is assured by differentiating
users by their salted and hashed ID, where encryption keys were managed exclusively
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by the telephone company.
All of the data was preprocessed excluding users whose monthly cellphone use

either did not surpass a minimal number of calls µ or exceeded a maximal number
M . This ensures we leave out outlying users such as call-centers or dead phones and,
for both datasets, we used µ = 5 and M = 400.

We then aggregate the call records for a five month period into an edge list
(ni, nj , wi,j) where nodes ni and nj represent users i and j respectively and wi,j
is a boolean value indicating whether these two users have communicated at least
once within the five month period. This edge list will represent our mobile graph
G = 〈N , E〉 where N denotes the set of nodes (users) and E the set of communication
links. We note that only a subset NC nodes in N are clients of the mobile operator,
the remaining nodes N \NC are users that communicated with users in NC but
themselves are not clients of the mobile operator.

Since geolocalization information is available only for users in NC , in the analysis
we considered the graph GC = 〈NC , EC〉 which results to communications only
between clients of the operator.

Datasets Information. The Argentinian dataset contains CDRs collected over
a period of 5 consecutive months. The raw data logs contain, in average, more
than 65 million calls per day. The calls were placed through a network of over 4000
geolocalized antennas. In total, data amounts to almost 10 billion calls.

The Mexican data source is an anonymized dataset from a national mobile phone
operator. Data is available for every call made within a period of 24 consecutive
months and the raw logs contain at least 11 and at most 47 million daily calls.
Each day, up to 8 million users accessed the telecommunication company’s (TelCo)
network. Note that users from other companies are logged, as long as one of the
users registering the call is a client of the operator. Again, we only considered CDRs
between users in NC since geolocalization was only possible for this group.

Information logged for each call included other aspects of the interaction. We
had data for the duration and timestamp of the call, the users participating in the
call and the antenna id that transmitted the call to the TelCo client.

Adding all data elements, the project involved working with more than 1.5
terabytes of data. The data was compressed using gzip format. The call logs, in this
data format, were parsed, processed, transformed and loaded to create the datasets
which were built as needed by this project.

Data Limitations. Although a lot of information is available in the CDR datasets,
there may be limitations in their representations of the whole national population. In
both cases, the data sources from a single mobile phone operator, and no information
is given on the spatial distribution of its users, relative to the national average. In
principle, we do not know if TelCo’s users are over- and under-represented across
national jurisdictions, in comparison to the nation’s national population distribution.
Therefore, calls might not accurately represent social interactions and movements
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between two given jurisdictions, given that we are provided with a biased sample of
users.

The same argument can be used to note that not all real population movements
will be captured by the logs. However, these limitations are offset by the huge
datasets’ sizes, from which we think we can safely assume that the amount of users
observed in each set is sufficient to correlate CDR usage with human mobility or
social links between different areas.

2.2 Risk Maps Generation
In this section we describe how the Chagas disease risk maps were built for Argentina
and Mexico, and we give an overview of their uses. As an overview, we use the risk
maps to hypothesize on the possibility of locating specific communities of higher
disease prevalence outside of the endemic regions. They are based on the assumption
that when we have stronger communication ties from one community to the endemic
region, we will find a higher chance of disease risk. Earlier versions of this project
were presented by (sarraute2015descubriendo) at Simposio Internacional sobre
Enfermedades Desatendidas, and(deMonasterio2016analyzing) at International
Conference on Advances in Social Networks Analysis and Mining. These were based
on the results contained in this chapter.

The generated heatmaps display a geographical representation with the TelCo’s
antennas situated on the map. For each antenna, a circle is drawn which represents,
graphically, the volume of usage of that antenna and the vulnerability of its users.
We will expand on this last concept later by analyzing the importance of this variable
in the detection of long-term migrations.

2.2.1 Home Detection

In order to build the risk maps, the first step is to infer the antenna in which each
user lives. The antenna’s neighborhood will define their home area of influence and
with this, their risk condition associated with being inside or outside the endemic
region.

Having the geolocalized data granular at the antenna level, we can match each
user u ∈ NC with their home antenna Hu. To do so, we assume Hu as the antenna in
which user u spends most of the time during weekday nights. This, according to our
categorization of weekday’s types, corresponds to Monday through Thursday nights,
from 8 pm to 6 am of the following day. Note that this home antenna analysis will
not precisely locate users yet it will define their area of influence. This will enable us
later to detect long range migrations by looking at changes in these home antennas.

This home characterization is based on the assumption that on any given day, users
will be located at home during night time. The implications of this assumption for
CDRs are explored by (sarraute2015socialevents) and by(csaji2012exploring).
There, the authors explain that given the large user base, this assumption proves
helpful when trying to predict migration patterns at large scale. For our case we
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need not detect specific agent movements but are more interested in movement of
large amount of people.

Given a user’s Hu,they will be considered endemic if their inferred home antenna
is located in the endemic zone EZ . These tagged users are considered to be the
set of residents of EZ . In the case of Argentina, the risk area is the Gran Chaco
ecoregion, as described in Section 1.3.1; whereas in the case of Mexico, we used the
region described in Section 1.3.2.

2.2.2 Detection of Vulnerable Users

Given the set of inhabitants of the risk area, we want to find those with a high
communication pattern with residents of the endemic zone EZ . To do this, we get the
list of calls for each user and then determine the set of their neighbors in the social
graph GC . For each resident of the endemic zone, we tag all their graph neighbors as
potentially vulnerable. We also tag the calls to (from) a certain antenna, or cell, from
(to) residents of the endemic area EZ as vulnerable calls. With our definition, a user
with at least one call from (to) the endemic area is enough to qualify as vulnerable.

The next step is to aggregate this data for every antenna. Given an antenna a,
we will have:

• The total number of residents Na (this is, the number of people for which a is
their home antenna).

• The total number of residents which are vulnerable Va.

• The total volume of outgoing calls Ca from every antenna.

• From the outgoing calls, we extracted every call that had a user whose home is
in the endemic area EZ as a receiver V Ca (vulnerable calls).

These four numbers 〈Na, Va, Ca, V Ca〉 are the properties we extracted for each
antenna in the studied countries.

2.2.3 Heatmap Generation

With the collected antenna properties, we generated heatmaps to visualize the
mentioned antenna indicators, overlapped with political maps of the corresponding
region. In them, a circle is generated for each cell, where:

• the area depends on the number of TelCo users living in the antenna Na.

• the color, is related to the fraction Va/Na of vulnerable users living there.

We used two filtering parameters to control which antennas are plotted.

• β: The antenna is plotted if its fraction of vulnerable users is higher than β.

• mv: The antenna is plotted if its population is bigger than mv.
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When displaying the maps, these parameters were helpful to identify special small
antenna’s circles which were covered under the circles of larger volume antennas.
Having more than four thousand antennas for each plot means that a high number of
these would graphically overlap with small neighboring ones. This noise is unhelpful
for the detection of smaller, more vulnerable, antennas.

These parameters were tuned differently when zooming into different regions. For
example: an antenna whose vulnerable percentage would be considered low at the
national level can be locally high when zooming in at a more local level. The filtering
parameters helped us explore these cases in more detail, and provided great insight
to the Mundo Sano Foundation. The following section presents these maps.

2.3 Risk Maps Visualizations

2.3.1 Risk Maps for Argentina

As a first visualization, maps were drawn using a provincial or national scale. Advised
by Mundo Sano Foundation’s experts, we then focused on areas of specific epidemic
interest.

Figure 2.3.1 shows the risk maps for Argentina, generated with two values for the
β filtering parameter, and fixing mv = 50 inhabitants per antenna. After filtering
with β = 0.15, we see that large portions of the country harbor potentially vulnerable
individuals. Namely, Figure 2.3.1 (b) shows antennas where more that 15% of the
users has social ties with the endemic region EZ .

Figure 2.3.2 shows a close-up for the Cordoba and Santa Fe provinces, where
we can see a gradient from the regions closer to the endemic zone EZ to the ones
further away.

2.3.2 Detection of Vulnerable Argentinean Communities

As a result of inspecting the maps in Figure 2.3.1, we decided to focus visualizations
in areas whose results were unexpected to the epidemiological experts. These areas
included the provinces of Tierra del Fuego, Chubut, Santa Cruz and Buenos Aires,
with special focus on the metropolitan area of Greater Buenos Aires whose heatmap
is shown in Figure 2.3.3.

In some cases, antennas stood out for having a significantly higher link to the
epidemic area than the adjacent ones. Our objective here was to enhance the
visualization in areas outside of Gran Chaco looking for possible host communities
of migrants from the ecoregion, inferred by the social links shown in the CDRs. Our
assumptions were that if, in average, there was a higher percentage of vulnerable
users in that non-epidemic antenna, this would mean that there’s a high possibility
of having more infected users in that community.

As an outcome of analyzing these visualizations, we were able to locate special
antennas which stand out over their neighboring ones. These high risk antennas
were then located and separated for manual inspection along with the Mundo Sano
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(a) β = 0.01 (b) β = 0.15
Figure 2.3.1 Risk maps for Argentina, filtered according to the value of β.

Foundation collaborators. They used this information it as an aid for their campaign
planning and as education for community health workers.

This data exploration allowed us to specifically detect outlying communities
in the focused regions. Some of these can be seen directly from the heatmap in
Figure 2.3.3, where the towns of Avellaneda, San Isidro and Parque Patricios have
been pinpointed.
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Figure 2.3.2 Risk map for Cordoba and Santa Fe provinces, filtered according to β = 0.15.

2.3.3 Risk Maps for Mexico

With the data provided by the CDRs and the endemic region defined in Section 1.3.2,
heatmaps were generated for Mexico using the methods described in Section 2.2.1.
The first generated visualizations are depicted in Figure 2.3.5, which includes a map
of the country of Mexico, and a zoom-in on the South region of the country. We
used mv = 80 inhabitants per antenna, and a high filtering value β = 0.50, which
means that in all the antennas shown in Figure 2.3.5, more that 50% of inhabitants
have a social tie with the endemic region EZ . For space reasons, we don’t provide
here more specific visualizations and analysis of the regions of Mexico.

2.4 Data Features

The quality of any Machine Learning task on CDRs relies heavily on the ability
to characterize the users and their communication patterns, in ways that are as
relevant as possible to the task. In general, the features constructed reflect calling
and mobility patterns, segmented by different time periods during the week, and
tagging whether the actions or subjects are ‘endemic’.

Our goal in building a Machine Learning model is to evaluate and analyze if
long-term migrations can be accurately predicted from the CDR data. Added to
this, we would like to know what type of information extracted from the data has
most predictive power to our problem’s variable. This result would tell us which
data features are informative in detecting migrations, which in turn, would test the
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Figure 2.3.3 Risk map for the metropolitan area of Buenos Aires, filtered with β = 0.02.

Figure 2.3.4 Risk map for the metropolitan area of Buenos Aires, filtered with β = 0.2.
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(a) National map, β = 0.50

(b) South region of Mexico, β = 0.50

(c) State of Mexico, β = 0.50
Figure 2.3.5 Risk maps for Mexico, filtered according to the value of β.
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assumption on which we build the risk maps in Section 2.3. The CDR logs available
for Argentina span a period of 5 months, whereas the Mexican dataset includes 24
months, from January 2014 to December 2015, making it more suitable for this study.

To begin with, we divide the available data into two distinct periods: T0, from
January 2014 to July 2015, considered as the “past” in our experiment; and T1, from
August 2015 to December 2015, considered as the “present”. Our dataset will only
run from August 2015 to December 2015 (period T1), where all CDRs are processed
to extract information by user and by link. This is done because we can’t introduce
data from T0 for a model trying to predict this same information.

To begin building attributes from the data, each week is divided into time periods:
Definition 2.4.1 (i) the period weekday is from Monday to Friday, on working
hours (from 8hs to 20hs); (ii) weeknight is from Monday to Friday, between 20hs and
8hs of the following day; and (iii) weekend is Saturday and Sunday.

The model consists of the following features, which can be grouped into 4
categories:

a) Used and Home Antennas: For each user u ∈ NC , we register the top ten
most used antennas, during each month of the training period, together with the
number of calls made through each antenna. We tag all users having their home
antenna in the epidemic region as EPIDEMIC. In our dataset user antennas are
ordered with 0 being the most used antenna and 9 the least. We ignore those users
for which we don’t have ten used antennas and discard users that have no calls on
weeknights1. We also register the most used antennas considering only calls made
during the weeknight period, as defined in Definition 2.4.1. As explained before, a
user’s home antenna is defined by the most used antenna during weeknights and,
with this, users were tagged as ‘endemic’ if their home antenna is in the endemic
zone EZ and ‘exposed’ if any of the ten antennas logged is in the risk area. Finally,
we added the user’s province by referring to their home antenna’s membership.
b) Mobility Diameter: The user’s logged antennas define a convex hull in space
and the radius of this hull is taken to be the user’s mobility diameter. This length
is representative of the area of influence of that individual. We expect this feature
to be correlated with long-term migrations. We registered the mobility diameter of
each user, as the diameter in kilometers of the convex hull defined by their top 10
used antennas. Again, we generate two values for this attribute, considering (i) all
antennas used and (ii) only those used during weeknights.
c) Graph Data and Communications: We look at the social graph GC built

from the CDRs, and the communications between nodes in NC . For each edge
〈ni, nj〉 ∈ EC , we dive into each of their interactions, segmenting call data with
different criteria. For each month and pair of users 〈i, j〉, we gather the tuple
〈timeij , callsij , direction, period〉 where time is the sum of all calls (in seconds),
calls is the number of calls exchanged, direction is a boolean variable indicating
whether the calls were incoming or outgoing (from user i’s point of view) and period

1. This is because we wouldn’t be able to detect H1u.
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corresponds to a segmentation of the week into the periods weekday, weeknight, and
weekend. In this sense, two users ui, uj ∈ NC , ui 6= uj are neighbors in the social
graph if timeij > 0.

Since the samples in our dataset are users, we have to aggregate all of these
variables, by grouping interactions at the user level. Combinations of all of these
different variables amount to more than 150 features per user.

To illustrate the point, in Table 2.4.1 we show a small example of how two calling
features could look like, where we apply groupings and filters only on the user’s calls.
From here we extract the calling features by aggregating these variables up to the
user’s level. In practice, this means grouping either by j or i, and aggregating across
all of the different components.

Table 2.4.1
An example list of features that were built from the social graph dataset. Each attribute has

its code name and a description of the codes used to construct its name.
Feature
name

Call/Time Time Period Direction
of call

Endemicity Month

Calls
Weekend
InVul08

Count Placed on
Weekends

Incoming Edges with en-
demic neigh-
bors only

August

Time
Weeknight
Out12

Sum of
duration
in seconds

During week-
days and on
out-of-office
hours

Outgoing No endemic fil-
tering

December

We also label each edge 〈ni, nj〉 ∈ EC if one or both users is endemic and count
each user’s amount of neighbors in the communication graph, as well as the endemic
neighbors. This labeling defines user i as vulnerable whenever they have any edge
with another user j who lives in the endemic region EZ .

2.4.1 Antenna Distribution

As described before, the training data belongs to period T1, from August 2015 to
December 2015; whereas the ground truth that we use to validate the predictions
belongs to T0, from January 2014 to August 2015. Raw data logs contain between 11
million and 30 million calls per day and the volume of calls increases over the months,
where most recent months have higher rates. After preprocessing and cleaning the
dataset, we obtained a dataset with 1.6 million users. To create our model’s input
data, by means of relational database operations and algorithms that scrap the whole
dataset, we transform raw CDRs into a dataset where individuals correspond to a
single rows in the dataset.

To compare how this sampled population compares to country-wide distribution
estimates, Table 2.4.2 shows the percentage of antennas, the population (according
to INEGI census 2014) and of TelCo users per state, for the top 10 Mexican states.
This table describes the similarity between the population distribution of Mexico
versus the TelCo’s users to highlight possible sources of bias in the statistical model.
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Table 2.4.2
Table showing the Mexican distribution of antennas, total population and TelCo users by

state.

State Number of antennas Population TelCo users

Distrito Federal 28.2% 8.5% 20.1%
Mexico 21.2% 13.9% 23.8%
Jalisco 10.7% 6.4% 8.3%
Nuevo Leon 9.6% 4.9% 2.9%
Guanajuato 6.1% 4.8% 5.9%
Puebla 5.8% 5.3% 4.3%
Veracruz 5.4% 6.8% 4.2%
Baja California 4.3% 2.8% 1.1%
Yucatan 4.1% 1.7% 2.9%
Sinaloa 4.1% 2.5% 0.4%

As we see in Table 2.4.2, there are differences in the state distribution of TelCo
users in comparison with the population distribution from census data. This un-
balance is remarkably high for both the states of Mexico and the “Distrito Federal”
where the TelCo has a better coverage than in other states.

Note that during this work we considered only postpaid users, i.e., users which
have a monthly plan rate. This filtering was done because prepaid users have a
higher churn rate, thus meaning that phone lines are not necessarily associated with
one single person during the two years of analysis, making them less suitable for the
purpose of this study.

2.4.2 User Migrations

We performed an analysis similar to the home antenna detection previously described
in Section 1.3.2, but considering the time period T0 (from January 2014 to July
2015), in order to determine the home antenna of users during T0.

The number of people which maintain their home antenna between T0 and T1
is 1,012,416; whereas 580,425 users had a change in their home antenna. In terms
of endemic condition, we observed that 1,551,560 users maintained their endemic
condition, whether it be positive or negative, between T0 and T1, whereas 41,281 had
a change.

Table 2.4.3 shows the matrix of changes C, such that Ci,j is the number of users
that were in group i during period T0 (the past) and moved to group j during the
training period T1. As an example, lower left means was endemic, is now not endemic.

In relative numbers, this shows that only 2.59% of users had a change in their
endemic condition over time. A similar count results in that 66.0% of users have
not changed their home antenna from T0 to T1 and that approximately 5% of past
endemic users moved into non-endemic during this time period. This is not surprising
given that we wouldn’t expect a large number of people migrating in a time lapse of
only two years.
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Table 2.4.3
Matrix of user endemicity change across time periods T1 and T2.

Not endemic in T1 Endemic in T1

Not endemic in T0 1140360 18330
Endemic in T0 22951 411200

Table 2.4.4
Correlations of dataset attributes and a user’s endemic condition in T0.

Feature Correlation

Endemic in T0 1.0
Endemic in T1 0.933801
Call Count OUT 08/2015 0.730294
Vuln. calls 08 0.732498
Vuln. calls 09 0.714566
Vuln. calls 12 0.715448
Vuln. calls 10 0.694106
Vuln. calls 11 0.694265

2.4.3 Feature Correlations

The dataset used in this work shows significant correlations between communication
and mobility patterns. Some features are essentially highly correlated across time
periods. Thus knowing a user’s current endemicity will be highly correlated to
their past endemicity since a user being endemic in T1 is very correlated to being
endemic in T0. The same property extends to attributes of user’s interaction with
vulnerable neighbors during T1, where their relationship to the user’s endemicity in
T0 is expected. In these cases, it is important to know the value of their correlation
to the past endemicity of the user. In Chapter 5, we will leverage this observation to
improve our performance in predicting long-term migrations.

Table 2.4.4 quantifies these relationships, where only features with an absolute
correlation value higher than 0.25 are shown. It is notable that the correlation is
slightly increasing as we get closer to the split month i.e. the month chosen to separate
T0 from T1. This behavior might be an indicator of seasonality in the data, where
events from T1 more closer to T0 carry more intrinsic value. Added to this, there is a
very small indication that a user’s calling volume in the month of December is more
related to a user’s past endemicity in the sense that it carries a higher correlation
with their past endemicity. Again, this suggests data seasonality in the data, where
December is a festive month by tradition in Latin America.
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Machine Learning

This chapter will present an elementary introduction to Machine Learning where the
concepts and ideas developed here will be exemplified on concrete applications of
the processed CDR data, using a Logistic Regression classifier. Also, the chapter
will formulate the tasks that will be solved in later chapters, as means of casting the
prediction of the long-term human migrations as a supervised classification problem.

Most of the discussions here are based on information extracted from two distin-
guished textbooks: (bishop-patternRecognition) and (hastie-elemstatslearn).
Some fundamental concepts and material were also referenced from (scikit-learn).
When other texts were used, they have been cited correspondingly in the text, and,
where not specified, the reader can assume that the proof is given in the textbooks
above mentioned.

3.1 Overview of Supervised Classification Applications

Machine Learning is divided in two main categories: Supervised and Unsupervised
Learning. If we consider Y ∈ Rn be the output vector of a model and X ∈ Rn×p to
be the input matrix, supervised learning algorithms produce outputs from input data
i.e. for each instance x ∈ X, the computer has access to examples of outputs, y ∈ Y ,
and tries to reproduce them based on information contained in X. In this context,
the algorithm is generally referred to as a learner. The second class of problems is
where there is no output Y in the data. For this scenario the most common objectives
are clustering samples, estimating densities and compressing data.

In supervised learning, tasks are sub-categorized by the nature of the problem. If
the type of the output variable Y takes a (generally small) discrete set of values, then
it is said that it is a supervised classification problem. On the other hand, when the
output takes continuous (or dense in an open set of R) range of quantitative values,
it is said to be supervised regression problem. Note that regression problems can be
encoded into classification problems by grouping the output values into categories in
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which each takes a range of output values.
Suppose now that aim is to predict y given a new sample x. We denote this

prediction as ŷ and note that for supervised regression problems, y will comprise a
continuous variable. On the other hand for classification problems y will represent a
label for a certain class. For the case of K classes, we can say that y takes values
in the ranges 0 through K − 1 or 1 through K. In both cases, the joint probability
distribution p(X,Y ), called the true distribution, gives all the information we need
on these two variables. Yet the characterization of this probability is most often
unknown.

Noting this, the idea is to use estimations and predictions on the most likely values
ŷ for new samples and take decisions based on past information. These decisions will
be based on a probabilistic characterization of the problem, from the data we have.
In this work we will focus on the classification aspect of Machine Learning.

We also note that when dealing with these problems, the theoretical and the
computational aspects are both of interest. It is reasonable to say that the data,
taken as an input to the problem, limits the available solutions and the same goes
for the algorithms used in the solution process. These methods need to take into
consideration aspects such as the software and hardware available, as well as time or
resource constraints imposed by the problem itself. As such, these are expected to be
executed in a reasonable amount of time, as established by the task’s specification,
and limited by the computing power available.1 There can be problems which require
that the algorithm outputs predictions in real-time, to the resolution of milliseconds.

For example, if we picture a system where credit-card transactions need to be
approved or labeled as a fraud, we would expect the system needs to quickly respond
if the transaction is approved or not. Other use cases might require the system to
process a big volume of data at once, not a single event but a batch, and produce an
answer. The production system needs to be prepared to run lean with a big inflow
of data, without exceeding the hardware capacity.

These examples show that for a given problem, there are multiple algorithms
available for use, but while all of them are theoretically doing the same task, we
must also consider the practical advantages. Computational efficiency and scalability
are relevant when working in this kind of problems. Even though we won’t delve
into these aspects in this work, they are important in Machine Learning applications.
These aspects will also drive the way research is conducted in this area.

In its essence, a Machine Learning method is a probabilistic model built from
data and in this way it is very similar to a statistical model. However, it differs in
that its focus is generally on the models’ predictive abilities more than in the model’s
parameter estimates (breiman-statisticalmodeling). The algorithms will be built
and used for a given phenomena, to try and replicate it as best as possible without
really identifying the true nature of the mechanisms behind this phenomena. As
such, most applications will try to imitate the task’s behavior rather than try to

1. Here the word reasonable is used in a broad sense. It will depend entirely on time constraints,
computational capacity, usage and other aspects of each learning application.
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identify the real system behind it.
These subtle differences in the Machine Learning approach of a problem is also

reflected in the terminology used by the field. For the methods introduced here,
we know that other disciplines often speak about them in different terms and this
difference is certainly notable in classical statistics. We will be identifying these
differences along the text and, as a start, the dependent Y is called the target or
label and the independent variables, covariates or input variables are named features
in this case.

3.2 Long-term Human Migrations Classification
Starting from the two-year CDR dataset we have described in Chapter 2, we introduce
our set of tasks defined to predict the long-term human migrations problem under a
supervised classification framework.

We intend to develop a set of Machine Learning methods that will aid us in
further characterizing and analyzing the mobility of users between regions. These
will help us establish to what extent the CDRs allow us to predict a user’s past
home and migration movement across both endemic and non-endemic regions. More
precisely, we would like to explore the relationship of the dataset attributes based on
calling patterns across regions with the movement of humans. Where possible, we
would like to establish which features are most relevant for our predictors.

To begin, we need to introduce some notation to describe different sets of users.
In order to do this, we will divide them into distinct sets, marked by their behavior
in each time period:
Definition 3.2.1 (i) EU1 are the users that lived there in the endemic region during
period T1 while EU0 are the users that lived in the past (period T0); (ii) their set
complements are noted as EU1

{ and EU0
{ respectively and (iii) the user’s home

antenna in each period will be referred to as H0u and H1u, following the same
time-index convention as before.

Keeping the above in mind, we divide our task into four problems. These will
provide different perspectives of the mobility issue and all of them together will give
us a principled understanding of the problem.

It is important to note that all problems are solved with user data extracted from
their communications during T1. This means that no information from T0 will be
used as input to the statistical models.

We process the raw data to build our target variable which will be noted as Y
and will be defined for every user u. The only difference among all of the problems
will thus be in how the target variable is defined2.

We present here the list of problems that will be used throughout this work:

2. In reality, certain variations of the data were considered too, where best performing features
were filtered from the dataset to explore how this decreased the overall prediction ability of the
algorithm.



24 Chapter 3. Machine Learning

Problem 1 We want to infer which users lived in the endemic region in the past:

Yu =
{

1 if u ∈ EU0

0 if not.

With this definition and using the description of the features extracted from
the data in Chapter 2, we observe that here the information of a user’s endemicity
EU1 is used to predict their membership to EU0. It is not surprising that knowing
about a user’s present endemicity is indeed highly correlate with his past endemicity,
as these two variables have a 91% correlation value. This means that, overall, the
present endemicity feature is a very good predictor of the target variable, causing
algorithms to be heavily weighted towards this attribute. We could use in fact use
this single feature as a basic algorithm to build a simple predictor. To prevent this
from happening and to capture the change in endemicity for a small groups of users,
we decided then to hide this feature when solving Problem 1.

Problem 2 We want to infer which users lived in EZ in the past and then migrated:

Yu =
{

1 if u ∈ EU0 ∩ EU1
{

0 if not.

In this task, we have not excluded any attributes from the data since this problem
does not have the feature-target correlation issue as in Problem 1. Recall from
Table 2.4.3 that we have at most 23 thousand users that satisfy this condition out of
more than a million users. This strong unbalance in the target class makes a much
harder problem to solve than Problem 1 since these users become harder to find and
the class unbalance is notably stronger. If not correctly taken into account, the error
over the small class would be dominant of the overall prediction.

It is relevant to note here that we are ignoring any relevant information about the
user’s endemicity or current state of residence. Otherwise we would have a perfect
correlation between Yu = 0 and being currently endemic, or living in an endemic
state.

Problem 3 We want to predict those users that migrated between regions, in any
direction. This implies we need to see a change in the user’s endemicity from positive
to negative or vice versa:

Yu =
{

1 if u ∈ (EU0 ∩ EU1
{) ∪ (EU1 ∩ EU0

{)
0 if not.

This task is similar to Problem 2 in difficulty, yet given that the condition is
slightly higher, there are more users satisfying it. The difference relies in that cross-
migrations to and from the endemic regions are not as important for our study as
migrations directly from the endemic region. Still, we define this task hoping to
eventually find some unexpected insights.
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Problem 4 This problems determines to predict those users that migrated from
the endemic region, but only allowing users which are currently not endemic. This
means that we will only analyze users such that u ∈ EU{

1 as a base set:

Yu =
{

1 if u ∈ (EU0 ∩ EU1
{)

0 if u ∈ (EU1
{/EU0).

An important observation is that at this point we are looking at a reduced
instance of our CDRs, because we are only considering currently non-endemic users
and not the whole sample population. Still, we are observing a total of more than a
million users for this case.

We can see from what was mentioned before that not all problems can be
represented by the same input features from the data. Each problem has certain
restrictions on what input features can be used and these limitations will be enforced
by constructing variants the input set’s (X) attributes. For example, we said that
in Problem 1 we have no limitations to use a user’s current endemicity, u ∈ EU1,
as a feature, yet we decided to not do so as it was a feature highly correlated with
the target variable. Also, in Problem 2 we omit using a user’s current territory of
residence as this feature would leak information that is directly related to the target
variable: knowing the user’s current state will allow us to know directly if he has
migrated out of the endemic region in the past. If we choose not to, we would be
creating an ill-conditioned problem as we implicitly introduce the target variable in
the form of an attribute. Taking these issues into consideration, for each problem we
must carefully discard those attributes that ill-pose the models.

With Problems 1 to 4 defined, we then continue to illustrate techniques for
supervised classification. Throughout Chapters 4 to 7 we will come back to these
problems by applying them with the techniques and methods we discuss.

3.3 A working example of a Machine Learning setup
In our work we take advantage of the volume of samples, where, as explained in
Chapter 2, amounts to almost 1.5 million users. This allows us to randomly split the
dataset into training and test sets that do not overlap and which contain 70% and
30% of all samples respectively. The test set will not be a part of the model building
process because we will only use it at the end of the process to evaluate the quality
of the built models. No information from the test set should be accessed during the
construction of the models.

We will note the training and the test sets by T and T∫ respectively. Both T
and T∫ will take the form of a paired couple of datasets (X,Y ) where X ∈ Rn×p
and Y ∈ Rn. The difference between both sets will lie in the way each is used to
computationally build a probabilistic model. The test set will act as an estimation
of our algorithm’s performance, by allowing us to have new samples over which
to evaluate models. This makes sense knowing that the objective is to build a
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probabilistic model which has the capacity to correctly predict the output class
instances for new data objects, based on having seen information of objects from T .
The samples from T∫ will take on this role.

As an example, let’s consider a reduced training dataset built from Call Detail
Records (CDRs), where samples are calls being made by users who can belong to any
of the following provinces: Buenos Aires, Cordoba and Santa Fe. Five measurements
were taken from all of the observations to account for the users’ number of calls and
total minute duration of calls and all data was extracted from a week of logging
measurements. In Table 3.3.1 we show a short overview of this dataset:

Table 3.3.1
Head of the raw CDR dataset. three-row mock example of calls.

User CallsWeekend TimeWeekend CallsWeekDays TimeWeekday Province

BA343E 15 89 8 24 Santa Fe
73F169 10 121 2 98 Cordoba
EA23AD 12 43 5 154 Buenos Aires

In X a row is representing the available data processed for each user, and the
columns represent the features which are the different types of measurements or
information on that user. In other settings the features would be known as covariates
or independent variables. It is not uncommon to represent data with rows as
observations or samples and columns are measurements or features of our samples.

More specifically, the jth column of X, or equivalently the jth feature of the
dataset, is denoted by Xj . In a similar way, the ith row or sample of X, is denoted
by Xi, or x, when it is clear from context or when we are referring to a generic
sample. A similar notation is used with the outputs, where Yi or y will be used to
denote the target of a specific sample, depending on context.

In this way, the training set T is used to algorithmically create a function which
maps inputs to outputs, whilst the test set T∫ will be used to measure how well this
mapping would behave in real situations, given a way of measuring this performance.

In this particular example, even though the last column of the dataset in Ta-
ble 3.3.1 is not a measurement per se, it provides information on each user’s province
of residence. With this we can map users to classes which conform the partition of
the set of provinces.

Hereon, there are various questions one could try to answer using this dataset.
Examples of problems that a Machine Learning algorithm could tackle could be:

• Predict a user’s province when given information on only the first four features.

• Predict a user’s number of calls made on weekends when given information on
the last four features.

• Give an estimate of the probability density function of user’s calls duration,
during weekdays.
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These questions can be shaped into the form of a target variable to define a
concrete Machine Learning problem.

The first two of the problems defined in Section 3.2 are examples of a supervised
learning task. For each, the Y variables or labels are respectively the last and first
features (columns in the dataset). The first problem is a classification one since users
are to be categorized according to one of the three possible provinces, whilst the
second one is a regression problem for which the output could be any of a range
of numerical values. The labels in classification problems are usually numerically
encoded with a finite range of numbers, with {0, 1} or {−1, 1} being usually used in
the binary class problem.

Note that we take the data as given and that we do not making any assumptions
on it which means that the data was not collected previous to the problem but
rather used to try to tackle it. This is common in Machine Learning applications and
because of this, algorithms tend to be designed to account for this lack of structure
among variables. The type of problems and questions that could be posed, then
depend entirely on the available data.

The last example problem belongs to the unsupervised learning category where
there is no need to have a label on the data. A priori, there are no observations in
the data that serve as examples of what is an expected output i.e. samples are not
tagged as correct or not since we do not have a target feature. In this setting, the
question is on the structure of a specific column, namely the estimation of the true
probability distribution of the calling time. As such, there is no output expected
from new data.

Given that in this work we will be talking about supervised classification scenarios,
we will introduce in the next section an example of such an algorithm.

3.4 A first approach with a Logistic Regression classifier

Let’s suppose that we want to build a predictive model for Problem 1. A classification
algorithm should then assign samples to their past endemic condition, one in which
the user lived in the endemic region in the past.

We let {C1, .., Ck} denote the set of possible target classes (in this simple case
k = 2). Our aim can be defined to maximize the probability of belonging to a certain
class, given the phone data:

(3.4.1) P (Ck|X) = P (x|Ck)P (Ck)
P (x) .

In this interpretation, P (Ck) is known as the prior probability of belonging to
that certain class and P (Ck|x) as the posterior probability, given the sample data.

Our classifiers will partition the input space into decision regions Rk for which
a class Ck is uniquely associated to the class’ condition. It makes sense to try and
minimize the chances of assigning samples to incorrect classes. For example, take
a problem with K classes and a sample xi, then the probability P of a correct
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classification, with probability density function p, is measured by

P (Ck|X) =
K∑
k=1

P (xi ∈ Rk, Ck)

=
K∑
k=1

∫
Rk

p(xi, Ck)dx

=
K∑
k=1

∫
Rk

p(Ck | xi)p(xi)dx.

(3.4.2)

Observe that the measure is completely characterized by the posterior probabilities
because the factor p(x) is common to all integrals so we only need to maximize the
posteriors. And even when p(x) might not be known or accurately estimated, the
algorithm can only introduce a modification in the decision regions Rk. This will
have a direct effect on the probability of correctly classifying samples. We can say
then that the goal of our algorithm will be to choose the best possible regions for
the problem.

For our example Problem 1, we are in the binary classification problem since
there are two possible output classes. So a first approximation to predict the target
variable for each sample could be to build a learner f from a transformed linear
combination of the input features.

Adding this assumption, we would say that for every sample

(3.4.3) y ≈ f(x) = h

∑
j

θjxj


where h(·) is an activation function transforming the feature’s linear combinations

with θ, the model’s parameters. Here θ is the unknown and can also be referred to
as the coefficients of the problem.

For analytical convenience, a tractable transformation h(z) for this task is the
logistic function:

(3.4.4) σ(z) = ez

1 + ez
= 1

1 + e−z

The logistic function has the advantage of being smooth, well defined for all real
numbers and with the image of R under it being (0, 1). This property lends itself
to reading outputs as probabilities of the target belonging to a certain class. It is
also an approximation of the Heaviside step function (see ?? for more details on this
relationship).

If we let ti = θ · xi ∀ i be the linear decision boundary of each sample and use the
logistic function as our activation, we have that for the supervised binary classification
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setting the ideal situation, one in which all samples are correctly classified, appears
when we have that

(3.4.5)


∃ θ such that ∀ i

ti > 0 if yi = 1
ti < 0 if yi = 0.

If the goal of the model is to maximize P (Yi = yi|Xi = x) ∀ i under the assumption
that we found parameters θ that satisfies Equation (3.4.5), then our algorithm
would correctly classify all samples to their corresponding target values. However
this situation is hardly ever the case. The common approach is to rely then on
optimization procedures to minimize the amount of misclassification given by our
algorithm. This would be analogous to maximizing the probability of a correct
classification in equation (3.4.2).

Another benefit of using this function is that its derivatives can be put in terms
of the logistic function itself, where

(3.4.6) σ′(a) = σ(a)(1− σ(a))

The function is also bijective, with the inverse given by the logit function

(3.4.7) σ−1(z) = log
(

z

1− z

)

For the scenario characterized in Equation (3.4.3), we would have to finally assign
each output to a specific class. A common approach for this is to categorize each
output whether ŷ > 0.5 . Notice that having h(x · θ) = 0.5 implies that x · θ = 0 and
thus our classifier is separating samples in feature space (the space of the inputs)
with the hyper-plane characterized by parameter θ.

Having a higher ŷ for a given sample implies that it is further away from the
hyper-plane and the same goes for low predicted (ŷ) target values. If we were to read
this as a probability, we can interpret that the algorithm is modeling the posterior
probability P (Yi = y|Xi = x) and would interpret as having a higher confidence in
the classification.

Recall here that in a classification problem we are interested in maximizing a
sample’s probability of belonging to a certain class, given the input data:

(3.4.8) P (Ck|x) = P (x|Ck)P (Ck)
P (x)
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Then for the binary classification, the two-class problem, we have that

P (C1|x) = P (x|C1)p(C1)
P (x|C1)p(C1) + P (x|C2)p(C2)

= 1
1 + exp

(
− log

(
P (x|C1)p(C1)
P (x|C2)p(C2)

))(3.4.9)

Here we see the close resemblance to the logistic function which is acting on the
log-odds ratio log

(
P (x|C1)p(C1)
P (x|C2)p(C2)

)
. This equivalent form of the posterior distribution of

one class with the log-odds one property defining the model.
The second defining property of this model is that the log-odds are described

as a transformation on a linear combination of inputs, restricted to the sum of the
posterior probabilities being one.

Let j be a fixed class and denote

(3.4.10) log
(
P (Ci|x)
P (Cj |x)

)
= θi0 + θᵀi · x

for i, j ∈ {1, 2, . . . ,K}, i 6= j.
With these same indices we have that

(3.4.11) P (Ci|x) = exp(θi0 + θᵀi x)
1 + exp(θj0 + θᵀjx)

In this way the model is specified in terms of the log-odds for each class with
respect to the base class j with the model completely defined by the parameter θ.

Here, we can structure the target as a Bernoulli random variable when conditioned
on the input variables. Formally we have that,

Yi | Xi ∼Bernoulli(pi)
E[Yi | Xi] = pi

(3.4.12)

The probability function of the target given the features Pr(Yi = y | Xi) is given
by

(3.4.13) Pr(Yi = y | Xi = xi) = pi I(y=0) + (1− pi) I(y=1) = pyi (1− pi)
(1−y)

where this depends on the class of y.
Here the logit function is utilized to map log odds into conditional probabilities

and the model will output for each sample the predicted probability of the target
variable belonging to a certain class.

This is why we are specifying a model where the target is a linear function of the
inputs, corrected by an error term. Our model’s predictions will then be characterized
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by:

(3.4.14) Yi = I(θ0 + θ ·Xi + ε >
1
2) ∀i

where ε is the error of the approximation and is distributed with the standard logistic
distribution.

If we take the conditional probability in Equation (3.4.14), given the features we
will have that

(3.4.15) logit(pi) = ln
(

pi
1− pi

)
= logit(E[Yi|Xi]) = θ0 + θ ·Xi

By an abuse of notation, we absorb θ0 into Xi. This can be safely done if we
consider a dummy attribute X0

i which is always equal to 1 for every sample i. Then
from the equation above we have that

(3.4.16) pi = σ(θ ·Xi) = exp(θ ·Xi)
1 + exp(θ ·Xi)

Finally, using this pi representation and plugging it into the initial conditional
probability of Yi in equation Equation (3.4.13) we will have

(3.4.17) Pr(Yi = y | Xi = xi) = pyi (1− pi)
(1−y) = exp(θ ·Xi)

1 + exp(θ ·Xi)

Maximum likelihood is the most common method employed to fit the model.
with Multinomial distributions modeling the features. Given a parameter θ, the
probability of having a target vector y is

(3.4.18) P (Y = y | θ) =
N∏
i=1

P (y1 ∈ C1 | xi, θ)yi(1− P (y1 ∈ C1 | xi, θ))(1−yi)

If we take into account that P (y = 1 | x, θ) = 1− P (y = 0 | x, θ) and the logistic
function’s derivative form Equation (3.4.7), then the estimation of θ for N samples
is equivalent to minimizing the following form

(3.4.19) l(θ) =
N∑
i=1

(yi log(P (yi | xi, θ)) + (1− yi) log(1− P (yi | xi, θ)))

In Machine Learning this is called a log loss function and it is central to the
theory because it is used as a metric or score of the quality of the model, in this case
θ, in correctly assigning estimated targets p̂i = P (yi | xi, θ) for the input data X. It
defines the space over which the learner will be evaluated.

Definition 3.4.1 Loss Function. The loss function of a model l : Rp → R
quantifies the model’s parameters (θ) error.
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In all cases, the loss function will define the underlying optimization procedure
behind the model that is fit. By comparing for each sample the target predictions
versus their actual values, loss functions give a measure of how good classifiers are
with respect to their predictions. These can be described as semi metrics on the
target space, i.e., functions that are symmetric, non-negative and equal to zero only
if both arguments are equal.

Loss functions are used to find the optimum θ∗ as the argminθ l(θ). Thus we say
that loss or scoring functions give us a way to find the best parameters for our model.

Note however, that the optimum parameter will be dependent on the choice of
the algorithm used to construct the model. That is, for our particular case we have
selected the optimum θ for a Logistic Classifier with input data X. Other algorithms
can be used for the same task, and these will have their own parameters and loss
functions to optimize.

In our derivation, the scoring function was constructed from the assumptions
given at the start. However, we could in fact build any type of algorithm which
given an input xi and a parametrization of the model θ, outputs a value P (yi | xi, θ).
In this way we can compare the performance of that model to the one built by a
Logistic Regression Classifier by using the same log loss function for both. Refer
to ?? to find more details on this loss function’s properties and on what are the
common optimization procedures to fit this function.

3.5 Model Regularization and Hyper-parameters

Definition 3.5.1 Model Regularization. Regularization of a model is the process
in which restrictions and conditions are imposed on the model’s loss function l through
a functional R(l). The regularization term is jointly optimized during the fitting
procedure.

Regularization is used in problems which are ill-posed. Most often, this is well
suited for situations where the model has very different performances in the training
vs. the test set. In its most used form, regularization imposes restrictions to the
model so as to reduce the total number of features used.

This shrinkage of parameters can be forced by penalizing large values for θ either
by the number of non-null components of this value or by penalizing its distance to
zero. By doing so, we hope that only the most relevant features are selected in the
final model.

Also, a shorter model has the benefit of being more accurate in the estimation of
the model’s performance on unseen samples. In other cases, the benefit of a reduction
in the number of features is that the overall variance of the predictions are reduced,
only with a slight increase in error.

In addition, a more heuristic argument for model parsimony follows from Occam’s
razor principle. Here it applies in that any model can approximate the true underlying
process only up to a certain level and if two models have the same predictive power
the simpler model should be preferred. Better examples on this point are illustrated
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in (rasmussenGhahramani2001occamsRazor). The authors give examples of
how this principle applies in different Machine Learning settings.

In practice, most algorithmic implementations of regularization resort to use l1
and l2 norm penalizations on the θ vector. Both have its advantages and pitfalls, yet
these details exceed the nature of this work. As a summary, benefits are related to
the robustness of the solution, convexity of the minimization function, unique global
minimum and model parsimony.

Of the two norms, the former one is more commonly known as Lasso regularization
and the latter is known as ridge or Tikhonov regularization. Other variants include
the elastic-net penalty which is a weighted average of the previous two norms, or the
l0 norm, which is the number of non null components of θ.

The following example shows the logistic regression’s model loss function with an
l2 regularization term on θ:

θ∗ = min
θ

N∑
i=1

(yi(θ · xi) + log(1 + e1−θ·xi)) + λ‖θ‖22

= min
θ

N∑
i=1

(yi(θ · xi) + log(1 + e1−θ·xi)) + λ
P∑
j=1

θ2
j

(3.5.1)

The value λ acts here as the weight that our optimization procedure will put to
the regularization part of the minimization function and P is the number of features
used in the model. Note that in an abuse of notation, the functional takes the form
R(l) = λ‖θ‖22 where the model is identified by its θ parameter. In this work, we will
only consider model regularization with lasso, ridge, or elastic-net regularizations.
As an example we show here how regularization affects an instance of a Logistic
Classifier on Problem 1.

In Figure 3.5.1 we show an example of different models loss function scores across
varying levels of regularization. Here we try to predict which users were endemic in
the past by making predictions over Problem 1. To fit the models we used all of the
features from T and we generated multiple models f(x,C) where we defined

C = 1
λ

In detail, we have that each logistic model was built from a specific C in [10−5, 105]
and that the model’s negative log loss error (NLL(C)) was measured for both T and
T∫ sets separately. Then, the function of scores 1−NLL(C) is graphed as curves
over the C value.

As we can see, there is a clear tendency to have better performance across smaller
values of C which is equivalent to having stronger regularization of the scoring
function. This illustration serves to exemplify why regularization can help models’
predictions as we see that in this case the 1 − NLL(C) score will output higher
values for better classifiers. Thus we find that, as a simple case and with no other
manipulation of the data, a regularized model helps in having a better performance
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Figure 3.5.1 Problem 1’s validation curve of a Logistic Classifier model on training and
test sets. Here, for each value of the C regularization parameter, we show the score 1−NLL.

Note that with this formulation, higher scores mean better results.

across the test and training sets error.

3.5.1 Hyperparameters

We can see that in the model built from equation Equation (3.5.1) there are two
specific parameters which we need to predefine before starting the optimization
procedure. Notably we chose the value of λ and the regularization method (by select-
ing the l2 penalizing norm, or ridge regularization, over other possible regularizing
options). It is said these values are hyper-parameters of the models since they are
not directly part of the theoretical construction yet they need to be previously set in
order to find a solution θ∗.

In the literature some authors can also refer to the hyper-parameters of the model
as tuning parameters. These are the values set to configure the different possible
variants in the loss function and in the model’s training phase. They will directly
affect the estimated fit fθ̂, yet are not the θ parameter themselves. They need to be
instantiated before training the learner and, as such, they can’t be learned from the
dataset.
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3.6 Chapter Summary
We introduced some basic vocabulary on supervised Machine Learning settings, with
references to other types of other non-supervised settings which are not relevant to
our general task. Also, the human mobility problems of this thesis were presented
using the aforementioned notation.

A concrete Machine Learning example was introduced in which we constructed a
logistic classifier, where we derivate its loss function from basic theoretical assump-
tions. This led us to optimize the hyperplane that best separates the two classes by
estimating parameter θ̂. Given that we now have a problem of p degrees of freedom,
we are left to find or fit the parameter θ by optimizing on certain criteria. The loss
function will then shape our evaluation criteria to determine whether one parameter
is preferable to another. Finally, we expanded on the concepts of hyper-parameters
and regularization methods which will be reused later in the upcoming sections.



Chapter 4

Generalization Error and Model
Selection

In this chapter we will extend some of the Machine Learning concepts introduced
in the previous chapter and dive into the different tools that will help us evaluate
which are the best models for our task. These tools will be based on the idea of the
generalization error minimization with its decomposition into its bias and variance
components. For our applications, we will settle around model hyperparameter’s
Cross Validation.

4.1 Prediction and Generalization Error
Historically, a convenient loss function used to optimize the model’s parameters was
to minimize the residual sum of squares. This measures the performance of our
model f(·)’s predictions on input samples x with respect to the data’s known output
classes y as

(4.1.1) RSS(θ0, · · · , θp) =
n∑
i=1

[yi − ŷi]2 =
n∑
i=1

[yi − h(θ · xi)]2

We know that the objective is to have a good model in the generalization sense:
one which can make a good prediction on any sample, even new ones from the true data
distribution. This generalization concept is lacking in the preceding Equation (4.1.1)
because it is built to fit the actual dataset in the best possible way. Given that the
training set (T ) is a sample of the population, it is not straightforward that the
model will perform well accurately any other given sample of the true distribution of
the data.

We need a way of measuring and comparing the generalization power between
models to select the best supervised estimator. For our test data, it means to have
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a model that can correctly label new samples which were not used in the training
phase, such as those from the test set Ts.

For now, let us assume that f : X → Y is a function which represents a true
existent relationship in the data such as

Y = f(X) + ε

.
In this mapping from feature to target space we assume ε to be the noise, with a

null mean and fixed σ2 variance i.e. ε ∼ N (0, σ2). With this, Equation (4.1.1) can be
read as an approximation of the expected prediction error given the training set T .

Definition 4.1.1 Prediction Error: Given a loss function L(·, ·) and a function f ,
we say that the prediction error for the resulting classifier f for (Y,X) is

PE(fθ) = [L(Y, fθ(X))]

This is the error between our model’s output and the target labels, as quantified
by the loss function. In our specific example, with the parameters θ encoding the
structure of f as fθ(x) = h(x · θ) we would have that:

Definition 4.1.2 Squared Loss Prediction Error: Given a value for parameter θ and
the squared error loss, we say that the prediction error for the resulting classifier
fθ under the squared loss is

(4.1.2) PE(θ) = L(Y, h(X · θ)) = (Y − h(X · θ))2

Our interest is now in minimizing this error, or loss, for all possible values from
the true distribution, and not only for those in the dataset. We would like to quantify
the expected error over occurrences of X and Y. This means we need to account for
the variables randomness and that we need to think of a way to consider measuring
this error independently of the current sample T , which is the data used to fit the
model. The Generalization or Test error capture this idea

Definition 4.1.3 Generalization Error

(4.1.3) ErrT∫ = EX,Y [L(Y, f(X))|T∫ ]

The problem appears when considering that in this scenario, the models’ fit is
done on a fixed dataset and, in turn, the dataset is a fixed sample representation of
the true distribution. Thus the generalization error is using only the model’s error
conditional to the test data that is available. This means that in practice we have to
ensure that training ((T )) and test sets (T∫ ) independence.

The generalization error intends to compare the performance of our algorithm
trained on a training dataset, with the loss that this model would have had on the
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true data distribution. If we consider the case of the squared loss function, we will
have that this error now becomes

(4.1.4) ErrT∫ = EX,Y
[
L(Y, f̂(X))|T

]
=
∫
T∫

(y − h(x · θ))2P (x, y)dxdy

Overall, we are ultimately wanting to know how the learner performs over the
true distribution, or what is the average prediction error’s for any sample of data.
Note here that we also want to average out any specific influence of the training set
on our fit model f̂ which was trained from a specific dataset, but also on the f̂∗ that
would have resulted from training on the true distribution of the data. With this we
can introduce a last definition:

Definition 4.1.4 Expected Prediction Error

(4.1.5) EPE = EX,Y
[
L(Y, f̂(X))

]
= EX

[
EY|X [L(Y, f(X))]

]
In practice we have finite access to samples, so we have to estimate the expected

prediction error by means of the generalization error. From the data, we will build
or train our model and from this reduced sample we will extract a training error to
determine how well the model is performing.

Definition 4.1.5 Training Error: is the average loss over the sample prediction
errors:

errT = 1
N

N∑
i=1

L(yi, f̂(xi))

and with this same way we are going to calculate the generalization error

(4.1.6) ErrT∫ = 1
N

N∑
i=1 x∈T∫

L(yi, f̂(xi))

Both of these formulas will be thoroughly used throughout this work, and it is
with the generalization error that we will estimate the EPE. Doing this will let
us find the best model for our task, where we will turn to rank different learners
according to their errors T and T∫ . Combinations of high or low values for these,
across training and test data, will be used as model evaluation and by this we will
start to find aspects of the algorithm which need improvement.

4.2 Bias and Variance
If we look closer at the EPE for the specific case of the squared loss function with

(4.2.1) EPE = EX EY|X

[∥∥∥Y − f̂(X)
∥∥∥2

2

]
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It is not difficult to see that the model that minimizes this error is

f̂(x) = E [Y |X = x]

We say that our model f̂ is an estimate of the true relation in the data, and takes
the form above, with the form structure from the data.

With the squared loss, the expected prediction error

E
[∥∥∥Y − f̂(X)

∥∥∥2

2

]
of the model can be decomposed in the following way:

EPE(f̂) =EX
[
f(X)− f̂(X)

]2
+ EX

[
f̂(X)2]

− EX
[
f̂(X)

]2
+ σ2

=Bias(f̂)2 + V ar(f̂) + σ2

(4.2.2)

Equation (4.2.2) is hereby referred to as the bias-variance decomposition for the
squared loss where the first term is called the square of the estimator’s bias. This
measures how good are our estimator’s predictions compared to the true relational
function. The second and third terms are the estimator’s variance. This will measure
how this random variable varies along its most expected value. The noise’s variance
term is that part of the prediction error which is irreducible. Note that we have
already taken the expectation over the target and that is why we are left with the
target’s inherent noise. This part of the error we cannot reduce or control with our
learner model since it is caused by the problem’s random nature.

In the EPE’s decomposition we are integrating over the joint distribution of
inputs and outputs. As we’ve mentioned before, we have incomplete information
on P (x, y) given the limited amount of information in T . We must assume then
that calculating this integral is not possible for any θ so we must rely on estimation
procedures.

Historically, the concepts of bias and variance where associated directly with
the squared loss function and in the literature it is said that algorithms have ways
of attacking these two sources of error. They are key elements in the expected
prediction error and they point to different weak spots in the algorithms. At the
same time, different methods are used to improve each of them, where ultimately
our having control over both errors is central to our prediction task. Authors point
that in practice it is usual that the improvement of one generally leads to a decrease
in the other.

Conceptually the bias error represents the model’s accuracy in labelling predictions
correctly. It is the model’s best attempt to capture the functional relationship among
the feature and target variables. This could either mean it is correctly assigning the
sample to its correct class in classification settings, or, in a regression setting, by
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estimating a value for that sample which is near to the target value.
The bias is lower when models correctly learn the underlying structures of the

data. However, as bias decreases, the model complexity increases and more data is
needed to train it correctly because the model becomes very fit to the training set
i.e. it loses the ability to extend this predictive accuracy to new samples because the
model learns too much from the available samples only. In this situation, we have
another type of error which is when we have an increase in variance.

In classification problems it is uncommon to use the residual sum of squares to
fit the model’s parameters and there are other loss functions to rely on. Specifically
in the binary classification context, a common loss function used is

(4.2.3) L(Y, f̂(X)) = I(Y 6= f̂(X))

where Y will be taking any of value of the class set G.
With this loss function, the classification prediction error can be decomposed in

P
(
f̂(X) 6= Y

)
= V ar(Y ) +P

(
Y = argmax

1≤i≤K
P (Ŷ = i)

)
−

K∑
i=1

P (f̂(X) = i)P (Y = i)

where in this formula we have, once again, that the error is decomposed by using
the classifier’s variance. Here, the classifier’s bias is not clearly defined as with the
squared error. Yet the decomposition quantifies how similar is the learner’s class
probabilities with the true distribution in the data, and how this interaction differs
from the most probable output value, which is the Bayes classifier.

Note that in this definition we do not have the bias of the model as a term of the
error. This quantity is rather taking effect as part of the second and third summands
in the equation and it tries to capture how close is the classifier’s distribution with
respect to this distribution in the data. Another relevant difference is that in this
definition there are no noise terms For more detailed information on bias and variance
decomposition in classifiers, one can refer to ?? which is based on the survey work
of (james-biasVarianceGeneral).

4.2.1 Overfitting

For any given Machine Learning learner, we can have different combinations of high
or low variance and biases. Naturally that makes three cases out of four model
performance scenarios that need to be improved, where we have low bias and/or
low variance. For each combination of bias and variance stages, there are different
strategies to improve a model. For example, in one of the most common scenarios
we might have a model that has a high overall variance and low bias. If we also have
that the model has a good performance on T , whilst having a poor performance on
T ∫ , it is said in the literature that the model is overfitting the data. The reasons



4.2 Bias and Variance 41

behind this scenario can be various and most of them are related to learners which
are overly-complex or situations in which there is insufficient training data. This
results in learners which are only suited for the training set.

Overfit models will also fail to generalize on new data since the variance structure
of the training set is such that the number of training samples is not enough to lower
the overall variance of this model. To illustrate this point, in Figure 4.2.1 we show
the results from fitting a learner on our own CDR dataset. We fit a Decision Tree
classifier on Problem 2 which has a high imbalance between the positive and negative
target classes to illustrate the interaction between bias and variance. A discussion
of this model’s formulation is presented in Chapter 5. This is a tree based model
which increases its complexity by growing the tree’s depth. In turn, this increases
the number of features used in by the leaner to decide on the predicted target.

To measure the performance of the fit learner, we take a scoring function for
the model’s performance which outputs a value in the range of (0, 1). With this
function we have that higher values means better scores. We will introduce later
specific formulations for scores generally used. In this way, Figure 4.2.1 graphs how
the model performs at different levels of model complexity. In the image, the test
and training errors are given as a function of the tree’s depth.

At first the model’s bias is high both for the training and testing sets, and as a
consequence, we would expect to have a high generalization error. We later see how
the overall error decreases as complexity increases.

An estimate of the expected prediction error is shown, calculated by averaging
over the test set’ prediction error’s. We note how at first it decreases when the
model’s complexity is increased. However, later when the model starts to overfit
the data, we can see how the test error starts to rise whilst the train error keeps
decreasing. This situation is important to our EPE estimation cause it hints that
the model has lost predictive power due to an increase in variance.

In (hastie-elemstatslearn) the authors give a rough heuristic to select the
best model: stop increasing the model’s complexity once the estimated EPE stops
decreasing. That is, chose the point where the scoring error of the test set stops
decreasing along with the training error. For Figure 4.2.1, this would roughly be
when MaxDepth = 10.

In this example we are only looking for the best model over a search space of one
dimension, namely the tree-depth hyperparameter only. In practice, the models will
have more parameters to tune and this makes finding the lowest prediction error for
all possible models difficult. Still, we might settle for near-optimal models which
reach acceptable error scores. The following section introduces the assumptions to
consider the test error as a good approximation of the generalization error. It also
gives a formal argument in favor of finding models whose scores are not optimal for
that dataset.
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Figure 4.2.1 Training and cross-validated mean Accuracy score functions along the change
in max tree depth. For Problem 2, one model is fit for each tree depth value on both the
training and cross validation sets. Both score series are compared side by side, with their

corresponding standard deviation band for the CV folds.

4.3 Cross Validation (CV)

Classification models are algorithms which intend to build approximating functions
to a stochastic process, by means of algorithms. Due to the searching nature of this
process, in the generally large space of hyper-parameters, we have that when models
are fitted, we ultimately create different learners.

These differences between learners are controlled by the parameters or configura-
tion of the algorithm. And the nature of each parameter can be due to reasons such
as computational or statistical algorithmic variants. An example of this, which was
introduced in Section 3.5, is the λ penalization parameter in a Logistic Regression.
In this case we have that λ controls the amount of weight to be placed on the
regularization term of the minimized function.

Under this setting Cross Validation (CV) is a technique introduced to systemati-
cally explore tuning parameters values and decide which learner is better for the task
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at hand. It intends to help in provide a better way of estimating the EPE during
the process of finding the best hyperparameters.

By comparing the generalization error of each model, where models vary accord-
ingly with the hyper-parameters’ values, the model’s evaluation score is used to select
the best model in the class.

The technique is the most widespread for evaluating the generalization perfor-
mance of a set of learners. Given a number of possible configurations or values for the
tuning (hyper) parameters of an algorithm, we would want to decide which selection
of these fit the best estimator f̂ , as measured by the generalization error.

In most problems we will have that data is scarce and, at the same time, we
have that prediction error estimates are hardly computable in practice. In part, this
because estimates are based on assumptions that are not practical: they rely on
the true distribution of the data, access to an infinite amount of data, or because
they are based on analytical results which are difficult to compute. To cope with
this, CV intends to prevent over-fitting problems and improve the EPE estimation
procedure by applying a procedure which iteratively holds out a random split of
the dataset. With this, the procedure will measure the predictive accuracy of the
learner fit of data in-sample against values from the hold-out part of the dataset. In
a sense, hold-out samples are acting as “test” to the learner fit with in-sample data.
As usual, the evaluation measure here is given by the loss function, which we must
select beforehand.

4.3.1 Formulation of the Cross Validation (CV) Procedure

In this method, we will denote a partition of the samples as a fold. CV will then
partition the data into K random separate folds, where the number K is preset1.

Let γ : {1, · · · , N} 7→ {1, · · · ,K} be a function mapping samples to folds. Without
loss of generality, let α be an index of the model’s hyper-parameters configurations,
where each distinct value combinations for all tuning parameters is identified by this
index2.

The idea behind the CV algorithm is to run an iteration over all the folds,
denoting k ∈ [1, . . . ,K] the iteration indexer. It will then take one fold γ−1({k}) to
be the validation set and if we let f̂−k be the fitted estimator on the training set
and k-fold hold out, the classification performance will be tested against these out
of sample estimates. Finally we will have that for every sample in this k-fold, we
will measure the loss L(yi, f̂−γ(i)(xi)) of the in-sample model’s prediction, against
the true target’s value. The average score over all samples would get us the Cross
Validation error for this problem instance.

We see that Cross Validation intends to estimate the expected out-of-sample
error E

[
L(Y, f̂(X))

]
, when the model is tested against independent samples from

1. We assume here that we are selecting samples from the training set T and not from the test
set T∫ .

2. Note that the domain of α will vary with each model, which defines the type of algorithm
used to learn.



44 Chapter 4. Generalization Error and Model Selection

the true distribution. To do this it is fundamental to ensure independence of the
training set and the test set. Any data transformations that must be done on the
input data X that jointly uses the output samples Y in the process, must be done or
“learned” only on the training set. It is important that no information from our test
set is introduced into the final estimator output from the CV procedure.

Models have to be agnostic to any information contained in T∫ . In a sense this
means that the learner never “sees” any test data until we use it to evaluate our
learner’s performance.

4.3.2 Selection of tuning-parameters (hyper-parameters)

The CV procedure provides a reliable EPE estimate to select the best values for
the algorithm’s tuning parameters. These hyperparameter configuration will be best
in the measure provided by the loss function. Let A = [α0, α1, . . . , αl] be a list of
hyperparameter settings and K = [1, · · · ,K] a list of folds with γ(·) a function which
maps samples to their corresponding fold. To clearly depict how a full K-Fold Cross
Validation procedure runs, we outline its pseudo-code.

Data: All hyper-parameter configurations A = [α0, α1, . . . , αl] and a number
K of folds.

Result: Data table mapping error scores to hyper-parameter configurations
CV (α) ∀α ∈ A

Initialize A and γ(·);
for α ∈ A do

if data transformation then
Perform data transformation on the whole training set T ;

end
for k ∈ K do

if feature selection then
Perform feature selection on the (T )−k ;

end
fit f̂−k(·, α);

end
compute CV (α) = 1

n

∑n
i=1 L

(
yi, f̂

−γ(i)(xi, α)
)
;

end
Algorithm 1: Pseudo-code for K-Fold Cross Validation Estimation for an index
of α hyper parameters.
Note that during the loop for α, each sample’s prediction is tested on the model

which was fitted without using that same sample. This is central to the idea of
cross-validation in which training samples are used as if they were testing samples.

With this method, it makes sense to choose a final model f̂α with the lowest CV (α)
score among all possible hyper-parameters. However, following ideas detailed in ??,
importance should also be given to the complexity of the approximating function. A
common rule of thumb is to favor models in which we use a lower number of hyper
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parameters or features. In practice however, a class of approximating functions might
have a defined complexity which is not analytically computable. Thus in some cases,
crude heuristic estimates or common sense is used to estimate model complexity,
without making use of theoretical arguments.

4.3.3 CV run on CDR data

As an example, we consider here a cross validation procedure over a Logistic Re-
gression model. Here we are using Problem 2 which is defined to find those users
that used to live in the endemic area and eventually migrated out of it, becoming
non-endemic during the training phase. This procedure serves as a benchmark to
compare different hyperparameter configurations.

In this case we decide to optimize the model’s regularization strength which is
captured in the parameter C = 1

λ . Recall from Equation (3.5.1) that this is the
regularization strength of the model, and note that a smaller value in C is a stronger
regularization. We perform this experiment and consider the difference in scores
between T and T∫ for each possible C value. It is important to note that all test
scores were performed on models built only from T .

In Figure 4.3.1 the x-axis represents the parameter C’s shown on a log10 scale.
The score used is the negative log loss function on a twelve fold cross validation set.
Both the training and the mean cross validation scores are shown.

It is interesting to see that for low C values, the test and CV scores are very
similar in that they have are better scored. This is probably due to the fact that being
on a log scale, the algorithm’s regularization dominates the optimization routine.

However, at some point near exp(−2), both lines separate differ in a notorious
way. This continues to be notorious in the direction of increasing C values. Here it
can be seen that the test score is barely in the one standard deviation band of the
average CV score. This image serves as an example of how different the CV and test
scores can be.

With this we have come to show an example of how Cross Validation approximates
the test error of a model. The method required only minimal information from the
data to do this, yet we have to preset a value for the number of K folds to use.

To determine this value a priori might not be possible and experimental results
in the literature show the different results for CV routines with varying K number
of folds. For more information on this please refer to ??.

4.3.4 CV Scores in Classification Learning

In binary classification, the contingency table is a good tool to summarize a learner’s
training performance over samples in T .

Let f̂ be our model learned from the data after a CV procedure. To construct
this table we note that for each sample, there can only be four possibilities when
comparing the model’s prediction and the sample’s observed target value. The
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Figure 4.3.1 Comparison of 12-fold cross validated and test average errors for Problem 2.
Negative log loss (NLL)a scores are shown for each value of the regularization parameter C.

Standard deviation bands on the K fold errors are added to the CV series.

contingency table then shows the count of samples that fall into each of the these
four groups.

We can express the models’ target value ŷ into the positive (P̂ ) or negative (N̂)
categories. At the same time we can set actual target data into the positive (P ) or
negative (N) categories.

To assess the performance of the classification algorithm and pick the best model
we must decide on how the CV procedure will value two different models. For this
we must evaluate the mismatch between the target and the predicted value in a
quantifiable way.

In this context these evaluating functions are also known as scores or measures and
they are built by looking at how many times an algorithm misclassified instances, and
in which situations do the misclassification happen. To visualize this, the confusion
table presents these results in the following table:
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Tar-
get

value
y

Predictive value ŷ

P̂ (0) N̂ (1)

P (0)
True
Positive
(TP)

False
Negative
(FN)

N (1)
False
Positive
(FP)

True
Negative
(TN)

These cell values count the amount of instances that fall into each of the four
possible outcomes. Building from this, we have metric scores constructed to provide
values on the algorithm’s performance. These counts are combined in different trans-
formations that measure different aspects of an algorithm’s classification performance.

Some of the most common metrics include the following:

• True Positive Rate (Recall): TP
P = TP

TP+FN
This rate measures the percentage of real positive values captured by the
algorithm. A high recall of the algorithm indicates that a high number of the
real positive labels were classified as positive.

• Positive Predictive Value (Precision): TP
P̂

= TP
TP+FP

This rate measures the confidence of the algorithm in its predictions of the
positive class, where a high precision indicates value in its predictions.

• True Negative Rate (Specificity): SPC = TN
N = TN

TN+FP
This rate measures the percentage of real negative values captured by the
algorithm.

• False Positive Rate (Fall-Out): FPR = 1− SPC
This rate measures the percentage of false negative values misclassified by the
algorithm.

• Accuracy: TP+TN
P+N = TP+TN

TP+FP+TN+FN
This rate measures the confidence of the algorithm in all of its predictions.

• F1 Score: TP+TN
P+N = TP

TP+FP = 2 1
1

recall
+ 1

precision

This is the harmonic mean of the recall and the precision metrics. It’s advantage
is that it can capture both of the scores with equal weight. Its values range in
the [0, 1] domain and are ordered in the sense that perfect classifiers have an
F1 score of 1.

To illustrate the difference in these metrics we ran an experiment on Problem 2
where we intend to correctly classify users that moved out of the endemic region from
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the past to the current time period. We took one logistic classifier with common
settings and we ran a cross validation procedure over values of the regularization
strength C.

In this run, we considered four metrics to cross-validate our models: Accuracy,
Precision, Recall and F1. We compared all of them in a procedure which had fixed
hyper parameters for all models. The number of folds, K, was set to eight and the
lasso regularization (l1) configuration was optimized. At the same time, we fixed to
100 the maximum gradient descent iterations for every configuration tested. We also
balanced the contribution of the positive and negative samples to the loss function,
where samples of the , under-represented, positive class had a higher contribution
to the loss. This was done by reweighing each individual sample’s loss, where the
weight was equivalent to the reciprocal of that sample’s class percentage with respect
to the total number of samples.

For each metric, the best model output from the CV procedure which was selected
based on the score. All winning models were then evaluated against T∫ to give a
final evaluation metric on the model’s performance. No other information from T∫
was used during the whole process. In Table 4.3.1 we show a summary of these
benchmarks.

Table 4.3.1
Results comparing an 8-fold CV on Problem 2, using a Logistic Classifier over varying

regularization C values. Four metrics were cross-validated and compared in this experiment:
Accuracy, Precision, Recall and F1.

Metric Best C value Mean CV score Test score Full CV time (s)

Accuracy 0.316 0.685 0.695 4628.3

Recall 0.107 0.637 0.612 4638.2

Precision 0.0006 0.038 0.035 4667.5

F1 0.0015 0.0071 0.005 4612.1

It is clear from these results that all metrics favor strongly regularized models,
except for the Accuracy metric which favored the least regularized models of all
CV procedures. As expected, calculating each score is straightforward from the
contingency matrix and there are no significant runtime differences among them. CV
procedures all take nearly the same time to compute.

Among all best-fit models, the biggest difference in test and average CV scores
was of 4%, yet the algorithm had very poor performance when finding samples of the
positive class. This is evidenced in the extremely low value for the Precision scores
where only a handful of positive classes can be correctly captured by the model. The
effect of the low precision is also evident in the F1 score which drags this metric to
extremely poor levels, even when the Recall had an acceptable rate of 0.65. This
is a strong indicator of a very ill-conditioned problem, where the class imbalance
strongly affects the detection of positive cases over all positive predictions made. For
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this case, the positive class samples were less than 1% of all samples.

4.3.5 ROC Curve

One last important metric that is generally used in classification tasks is one related to
the “Receiver Operating Characteristic” (ROC) curve. The metric itself is a measure
of the Area under ROC curve (ROCAUC) and it applies only to algorithms
which output for each sample the probability of belonging to the positive class.

With these algorithms we would have that the output label will be defined as

(4.3.1) ŷ =
{

1 if f(x) > π

0 else.

where π is a threshold value which will set the algorithm’s decision level, that
which separates positive from negative samples.

If we consider different values for π, we will see that the true-positive rate TPR, or
recall, and the fall-out FPR of the algorithm will vary depending on this confidence
level π. With this, we can define the ROC curve to be

(4.3.2) σ(π) = (TPR(π), FPR(π))

As expected, there exists a functional relationship between these two as the
threshold is varied. The image of σ(·) is a curve defined in [0, 1] × [0, 1] which is
referred to as the ROC space.

To find a balance between these two rates, the ROCAUC metric measures the
integral of this curve in ROC space. The score calculated is thus known as Area
Under the ROC Curve.

This metric follows the same properties as the ones mentioned before, where the
best classifiers have values closer to 1.3

The following figures are example ROC curves for two of the problems defined
from our dataset.

Notice the algorithm’s poor prediction performance where the ROCAUC output
is near to the ‘random’ line. This line constitutes the performance of a random
classifier which arbitrarily labels samples as being to each possible class. Under normal
circumstances we expect to construct learners that have better ROCAUC scores
than a random classifier. To do this fit, we configured the Tree’s hyperparameters
with a bad nature and, in effect, this outputs a learner which has a poor performance
in the training error.

As another example, the same algorithm was run but on Problem 1 and using
the same available data as in Figure 4.3.2. For this problem we are looking for those

3. As a side note, the ROCAUC measure is proportional to the statistic of the Mann-Whitney U-
test, where the classifier’s mean output positive and negative classes are compared. More information
on this can be found in (mason-rocAucRelationship).
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Figure 4.3.2 Example of a ROC curve from a Decision Tree classifier used on Problem 2.
A 8-fold CV procedure is fit and then the best learner’s performance is evaluated on T∫ which
gives score of 0.53. This model was specifically built to overfit the dataset by constructing a

tree of 12 levels.

users that had lived in the endemic region in the past regardless of their current
endemic situation. This problem does not suffer from class imbalance, where the
positive class constitutes 30% of all samples. In Figure 4.3.3 we show a similar figure
as in Figure 4.3.2 to illustrate the difference “ROC” curves that result from this
optimization.

The results in this case is that the algorithm has a considerable better score
by the ROCAUC metric. No data transformation has been applied to the dataset
between runs. The difference in the two scores is notable and corresponds entirely to
the problem chosen.

4.3.6 Final experiments on model selection

As a last remark for this chapter, we show here a brief experiment with a Logistic
Regression Classifier. In this, we explore different hyperparameter configurations
over a full CV procedure.

The idea is to predict which users lived in endemic regions in the past (again
this is Problem 1), yet excluding the feature that indicates in which state the user
is currently living. We also set the “ROC AUC” metric to compare the l1 vs the
l2 regularization of the model on more than a hundred values for the regularization
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Figure 4.3.3 Example of a ROC curve from a Decision Tree classifier used on Problem 1.
An 8-fold CV procedure is fit and then the best learner’s performance is evaluated on T∫

which gives score of 0.76.

parameter C.
For both regularization types, we set a value for C that ranged from exp(−2) to

exp(5). Over all, we implement a cross validation routine of 8-folds.
Table 4.3.2 shows a summary of results. In these, our experiments resulted in

higher values for l1 regularized models. This gap is gets wider when comparing test
scores for both and the same happens to the time taken to fit the cross validation
algorithm for all of the C values.

Table 4.3.2
Table of results comparing an 8 fold cross validation fit for a Logistic Classifier with varying
regularization C values for Problem 1. The metric for this experiment was the “ROC AUC”.

Regularization type Best CV C value Mean CV score Test score Full CV time (s)

l2 1e-5 0.805 0.744 17579.7

l1 1e-5 0.81 0.76 15892.9

Another interesting result is that in both experiments, the best CV scores were
achieved for highly regularized models. To further explore this, we looked at their
CV mean scores for each hyperparameter setting. Figures 4.3.4 and 4.3.5 both show
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the series resulting from each type of regularization fit.
From these figures it is clear that both models improve the more regularized they

become. The full extent to which this regularization would keep improving the score
is not explored because both experiments’ C parameter had a minimum at 10−5

which corresponds to the highest score for both. Also, there is a difference in the
stability of the fitting, where the scores are more noisy for the l2 regularization at
high C values as can be seen in Figure 4.3.5.

On the other hand, the l1 regularization has a more stable performance across C.
This can be an indication that the l1 experiment required less iterations to fit and
find an optimum.

Figure 4.3.4 CV mean average scores of the “ROC AUC” metric for Problem 1. The l1
regularization method on a logistic classifier was tested, varying along the C hyperparameter.

With these experiments we give an extended overview of how a complete model-
selection pipeline is defined and we give examples of how we must iterate and evaluate
different hyper-parameter configurations by scoring the cross-validated learners.
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Figure 4.3.5 CV mean average scores of the “ROC AUC” metric for Problem 1. The l2
regularization method on a logistic classifier was tested, varying along the C hyperparameter.



Chapter 5

Ensemble Methods and the Naive
Bayes Classifier

This chapter begins with formulations and introductory discussions of the most
common tree-based classifiers, and finishes with the formulation of the Naive Bayes
learner. For all of these models, we will present their advantages and disadvantages as
predictors, along with a comparison of the model’s performance. This assessment will
compare models’ benefits and drawbacks in a specific long-term migration experiment
using processed CDR data.

5.1 Classifier: Decision Trees

Decision trees are models that can be understood as a tree-like graph structures in
which each node of the tree contains a conditional statement. These conditional
statements act as a rules which split input samples in a binary relationship of two
disjoint sets. In this way, we have that at each node samples split in two possible
branches which recursively continue to further nodes which again split the samples.
The rules are propositions or statements that are either true or false and they are
built as a linear (or similar) binary partition over feature space. In the algorithmic
implementation each rule will be defined by assigning a threshold for a given feature
which splits samples over those above and below this threshold. In this way, at each
node the model evaluates each input sample x with the proposition by checking if
xj ∈ U , where xj is the feature used for that node’s rule and U is a subset of the
feature’s domain. After the split, the algorithm recursively partitions each of the
resulting splits with another rule.

For numerical features, the input space X will be partitioned into L and R,
namely left and right, where L takes the form (−∞, d]. The value d ∈ R is a number
predefined by the rule itself and is actually computed by the algorithm during the
optimization procedure. In the same way, for categorical features L will be a subset
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of the possible category values for that feature.
By iterating this process over more nodes, a tree defines a partition of feature

space in multiple regions A1, . . . , AK . Here the number of iterations K ∈ N is a
hyperparameter which is dependent on the algorithm’s convergence criterion. Each
region will have an associated value ck in such a way that the tree’s predicted output
ŷ, for a sample x, is ck, when the sample belongs to Ak. Here ck will be one of the
possible values taken by the target variable y in the training set. If we take into
consideration the way trees are built, we will have that each Ak is a hyper-rectangle
in feature space.

5.1.1 Decision Trees Formulation

In short, the learner can be characterized by the following formula:

(5.1.1) h(X) =
K∑
k=1

ckI(X ∈ Ak)

where ck is the output value that our model estimates for samples in the Ak
region. Both of these will have to be learned by the model during optimization.

By the principles given above, the algorithm will need to determine an “optimal”
way to split a set of samples, that flow through a decision node. In this learner, the
goodness of splits are measured by specific functions called node impurity measures.
Later in Section 5.1.2 we give specific examples of node impurity measures.

Most variations for this Machine Learning model build rules (tree nodes) in a
sequential, greedy, fashion, where node impurity measures are locally optimized
at each node to decide on which is the best splitting value. The reason for
doing this is because the construction of optimal binary decision trees is NP-
Complete (decisionTreesNP). Doing otherwise would result in an algorithm whose
computational complexity is infeasible.

At any splitting node we have to find the best feature Xj /j ∈ [1, . . . , p] and
value split d for which to partition the data in

AL(d, j) = {x ∈ T / xj ≤ d}

and
AR(d, j) = {x ∈ T / xj > d}

Let Nl and Nr be |AL| and |AR| respectively and note that we have taken (p, j)
as given. However, the Decision Tree algorithm will find both in an optimization
routine. To quantify the best feature j ∈ [1, . . . , p] for this split, the algorithm will
minimize:

(5.1.2) min
j,d

[ min
cL

1
Nl

∑
x∈AL(d,j)

L(y, cL) + min
cR

1
Nr

∑
x∈AR(d,j)

L(y, cR)]
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where y is the target associated to the samples x that are part of that node’s
split. Also, L(·) is the loss function used by the algorithm to measure the quality of
the split in this optimization. Note that this can be done efficiently for a wide range
of loss functions since the minimization can be done for each feature independently.

A tree is then grown in an iterative way from the top down1, estimating the
appropriate parameters at each rule split. All of the training set’s samples would
start at the top (the root node) and then travel down through the tree’s branches,
where at each step the node’s rule will decide to what branch below does the sample
move to. A branch of the tree would stop growing once the samples at a node have
reached a certain purity i.e. when samples belong to the same class. Other stopping
criteria include halting when a minimum number of samples has been reached.

We would finally have that the tree’s leafs are the partition subsets over the input
data and, once a tree is built, predicting targets for new samples is straightforward:
the prediction of their target class will be the value given after traveling the sample
down to its corresponding leaf node.

To illustrate a constructed tree using this method, an instance of a grown tree is
shown in Figure 5.1.1. This classification tree example is built from a dummy gender
prediction problem, using CDRs as input data. We must note here that there is not
much interpretability in this toy example:

Calling_V olume ≤ 23

Province ∈ {SanLuis, Chubut}

Time_Weekend ≥ 16

MF

Calls_Weekdays ≤ 48

Time_Weekday ≥ 17

MF

F

Calls_Mondays ≥ 2

Province ∈ {Chubut, Cordoba}

MF

M

Figure 5.1.1 Classification tree example built for a toy gender prediction problem, using
CDR available data.

1. In this context the top of a tree refers to the root of the tree.
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5.1.2 Impurity Measures

The most used metrics to build each rule are the Gini impurity measure and the
entropy or information gain criterion. The former minimizes the misclassification
error in the output sets that result from the partition. It optimizes the model’s
accuracy as the resulting score of tagging all the leaf’s samples with the majority
label in that partition.

The latter measure optimizes for information entropy, which is analogous to
minimizing Kullback-Leibler divergence of the resulting sets with respect to the
original set prior to the split.

In addition, we have the misclassification measure. Following is listed formulation
of the these three impurity measures for classification trees:

• Gini index:
∑
k 6=k′

p̂jkp̂jk′ =
K∑
k=1

p̂jk(1− p̂jk)

• Cross-entropy:
K∑
k=1
− log(p̂jk)p̂jk

• Misclassification error: 1
Nj

∑
x∈Rj

I(y 6= cj) = 1− cj

For the case of binary (two class) classification, these measures can be expressed
in simpler terms. If we consider p to be the probability of success, then we have

• Misclassification binary error: 1−max(p, 1− p)

• Gini binary index: 2p(1− p)

• Binary cross-entropy: − log(p)p− log(1− p)(1− p)

5.1.3 Hyperparameters

For the decision tree model, the process of iteratively partitioning the samples in
splits continues until a predefined tuning parameter stops the optimization or when
the node is pure i.e. there is only a single target class for all samples at the node.

The hyper-parameters for this model includes the length of the tree, the splitting
rule threshold and the node impurity measures. From the descriptions previously
given, we can list these directly:

• Max depth of the tree, or the allowed levels of splits.

• The criteria or measure used to select the best split feature at each node.

• The leaf size or the total number of minimum samples allowed per leaf. Note
that this is a related to limit on branch depth.
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• Number of features selected to decide on the best split feature at each node.

Intuitively, it is natural to find that trees of longer depth will overfit the data
since more complex interactions among variables will be captured by refining the
input space partition. A trivial example is to allow a tree to grow fully in depth to
later assign all training set’s samples to their own self-contained regions. This will
yield a model with virtually zero bias yet with a very high prediction error.

In Figure 4.2.1 we give an overfit decision tree example, using the Problem 2
problem of tagging outward migrants of the endemic region. It is clear that the
overly-complex model produces poor generalization error. Here the training and CV
scores were both compared on models with increasing tree depth. We see how at
some point, the learner started to overfit the training set where this is reflected in
the gap between the CV and training errors.

At the same time, having a tree which is too shallow in depth will result in a
biased algorithm for most cases. This is because it results in an overly simple model
incapable of correctly assigning labels. We must then consider that the depth of a
tree is a measure of the model’s complexity and as such, one of the most important
hyperparameters of our model.

Another drawback of the decision tree model is the high variance instability.
Authors point out that two very similar datasets can grow two very different resulting
trees. This is due to the hierarchical nature of the splits, where errors randomly made
in the first splits will be carried later on. Once a sample has been directed through a
lower branch, it will continue down through this one without reconsideration of the
past errors.

For the reasons described, in this model it is important to control the depth of
the trees built. To do this, the most common method for doing this grows a very
large tree T0 that will continue until it reaches a depth limit threshold that is very
nonrestrictive. Then the tree will be pruned by removing branches and nodes to
lower the model’s complexity whilst at the same time trying not to compromise much
of its accuracy. More details on this can be seen in ??. For a broad characterization
of decision trees and their construction in classification or regression problems, please
refer to (breiman-cart84).

5.1.4 Experiment

We present here a run of a decision tree over T . Again, the case the Problem 2 was
used as an example, where we intend to correctly tag those TelCo users which were
living in the endemic region in T0 and then migrated to T1.

The tree was built using a standard configuration with a low depth of 5 and
a Gini splitting criteria. At each decision node, we configured the algorithm to
be able to select any feature Xj to perform the split. Also, we configured the
minimum split threshold to be of 20 samples. This meant that no further splits were
created when less than this number of samples was left at that node. Under this
setup, the algorithm ran in approximately 15 seconds. Figure 5.1.2 shows a partial
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representation of the actual decision tree grown on Problem 2. This allows us to see
how the algorithm selects better features at low-level nodes, versus the deeper splits.
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From Figure 5.1.2 we can approximate which features are most important to the
algorithm when deciding a node split, given by the Gini splitting criteria. Given
that in Problem 2 we are looking for people that migrated out of the endemic region,
the choice of the tree’s root feature seems appropriate. The mobility diameter gives
an idea of a user’s influence area when using their mobile phone and as such, this
attribute might indicative of past migrations. Subsequently, the usage volume of a
user’s home antenna appears as the second most important features, both during
weeknights and for the whole day.

The error score reached by this tree, however, yields a low performance over all
of the samples because if we evaluate the learner with the Accuracy metric, we see
a classification score of 43.2%. Under these circumstances, noting which features
were selected near the root leaves of the tree can be misleading if we do not recheck
these results. In this way we decide to iterate this model one more time, but now
choosing to change some hyperparameter values. For this time, we set control the
target class imbalance in the training set T . As we have noted before, the positive
and negative classes have a disproportionate balance of samples and this has direct
impact in the overall model’s poor performance. To help tackle this imbalance, we
modify the tree’s loss function’s setup to assign higher weight to samples of the
under-represented class and underweight the samples from the abundant group. We
will have that for each sample, its loss weight was adjusted by its class representation
ratio and, with this, the new run scored a 57.9% Accuracy which is more than a 15%
increase over the previous score. The figure for this model is shown in Figure 5.1.3.
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The importance of the mobility diameter becomes clearer in Figure 5.1.3. Once
again the learner selects this attribute as the first split in the data, and this time with
balanced samples. Recall that by the stochastic nature of the algorithm constructing
the tree, two runs with the same hyperparameter settings and data need not output
the same trees. In this case however, it is notable that the final tree still uses the
mobility feature in the first split in the data, even with balanced samples. And the
same can be said of the feature representing the count of calls made from the home
antenna.

This tree has a better performance than before yet it has an average performance
in its prediction of which users have migrated in the past. At some point, it is
reasonable to assume that balancing classes leads to a better predictive outcome yet
there are still various misclassifications in the predicted target classes. If we let the
tree grow deeper though, we might increase the performance of the training error
as shown in Figure 4.2.1. But again, this won’t help our generalization error. So to
tackle most of the disadvantages described by this technique, Random Forests are
what follow as a natural extension to this classifier.

5.2 Random Forests

Random Forests are estimators that extend from constructing a group of single
decision trees and then combining them to produce a single output decision. This
grouping of classifiers is known as an ensemble.

The objective in this construction is to focus on decision tree’s low bias whilst
controlling their overfit as much as possible. For this, a forest of single trees will be
constructed in such a way that correlations among each of the individual models is
limited. The idea behind this is to have every individual model train on a random
subset of features or samples and then, average the single outputs as the forest’s
target output. With this we preserve single estimator’s interdependence as much as
possible. There are other different techniques that intent to construct uncorrelated
trees which are combined at the output, yet the main idea is common to all.

5.2.1 Random Forests Formulation

Let K be the number of trees in the ensemble and let Θk encode the parameters
for the k-th tree. As we have mentioned before, there are various variants to the
model and these variants will define the type of encoding for the Θk, k ∈ 1, . . . ,K
parameters. For the following part, we will not specify the specific ensemble type
constructed since the formulation is common to all of them.

To begin, we define:
h(x,Θk)

as the corresponding individual classifier and we let N be the number of samples in the
training set T . The creation of a random forest involves an iterative procedure where
at the k-th step, the parameter Θk is fit from the same distribution as Θj , j < k, yet
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it is built in a way that is independent of the previous parameters {Θ1, . . . , Θk−1}.
Let {hk(x)}Ki=1

2 be a set of classifying trees and let I(·) denote the indicator
function.

Define the margin function as

(5.2.1) mg(x,y) = 1
K

K∑
k=1

I(hk(x) = y)−max
j 6=y

(
1
K

K∑
k=1

I(hk(x) = j)
)

This function measures, in average, how much do the trees vote for the correct
class in comparison to all other classes and it is the training error of the model when
using the misclassification loss. Here the generalization error is denoted as PE∗ and
is equal to

(5.2.2) Px,y (mg(x,y) < 0)

It can be shown that, for K sufficiently large, the generalization error under the
misclassification loss converges to

(5.2.3) Px,y

(
PΘ(h(x,Θ) = y)−max

j 6=y
PΘ(h(x,Θ) = j) < 0

)
almost surely for all sequences of parameters Θ1,Θ2, . . . ,Θk, . . .

This proof can be found in ??.

5.2.2 Experimental comparison to Decision Trees

From what is formulated in Section 5.2.1 and in order to compare how this model
improves over the Decision Tree model, we ran two experiment setups on a Random
Forest learner for the difficult Problem 2. We selected the Accuracy score to measure
the learner’s performance. The model was trained in a cross validation procedure of
10 folds for each configuration, and in each experiment we optimized the score for a
different model hyperparameter.

For the first experiment, we evaluated the forest’s scores on a maximum depth
variation for the trees. On the second one, we tried to illustrate the point of
Section 5.2.1 by considering forests of increasing size. As a default configuration, we
set both the trees’ max depth and the number of trees to 10.

Also, we pre-configure a balanced weighting of positive and negative samples in
the loss function, where each sample is weighted by the reciprocal of the class’s ratio
to the whole dataset. Finally, the impurity measure we used was the Gini index for
the splitting criteria at each tree’s node.

2. There is an abuse of notation by noting trees as hk(x) and not h(x,Θk)
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Cross validation procedures ran for 1412.8 and 2506.1 seconds respectively. In
both of them we excluded any user attributes that informed their home state and
current endemic condition, in the time period T1.

The experiment’s scores outcomes across their hyperparameter values were
graphed in Figures 5.2.1 and 5.2.2. For both, the cross-validated and training set
scores were compared. In this way, for each hyperparameter value, the 1−Accuracy
score is shown. In this way, having a lower score in the graphic means a better model
was reached.

Figure 5.2.1 Validation curve on the tree-depth hyperparameter values for the Random
Forest learner. The mean CV scores for the 1 − Accuracy score is shown for a CV run

experiment on Problem 2

Recall how this relates to Figure 4.2.1, in which a tree’s training error always
improves as a result of an increase in the tree’s depth. Yet we saw how the tree’s
generalization error starts to suffer and deteriorate at one point.

From what we can see in Figure 5.2.1, the cross validated error is always decreasing
for increasing tree depth. A very slight deceleration in the decrease of the cross
validated error can be seen for tree depth greater than 9. However, scores keeps
improving and don’t worsen. This is different to Figure 4.2.1 where if we let the tree
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Figure 5.2.2 Validation curve on the number of trees hyperparameter values, for the
Random Forest learner. The mean CV scores for the 1−Accuracy score is shown for a CV

run experiment on Problem 2

grow deeper, at one point we only worsen the performance of the test error. Here, we
are possibly improving the generalization error, as indicated by the CV estimation.

On the other hand, it is interesting to note that there is an insignificant decrease
in the training and CV scores when the number of trees is increased. For this case,
there is virtually no change in model error by improving bias or variance.

An explanation for this might that we are setting a default tree depth of 10
levels already when running this experiment. And a tree configuration of this type
might then be capturing all the possible model complexity to this dataset. Another
plausible explanation for this is that, for this task, the forest’s performance rapidly
converges to the generalization error with a minimum of 10 trees and that adding
more trees doesn’t certainly improve on the predictions.

At their optimal configuration, both setups reached CV score averages of at least
75%, with a maximum of 81% for the forest with trees of 16 levels. The optimal
number of estimators for the CV and the training sets were not the same though,
where 139 was the best configuration for the training score whilst 133 was the best
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average for the CV set. The relative difference in these best scores was of 3.3%.
At the same time, the relative difference of the best CV and training scores, for

the maximum tree depth experiment was of 9.5%. This percentage difference signals
that the max depth hyper-parameter is significantly more sensible to over-fitting
than the number of trees used.

5.2.3 Predictive error bounds

Random Forests are built upon a bag of weaker classifiers, of which each individual
estimator has a different prediction error. To build an estimate of the generalization
error on the ensemble classifier, these individual scores and the relationship between
them must be measured. In this sense, the strength and correlation of a Random
Forest must be analyzed to arrive on an estimate of the generalization error.

Define
̂(x,y) = argmax

j 6=y
PΘ(h(x) = j)

and let the margin function for a random forest (not a group of classifiers) be
defined as

mr(x,y) = PΘ(h(x) = y)− PΘ(h(x) = ̂) = EΘ [I(h(x,Θ) = y)− I(h(x,Θ) = ̂)]

This characterizes the expectation taken over another function which is called
the raw margin function. Intuitively, the raw margin function takes each sample
to be 1 or −1 according to whether the ensemble classifier can correctly classify or
not the sample’s label, given the ensemble’s structure specified by Θ.

With this, we can introduce the strength for this forest as

(5.2.4) s = Ex,y [mr(x,y)]

Now define ρ(Θ,Θ′) as the correlation between rmg(Θ,x,y) and rmg(Θ′,x,y)
of two learners, then we can have the mean value correlation for the ensemble as

(5.2.5) ρ = EΘ,Θ′ [ρ(Θ,Θ′)σ(Θ)σ(Θ′)]
EΘ,Θ′ [σ(Θ)σ(Θ′)]

With the above we can then see that,

Theorem 5.2.1 There exists an upper bound for the generalization error of a Random
Forest which is

(5.2.6) PE∗ ≤ ρ(1− s2)
s2
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The proof of this can be found in ??.

This bound on the generalization error shows the importance of each individual
weak classifier’s strength to the forest’s generalization error, and the correlation
interdependence among them.

This proof was first introduced in (breiman-randomforests) and there, it is
said that the bound may not be tight enough for practical significance. Special
importance is also put on the ratio between base learner’s correlation and strength
( ρ
s2 ). It is know that, to build a strong classifier, this should be as small as possible.
For this reason decision trees make a canonical choice for weak learners, being low
biased models which are prone to overfitting. These ensembles are a first choice when
building a first, cost-effective, model to deliver a prediction task with acceptable to
excellent performance.

5.2.4 Other Notes on Random Forests

One benefit of building Random Forest classifiers is that the algorithm can easily
increase a group of estimators’ prediction error by randomly building every specific
learner in a way that decreases the overall model’s variance whilst trading a small
loss in bias.

The model is also robust to the introduction of noisy features where if the ratio
of informative to non-informative features is not extreme, selecting m features at
random for each split will mean that, in most cases, splits will be made on those
informative features. Note that in any given tree, the probability of drawing at least
one informative feature in a split is still very high. This is because it follows a hyper
geometric distribution H(P, j, l) with l draws from a total population of P features
and only j informative ones.

The depth of growth for each tree is another important tuning parameter. We
must choose it correctly by assessing the model’s performance across different values
for m. A deep tree will tend to overfit the data by partitioning input space to fit the
training data. This effect will counter the overall reduction in variance of the forest
and thus increase the generalization error of our algorithm.

In addition, the algorithm benefits from a heuristic to measure variable importance,
where a special modification in the way forests are built allows this to happen. The
idea for this is that at each split we can measure the gain of using a certain variable
for the split versus not using it. Given a candidate feature Xj to be analyzed and
for every node in a tree where a split is to be done, we compare the improvement in
split performance, as measured by some loss function, with and without Xj . These
results are recorded and averaged across all trees and all the split scenarios to have a
score for the feature. With this, the features with highest scores can be thought to
be the most informative variables of the model.
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5.2.5 Experiments

In this subsection, we explore on the task described on Problem 4 by fitting random
forest learners. The idea was to look for those same users that had migrated out
of the endemic region from T0 to T1, but only focusing on those users that are not
endemic in the present.

Here, our cross validation procedure explored multiple combinations of hyper-
parameters that we predefined. Let αi be the value of a the hyperparameter i,
where i is one of the J possible hyperparameters for this model. Denote all possible
hyperparameters combinations by A1 ×A2 . . .×AJ , where each αi will take a value
from the predefined set Ai ∀i ∈ 1, . . . , J .

In practice, we must be careful with the size of these combinations since the full
cross validation procedure is costly for the Random Forest algorithm. The learner
has J ≥ 10 and for each component Ai it is normal to have more than 10 possible
values. As such, the search space can grow exponentially big with the size of each
hyperparamter’s values. Added to this, each hyperparameter combination has to be
cross validated on the number of K folds we set, creating a very large amount of
iterations for the whole search. Training the forests can be computationally intensive
in computer memory and CPU time, so we have to limit the search over a bounded
amount of values.

If we were to use commodity hardware and standard programming tools for this
procedure, the experiment would take weeks and, given our dataset size, it would
not fit into a standard computer’s memory of less than 12GB of memory. For these
reasons, we preform the task with a specialized server with a 16 core CPU and 72
gigabytes of available RAM. The system runs a UNIX based OS and our algorithms
were scripted in Python 3.5 (python3.5). We used Graphlab, (graphlab), and
Sckit-Learn, (scikit-learn), two specialized Machine Learning Python packages, to
handle the parallelization and the distribution of system resources.3

This package has allowed us to conveniently run these long experiments without
risk of failure due to lack of memory and without any prior expert domain knowledge
in multi-threading or parallel computing.

The cross validation was done over the same hyperparameter configurations that
we will later use for the general experiments procedure. The following list describes
the hyperparameters used:

• Every tree’s maximum depth — [max_depth]

• If the loss function will balance the weights of the positive and negative classes
— [balanced]

3. We can’t stress enough how convenient these packages are to our purposes. Graphlab comes
specially relevant when handling most of the complex tasks of maxing out the system resources to
perform the the cross validation procedures as fast as possible. It also helps boost productivity by
improving the time it takes to construct the main X dataset. This package has an out-of-the-box
memory management for large datasets. With this, we can natively handle data that is larger than
the amount of memory used by the server, requiring minimal user knowledge to tune.
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• The maximum number of trees to grow in each fit— [num_trees]

• The splitting criterion at each node which can be either by the Gini Index or
the Entropy condition— [split_criteria]

• The sample percentage of features which are available to use at each split —
[max_features]

• The minimum number of samples required to split a node — [min_split]

• The scoring function used to evaluate the learner during cross validation —
[CV score]

• The minimum reduction in the loss function required to split a node — [min_loss]

The full experiment ran two different tasks, where each was characterized by
the attributes used for our X dataset. In the first one, the procedure ran with all
available features and in the second one we separated the features that had a high
correlation, bigger than 0.3, with the target variable. This features that met this
criteria were those that counted the user’s vulnerable neighbors for a given month,
segmented by the direction of the call.4 Recall that all of these features were central
to the construction of the risk maps in Section 2.3. The color of each antenna’s circle
represented the amount of vulnerable users, for that given month, when looking at
the incoming or outgoing calls.

For this experimentation, we recorded the cross validation procedure’s outcome in
terms of different scoring metrics. We also logged the run-time, the hyperparameters
chosen and the top ten best features as given by the algorithm. A summary of these
results is given in Table 5.2.1.

From the result’s table, it is relevant to note that both optimal learners chose the
Gini splitting criterion as best, with tree’s of a relatively high depth with 12 levels.
A similar situation arose with the number of trees grown; best configurations had
more than 100 trees with the second experiment having an optimal number of 200.

Higher differences appear in the choice of the minimum loss reduction and the
features sampled per split. There are no clear indications as to which configuration is
better. And, whilst having a higher level of randomization during tree growth seems
to produce learners which are less overfitting, this difference is not that notable in
the CV scorings.

For most of the metrics used to evaluate the CV procedure, the scores look very
similar. It is interesting that the second experiment is slightly better in the Accuracy,
Log − loss and ROCAUC scores, with a maximum difference of 5% for all of them.
Yet simultaneously the second experiment’s performance drastically drops for the
recall and precision. The same occurs accordingly for the F1 measure. We see the
learner is losing performance in correctly tagging the user’s who have migrated from
the endemic region. This high relative difference hints to how much of an impact is

4. For a complete description on the definition of these features, please refer to Table 2.4.1.
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Table 5.2.1
Table of best results comparing two 10-fold full grid cross validation procedures on a

Random Forest Classifier fit for Problem 4. The scores, best hyperparameter values and
run-time are shown for all experiments.

Result Experiment 1 Experiment 2

Running time (s) 2030 1264

CV F1 score 0.373 0.296

CV Accuracy score 0.880 0.903

CV Precision score 0.267 0.213

CV Recall score 0.618 0.480

CV ROCAUC score 0.843 0.848

CV Log − loss score 0.337 0.391

max_depth 12 12

num_trees 150 200

balanced True True

split_criteria Gini Gini

min_loss 10 1

max_features (%) 50 80

characterized by removing the features in the second experiment. We can suspect
that there’s enough missing information in those features to reduce the predictive
power of the learner.

In both experiments, it is important to note though that the elected hyperpa-
rameters are not optimal in any strict sense. At most, they can hint to the best
possible configuration. Given the large combinatorial nature of this process, there is
no guarantee of optimality in this search. To a greater degree we are only covering
as much space as our time and our computational systems allow.

We also recorded the model’s selection of best features, following the heuristic
described in Section 5.2.4. This outcome is presented in Table 5.2.2, where the top
10 features for each experiment are shown.

The top features list shows us the importance of mobility diameter for all cases,
where we found that the user mobility is relevant to detect a past endemic condition,
both for mobility specific to weeknights and, also, for mobility during the whole
week.

As expected, in both cases we see that there are a number of features logging
vulnerable interactions of users living in non-endemic regions. This is in line with
what we hypothesized in the construction of the risk maps in Section 2.3. The
direction, duration and number of call occurrences are all important predictors for
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Table 5.2.2
A representation of the top features that resulted from the Random Forest experiment on

Problem 4.

Top Features

First Experiment

Call Count Antenna_0 Mobility Diameter Mobility Diameter Weeknight

Call Count Weeknight Antenna_0TimeWeekDay Out Month_09 CallsWeekDay In Vuln Month_08

TimeWeekDay Out Month_08 State Hidalgo CallsWeekDay In Month_08

TimeWeekDay Out Month_12

Second Experiment

Mobility Diameter Call Count Antenna_0 Mobility Diameter Weeknight

Call Count Antenna_1 Call Count Weeknight Antenna_0 TimeWeekDay Out Month_12

TimeWeekDay In Vuln Month_09TimeWeekDay Out Vuln Month_08TimeWeekDay Out Month_09

TimeWeekDay In Vuln Month_08

this learner.
Given that this best feature methodology is an heuristic, there doesn’t seem to

be any clear indication over which type of CDR interaction has better predictive
power. Yet there is a preference for interactions logged in the earlier months, August
and September, This might be the case where the algorithm is picking up on the
most recent migrations, given that our time period of analysis T1 starts in August.

The analysis here presented is relevant to answer the question of long-term
migrations. High scores for these experiments show that there is value in CDR
data for predicting long-term migrations between two regions. We also see that the
resulting top features from these models are in line with the assumptions on which
the risk maps were constructed.

5.3 Boosting Models

Boosting models are similar to additive methods such as Random Forests, because
they combine the predictions of weak learners to output their combined prediction.
The full learner is grown sequentially from base estimators such as decision trees,
but the difference is that each new iteration tries to reduce the overall bias of the
combined estimator. This provides greater predictive power when the base model’s
accuracy is weak. However, care must be taken to control the increase in variance.

5.3.1 Ada Boost

In the Ada Boost variation of ensembles, each iteration builds a new weak learner
which is set to improve on the samples misclassified by the previous ensemble of
weak learners. The new learner will not be uncorrelated and this is an important
distinction of this model with the previous one.

Weights are used by the algorithm to rank the samples by misclassification
importance: a sample with higher misclassification rate will receive a stronger weight.
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The algorithm’s name is derived from the term adaptive boosting, where sample
weights are updated at each iteration.

Tuning parameters in this algorithm are a superset of those used to build the
base learners. As an addition this model adds other hyperparameters, such as the
number of steps that the ensemble is boosted.

This chained construction of weak learners has implications on the computational
complexity of the optimization. Base learners are not constructed independently and
as such, the parallelization of this algorithm becomes limited. At the same time,
the sequential optimization of learners improving on the one before marks a greedy
minimization approach of the general loss function.

These properties underline a substantial difference to Random Forests where base
learners are built as uncorrelated as possible and where optimization can be performed
globally, which allowed for a significant runtime improvement by parallelizing the
algorithm.

5.3.2 Formulation

Let

(5.3.1) err = 1
N

N∑
i=1

I(yi 6= ŷi)

denote the training set’s misclassification error. As usual, N is the amount of
samples in our dataset, y is our target variable and ŷ is our model’s prediction for
the target, given the samples. We also take

(5.3.2) EX Y [I(Y 6= Ŷ (X))]

to be the expected error rate, or EPE, of the model on the true, unknown
distribution of the data.

Let m index the iteration number in the Ada Boost algorithm. Set w(m)
i to be

the i-th sample’s weight at this iteration. We will initialize w to be equiprobable at
w

(0)
i = 1

N ∀i.
Let h(x, θ) denote a weak learner. With this notation, we assume the loss function

to have a domain in the input feature space and in the parameters defining the learner.
Naturally these will depend on the problem structure and on the base learner.

Then a fully grown Ada Boost’s classifier takes the following form:

(5.3.3) ŷ(M)(x) = sgn(
M∑
m=1

γmh(x, θm))

where M is the model’s hyperparameter indicating the amount of weak learners
and thus the amount of iterations. Here, each θm will encode the base learner’s
parameters and γm will denote the weight of that weak learner in the overall model.
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The algorithm’s iteration will build ŷ(M) starting from ŷi
(0) = 0 ∀i in such a way

that ŷ(m+1) will improve the loss of the previous iteration ŷ(m). This is because at
each stage, we will minimize a function that tries to correct the performance of the
previous model. At step m we will search for (γm, θm) where

(γm, θm) = argmin
γ,θ

N∑
i=1
L(yi, ŷm(xi) + γh(xi, θ))

= argmin
γ,θ

N∑
i=1
L(yi,

m∑
j=1

γjh(xi, θj) + γh(xi, θ))
(5.3.4)

The greedy nature of the algorithm becomes explicit in the procedure above,
where we have fixed all the previous optimized values for γj and θj .

Ada Boost was first derived in (schapire-adaBoost) and it was introduced with
a specific minimizing function. The general version here presented allows the use
of a broad range of base learners which need not come from the same algorithmic
family. In the first version introduced, the loss function used was the exponential
loss which is L(y, z) = e−yz and the target variable took the values 1 or −1.

This particular case yields a similar equation as in Equation (5.3.4), but where

(γm, θm) = argmin
γ,θ

N∑
i=1

exp (− yi(ŷm(xi) + γh(xi, θ)))

= argmin
γ,θ

N∑
i=1

exp (− yiŷm(xi)) exp (− γh(xi, θ)yi)
(5.3.5)

Given that we are only minimizing γ and θ, we can group e−yiŷ
m(xi) into a single

value w(m)
i which we will set to the weight of each sample. This weight strongly

depends on the past steps of the algorithm. The equation now becomes

(5.3.6) (γm, θm) = argmin
γ,θ

N∑
i=1

w
(m)
i exp (− γh(xi, θ)yi)

We can then minimize for θ first, independently of the value of γ. The series in
Equation (5.3.6) can be decomposed

e−γ
∑

i|yi=h(xi,θ)
w

(m)
i + eγ

∑
i|yi 6=h(xi,θ)

w
(m)
i =

(eγ − e−γ)
N∑
i=1

w
(m)
i I(yi 6= h(xi, θ)) + e−γ

N∑
i=1

w
(m)
i

(5.3.7)
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and then the minimizing solution for h(·, θm+1) will be the one satisfying

(5.3.8) θm = argmin
θ

N∑
i=1

w
(m)
i I(yi 6= h(xi, θ))

Let u =
∑N
i=1w

(m)
i and v =

∑N
i=1w

(m)
i I(yi 6= h(xi, θ)), which are both constant

in γ. Consider Equation (5.3.1) and note that u
v = 1

err . If we now solve for γ in
Equation (5.3.7), we can take

(5.3.9) f(γ) = (eγ − e−γ)u+ e−γv

which has a minimum at

(5.3.10) γm = 1
2 log (1− err

err
)

As seen from the equation above, the minimizing value for γ is directly related
to the training error of the algorithm for the whole dataset. This weight will be
reflected upon all samples in general and then we would expect this rate to decrease
at every iteration. Taking advantage of this closed form, the value is plugged into
the next step of the Ada Boost procedure to update sample weights as

(5.3.11) w
(m+1)
i = w

(m+1)
i eγm(−yihm(xi))

In this way, we have that the weights are updated for those samples which have
a higher misclassification rate. This is a crucial aspect of the algorithm. At each
step, more importance is given to misclassified samples over correctly classified ones.

The final form of the model is

(5.3.12) ŷ(x) = sgn(
M∑
m=1

γmhm(x))

which outputs the most frequent prediction given by all of the weak learners. This
is because all the correct predictions will be greater than zero and negative for the
incorrect predictions5.

At first the choice of the exponential loss function can seem arbitrary, but in the
context of statistical learning this measure presents an important property. Here we
have that, with this loss function, the optimal classifier from all learners with is the
log-odds ratio of the two output classes for the trained dataset:

(5.3.13) f∗(X) = argmin
f

EY |f(X) [ exp(−Y f(X))] = 1
2 log

(
P (Y = 1 | X)
P (Y = −1 | X)

)

5. This is when we consider the binary class case where Y can take only 1 or −1 values.
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The use of an exponential loss function exp(−Y f(X)) is also desirable in this
context since significantly more weight is put on misclassifications rather than on
correct classifications. This is because the function is not symmetric in the negative
or positive predictions Ŷ because we have that a correct classification will result in a
weighting factor of only e−1, whilst on the other hand, a misclassification will result
in a factor of e.

A drawback of this loss though, is that it is not robust to outliers or to noisy data.
During run-time weights are constantly shifting towards misclassified samples. Then
if samples are mislabeled, the added noise this will make the algorithm repetitively
focus on fitting to data which is incorrect.

As explained before, the boosting methods build an ensemble model learned
from other weaker learners. If we consider decision trees as our base models, we are
specifically looking at the case of Gradient Tree Boosting, which is a specific variant
of the model above described. For the rest of this work we will focus on this specific
variant.

This booster was first introduced by Friedman, J., and the full details of the work
can be found in (friedman-gradientBoosting2001).

5.3.3 Notes on Gradient Boosting Optimization

Given that each base learner has its own parameter θ and its weight γ in the booster’s
loss function, take

Γ = {(γm θm)}Mm=1

to be the general parameter of the whole learner. Note that if an optimization
routine were to collectively fit all the parameters in Γ to fit this model, we would
computationally have a highly difficult model to train. Instead, applications of boost-
ers rely on optimization heuristics which use first and second order approximations
of the loss function at step m to build on the next learner m+ 1.

To work with this in the AdaBoost formulation , smooth loss functions become
very convenient for this procedure. As an example, we explain in detail a Gradient
Tree Boosting optimization heuristic in ??.

There are two additional heuristics commonly used to improve the booster’s
generalization performance. And for these, the arguments in favor of their use
are rather experimental than theoretical. The authors in (hastie-elemstatslearn)
and (bishop-patternRecognition) mention them because of their overall contri-
bution to the generalization error and because although they are intuitive to the idea
of variance reduction.

The first idea to reduce the booster’s variance is to subsample the data. This
means that at each iteration, only a bootstrapped sample of the dataset will be selected
to build a new weak learner. Samples from T which are not part of the bootstrapped
sample are ignored when optimizing for the new learner at Equation (5.3.4). The
motivation behind this is the same that as in Random Forests, where reducing the
overall available data to fit the new weak learner will most likely reduce the variance
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of the method. In practice, the rate of sampling will be supervised by a tuning
parameter in the model.

The other heuristic, which was found to be more experimentally important
by (hastie-elemstatslearn), is to successively apply a shrinkage factor v ∈ (0, 1)
to the new model. At step m, instead of letting the overall model be

(5.3.14) ŷi
(m) = ŷi

(m−1) + γmhm(xi)

we multiply the shrinkage factor v with the new learners before adding them to
the overall model. In the literature this shrinkage factor is also called the learning
rate of the algorithm.

Note that v is reducing the movement of the algorithm in the direction of
optimization provided by γt and ht. In practice, this results in longer iterations
needed to reach the algorithm’s best prediction rate. However, when this factor is
combined with sub sampling, experiments have shown improvements in the overall
generalization accuracy.

5.3.4 Experimental comparison to Random Forests

In order to compare this learner to Random Forests, we ran the same setup as in
Section 5.2.2 with two experiments each varying a different hyperparameter. Again,
models were built to classify on task Problem 2 and the Accuracy score was used
to evaluate their performance. The cross validation procedure set 10 folds for each
hyperparameter configuration and both experiments individually tuned on a) the
maximum tree depth and b) the number of base learners

For each experiment, we chose one hyperparameter and varied its values over a
predefined range. The results were then graphed the change in score across these
values. As a default configuration, 50 was the number of trees, and 6 was the trees’
maximum depth, whilst 0.1 was the fixed learning rate.

Additionally, we used the Gini index as the impurity measure in the splitting
criteria of each tree’s node and the exponential loss function to grow the next
estimator in line with the formulation given in Equation (5.3.7).

Cross validation procedures ran for 3616.5 and 2776.3 seconds respectively and
they both excluded attributes of the user’s home state and their current endemic
condition at T1.

The experiment’s score outcomes across the different hyperparameter values
were graphed in Figures 5.3.1 and 5.3.2 where these compare the cross-validated
and training set scores. Here we have that for each hyperparameter value, the
1−Accuracy score is graphed as a function of it. Thus having a lower score in the
graphic means a better model was reached.

Recall how these outcomes compare to Figure 4.2.1 and Figure 5.2.2, in which a
tree’s training error always improves as a result of an increase in the tree’s depth.

Here, we see that the estimator is prone to overfitting when using a highmaxdepth
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Figure 5.3.1 Validation curve for the tree-depth hyperparameter of the Gradient Boosting
Tree learner. The mean CV scores for the 1 − Accuracy score is shown for a CV run

experiment on Problem 2

value because the training deviates faster from the CV error when the depth is higher.
This acceleration is clear from the figure when we see that the CV score is invariant
while the training error decreases. At the same time the model differs from the
Random Forest classifier in that the trees are not uncorrelated, because the t-th tree
improves on the error of the model at t. This is an effective difference in the models.

For the second experiment, the overfit is smaller, given that the relative difference
in the CV score and the train score is smaller.

It is interesting to note that, for both cases, there is a very small gain in the CV
error when varying the hyperparameters, as evidenced by the range of the scores.
Yet the decrease in CV score is slightly better for the second experiment and this
situation is different to the case of the Random Forest learner, where the scores had
a stronger improvement in the cross validated score. The model seems to better fit
the data compared to the Random Forest, since lower error rates are achieved, and
it converges faster to a stable CV error where adding more trees or depth doesn’t
improve on the score.
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Figure 5.3.2 Validation curve for the number of trees hyperparameter of the Gradient
Boosting Tree learner. The mean CV scores for the 1−Accuracy score is shown for a CV

run experiment on Problem 2

At their optimal configuration, both setups reached CV score averages of at least
86.5%, with a maximum of 86.9% for the learner with trees of 12 levels. However,
the optimal number of estimators for the CV and training sets were different, where
105 was the best configuration for the training score and 95 was the best average
for the CV set. Wit this, the relative difference in these best scores was of 1.5%.
It is not surprising that the relative difference of the best CV and training scores,
for the maximum tree depth experiment was much higher with 11.5%, given this
hyperparameter’s influence to the model’s complexity.

The outcomes here expose the drawbacks of this model which is more prone to
overfitting and takes longer to fit when compared to the Random Forest algorithm.
Yet it gives better overall performance on the CV error, when the model is correctly
calibrated.
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5.3.5 Experiments

In this subsection, we explore the task described in Problem 4 using Gradient Boosting
classifiers and we compare the outcomes with the results outlined in Section 5.2.5.
This task is set to predict those users that migrated from the endemic region, but
only allowing users which are currently not endemic as the base set which implies
that we are excluding all users that are currently endemic.

We set two experiments similar to the ones before, where we run two procedures:
one with all available features and another without the top target-correlated ones.
For the third experiment, we trained only with the best features extracted in the
Random Forest’s second experiment. These were selected from the best-fit learner
used from that case and, with this third variant, we expected to see how good of
a performance can the gradient boosting classifier achieve, using only the top 30
features, as selected by best-fit random forest learner for the previous experiments.
Doing this has a hypothetical trade-off between accuracy and procedure run-time,
where we can gain speed in our fitting process by compromising some of the predictive
power of the algorithm.

Once again, in these experiments we performed a cross validation procedure over
the available hyperparameters of this classifier and in our CV procedure, we will be
searching the best learner over a grid combination of all parameters. For the most
part, these hyperparameters are the same as for the Random Forests learner, yet the
“Boosting” model has some additional ones, which we outline in the following list:

• The gradient descent’s defined step size — [step_size]

• Minimum threshold for the sum of samples’ Hessians at a given node. If
a node’s sum is smaller than this threshold then the fitting will stop —
[min_leaf_weight]

Using the same setup as before, we recorded the outcome of the three experiments’
cross validation procedures. The results were tabulated in terms of different metrics’
scores, runtime, best resulting hyperparameters values and the top ten best features
as selected by the best models. A summary of the metrics and best hyperparameter
values is given in Table 5.3.1.

The first notable fact from the results is how fast the last experiment is, compared
to the first two. Training the model was much faster, with almost 3 minutes to
complete the full procedure whilst the others had at minimum 20 minutes to do so.
We see that the information from the top 30 features of the RF models was efficiently
used in this boosting experiment and that this feature reduction considerably sped
up the learner’s runtime. This improvement should not be surprising then, as we
have limited the amount of available features to use, thus decreasing the necessary
computer resources to compute the fit.

The second interesting fact from the outcome is that the model seems to be more
overfit, when compared to Random Forest experiments. This is specially significant
in the first two experiments, where very complex models were chosen from the
procedure, with a depth of 15 levels and at least 250 trees for both. However, this is
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Table 5.3.1
Table of best results comparing three 10-fold full grid cross validation procedures with a

Gradient Boosting Classifier for Problem 4. All relevant scores, best hyperparameter values
and run-time are shown for both experiments.

Result Experiment 1 Experiment 2 Experiment 3

Running time (s) 2993 1972 204

CV F1 score 0.314 0.319 0.354

CV Accuracy score 0.889 0.843 0.8327

CV Precision score 0.209 0.217 0.249

CV Recall score 0.629 0.601 0.607

CV ROCAUC score 0.884 0.880 0.831

CV Log − loss score 0.524 0.337 0.399

balanced False False False

max_depth 15 15 12

num_trees 250 300 120

min_leaf_weight 2 5 10

min_loss 10 1 0.01

step_size 0.01 0.1 1

max_features (%) 80 75 10

not the last model’s case though, where a simpler model resulted in a depth of only
two levels and 120 trees grown.

The same applies for the max_features and min_leaf_weight hyperparame-
ters, for which lower complexity values resulted form the last CV procedure. There is
difficulty though in establishing which of them had the most weight in an underweight
model.

When analyzing the F1 score of the experiments, we find ourselves with a scenario
which is not that different. We see that the last procedure improved on the first
two experiments in more than 10%, using this score and in an almost 20% increase
in the precision score. This suggests that the first two models were overfitting the
training set and by using the top random forest features, we strongly improved on
the F1 performance. Finally, when compared to the Random Forest’s experiments,
we see that the boosting models performed near the top F1 value of 37% achieved in
the Random Forest experiments. From all model F1 scores, the lowest and highest
output scores were 31.4% and 35.4% respectively. This means that, at most, the
worst model had a performance for this score which was 17% lower.

Still, for that case, the top Random Forest’s F1 score was attained in the first
experiment, where we made use of the highly target-correlated features. This is
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then a remarkable performance for boosting learners which were not trained on this
attributes and still achieved similar or higher scores.

We also notice that the third model is slightly worse in the ROCAUC score,
when compared to the first two. Here, the first model reached a score of almost 90%,
whereas the third model had a poorer performance of 83%. Still, the lowest value
for all experiments is more than satisfactory to predict the which of the currently
non-endemic users have migrated out of the endemic region.

All in all, with these results and due to the difference in ROCAUC vs. F1 scores,
there is no clear indication as to which configuration is better across all experiments.

Below we introduce the learner’s selection of best features for each experiment.
Note that the last selection will have a very similar configuration to the top Random
Forest features, since it selects 10 features of the available 30 used to train the
model. This outcome is presented in Table 5.3.2, where the top 10 features for each
experiment are shown.

Table 5.3.2
A representation of the top features that resulted from the Gradient Boosting procedure on

two experiments of Problem 4.

Top Features

First Experiment

Call Count Antenna_0 Mobility Diameter Mobility Diameter Weeknight

Call Count Weeknight Antenna_0Call Count Antenna_1 Call Count Antenna_2

TimeWeekDay In Month_08 Call Count Weeknight Antenna_2TimeWeekDay Out Month_09

TimeWeekDay Out Month_12

Second Experiment

Mobility Diameter Mobility Diameter Weeknight Call Count Antenna_0

Call Count Weeknight Antenna_0Call Count Antenna_0 TimeWeekDay In Month_09

TimeWeekDay Out Month_09 TimeWeekDay Out Month_12 TimeWeekDay Out Vul Month_08

TimeWeekDay In Month_10

Third Experiment

TimeWeekDay In Vul Month_09 CallsWeekDay In Month_09 TimeWeekDay Out Vul Month_12

Mobility Diameter Weeknight Call Count Weeknight Antenna_0CallsWeekDay Out Month_09

CallsWeekDay In Vul Month_08 TimeWeekDay In Vul Month_08 TimeWeekDay Out Month_08

TimeWeekDay In Month_12

The top features list shows us the importance of mobility diameter in both
cases. We see that both weeknight and all-week user’s mobility, are deemed relevant
to detect their past endemic condition. This outcome confirms what was seen in
Table 5.2.2 where these attributes were, in general, highlighted.

As expected, in all cases we see that there are a number of features logging
vulnerable interactions of users living in non-endemic regions. The same can be
said about the call volume features, which are selected as important, both in the
number and times of calls. Unfortunately, we cannot determine their relationship to
the target variable in the sense that it might equally affects in both a positive and
negative way.

These results are in line with the assumptions we made when we constructed the
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risk maps in Section 2.3. The direction and duration of calls, and the number of
occurrences of these are all relevant predictors in the problem of tagging users that
moved out of the endemic region.

Once again, we see there are more features of earlier month interactions, such
as August and September. At the same time, the only other month appearing is
December. This could be indicative of familiar relations as it is a month which
coincides with festivities and family reunions.

The analysis here confirms the relevance of CDR information in tagging long-term
migrations. Experimental results show satisfactory scores across different metrics
and for a highly imbalanced class. Also, top features are in line with the assumptions
on which the risk maps were constructed.

5.4 Benchmark Classifier: Naive Bayes

The Naive Bayes model encompasses a group of simple and computationally efficient
algorithms which are built with a strong statistical assumption of independence
among the features. Even though this belief is in practice wrong, the model still
achieves acceptable classification rates for some problems. In addition, it does not
suffer in problems of high-dimensionality, where p >> n i.e. there are more attributes
than samples in the data.

The method is presented in this work for the purpose of providing a benchmark
algorithm. In practice it is expected that the classification rate achieved by this
model serves as a baseline for other, more complex, learners.

The benefits of the algorithm include having linear complexity in the number
of features and samples, O(d + n), so it can be easily extended to large problem
implementations. Furthermore, its maximum-likelihood estimation of the parameters
has a closed form solution which is faster to compute over other iterative methods
such as techniques using gradient descent or other similar iterative optimization
routines.

Let x = (x1, . . . , xp) be any given data sample and Ck be one of K possible
output classes of a classification problem. We take p(Ck | x) to be the class posterior
probability of this class given the sample.

In Chapter 3 we have used

(5.4.1) p(Ck|x) = P (x|Ck)P (Ck)
P (x)

and argued that if our data is given, then our model can only improve the
posterior probability by optimizing P (x|Ck)P (Ck) which is just the joint probability
of the sample and the class.

Here we can approximate the posterior as
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(5.4.2) P (Ck | x) ∝ p(Ck) ∗
p∏
j=1

P (xj |
p⋂

l=j+1
xk ∩ Ck)

We now impose a strong independence assumption among features, given the
target class, to let the conditional probability factors become the probability of each
feature.

This yields a posterior probability which depends only on the prior probability
and on the individual likelihood of each feature.

(5.4.3) P (Ck | x) ≈ p(Ck) ∗
p∏
j=1

P (pxj ∩ Ck)

As we have said before, the parameters of the model can only reweigh the likelihood
factors, so if we look to maximize the posterior probability, our final estimate of the
posterior will take the following form.

(5.4.4) P (Ck | x) ≈ 1
Z
p(Ck) ∗

p∏
j=1

P (xj |Ck)

where in the equation Z = p(x) is a scaling factor and is calculated from the
dataset.

In practice, the model will stem into different algorithms where each variant will
have a different probabilistic assumption on the likelihoods p(xj | Ck) of the model
and on the priors p(Ck). It is common to choose among these by using non-parametric
density estimations from the training data or by setting parametric assumptions on
the data distribution, such as being distributed from an exponential distribution
family such as a Gaussian, Bernoulli or Multinomial distribution.

Different choices will certainly lead to different cross validation scores among prob-
lems. Altogether, these choices can be treated as part our model’s hyperparameters
and the best one can be selected with our CV procedure.

Finally, the output class for a given sample will be given by taking the class k′
which maximizes the probability P (Ck′ | x).

5.4.1 Experiments

Here we present a very brief outline of this algorithm’s performance on our general
problem. Without going in to depth on the specifics of the experiments, we ran
the classifier in a cross validation procedure against all of the four tasks outlined in
Section 3.2, and using the same Accuracy, F1 and ROCAUC classifier scores as in
other method’s experiment runs. We took advantage of this method’s fast training
runtime to rapidly evaluate all tasks on this algorithm. The results were composed
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into Table 5.4.1 and summarize two aspects of the method: its lower performance
when compared to other previous methods, and the algorithm’s fast run-time. Given
that this algorithm was introduced for bench marking purposes, we will not expand
in this section any further results for this learner as these will be made in Chapter 6,
along with specific comparisons to other learner’s results.

Table 5.4.1
Table comparing cross validated results of best fit learners, comparing all 8-fold cross

validation procedures on a Naive Bayes classifier. Here a Multinomial prior distribution was
used and the relevant classification scores are shown

Measure Problem 1 Problem 2 Problem 3 Problem 4

Running time (s) 125 121 105 85

CV Accuracy score 0.842 0.649 0.658 0.852

CV F1 score 0.753 0.313 0.457 0.626

CV ROCAUC score 0.827 0.617 0.635 0.768
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The idea of this chapter is to present a combined overview of the work done and
the results encountered in Chapters 2 to 5. All in all, we intend to showcase what
relevant information were found in the preceding chapters. Most importantly we
found in this work that there is evidence to confirm the hypothesis which stipulates
that cell phone usage logs are rich in social interactions and, in turn, we show that
these interactions are informative enough to predict long-term migrations and human
mobility.



Chapter 6

Summary of Results

In Chapter 2 we presented the CDR dataset and how it contained information
relevant to the problem of long-term human migrations. With a minuscule sample of
the CDRs we showed that the dataset is rich in social interactions between users and
that the data contained dynamic georeferenced information at the user level. This
gave us an idea of how this type of data could be leveraged to the general problem.
We then framed the problem of long-term human migrations in this context and gave
an idea of their importance, in relation to the epidemic nature of the disease.

We noted that the dataset, as it was presented, posed an unbalanced classification
problem as most TelCo users did not show any migration pattern to or from the
endemic region, in the time frame of analysis. This also implied that we had a very
correlated problem, where most users did not change their past and present endemic
conditions. This information, combined with the local calling nature, meant that we
had correlations with the target feature. This was noted by seeing that users living
in the endemic region will most probably have lived there in the past as well.

In later sections we also noted that this strong past-to-present correlation in
user’s homes was relevant to the prediction problems. This is because for tree based
learners, knowing where the user lived in the present, was a strong indicator of where
the user’s past residence. This information provided the algorithms with features that
were highly informative. Yet we decided to exclude this attribute for the problem of
predicting a user’s past home endemic condition because we wanted to evaluate the
information present in other, less trivial, features.

More so, we found other variables having mild interactions with the condition of
being a past endemic user. As expected, people with high mobile interactions with the
endemic region, in the form of call duration and call counts, also resulted in attributes
which were related to users having past endemic homes. This is most probably due
to the locality effect in calling patterns, where most interactions between TelCo users
occur in local regions. Thus users living in endemic regions would call other users
nearby.
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In this stage we also set to explore the data with feature transformations and
visualizations to further discover insights relevant tot he problem of long-term human
migrations. As a starting point we transformed the user-level data into a dataset at
the antenna level. This step aggregated information of call patterns to and from the
endemic region. It allowed us to present geolocalized visualizations of these social
interactions to the vulnerable areas. As an intermediate step in this process we had
to introduce the definitions that we later used for the rest of this work. We defined
what a vulnerable interaction meant and what is a user’s home antenna. To finish
with the data exploration and produce the heatmaps, we aggregated the data at
the antenna level. In these visualizations, call interactions were georeferenced and
antennas were colored according to their level of vulnerable interactions..

The heatmap visualizations exposed a ‘temperature’ descent from the core regions
outwards. As expected, the heat was noted to be concentrated in the ecoregion.
We also found out that the level of vulnerable interactions per antenna gradually
descends as we move further away. We say this is expected behavior because it is
consistent with findings in the literature in which most calls are done to other local
antennas. Given this period and TelCo of analysis, we saw that ninety percent of
the users limited usage to at most four TelCo antennas.

We also discovered some unexpected findings that were highlighted by the risk
maps. Interactions from non-endemic antennas with those in the endemic region were
seen to be non-homogeneous in some areas. As an example, Figure 2.3.3 outlines
various antennas with higher vulnerability. We suspect this non-uniformity in the
vulnerable interactions can help detect communities with higher probability of disease
prevalence.

Health experts agree that these anomalies can be a great starting point to start
as communities atypical in their neighboring region carry potential of being a latent
endemic foci. These antennas stood out for their strong communication ties with the
regions studied, showed significantly higher links of vulnerable communication.

In the images presented, the differences in the vulnerable interactions were clear.
When talking to the “Mundo Sano Foundation” researchers participating in this
project, they pointed to the fact that the detection of these antennas through the
visualizations was of great value to their goals.

At the national level, the results evidenced by the maps were coherent with the
expert’s knowledge of the endemic zone’s migration patterns.

In Chapters 3 and 4 we gave a practical introduction to Machine Learning in
general, and of Supervised Classification problems in particular. This helped us set
our Chagas problem inside a systematic process to analyze long-term migrations
with the CDR dataset.

To do this, we broke the problem of long-term human migrations down in four
tasks which were later analyzed through different classifiers. In these two chapters,
we introduced the Machine Learning theory necessary to structure our problem,
along with its methods to solve them. These models were some of the most common
techniques found in the literature for the task we were trying to solve.

To begin we considered the Logistic Regression Classifier along with the Log-
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loss metric to evaluate model performance. Taking to our advantage the model’s
more tractable formulation, we showed how model regularization fits inside the
Machine Learning frame. This concept was introduced along with the notion of
model hyperparameters. Both were relevant to subsequent sections and in particular
to Figure 3.5.1. There we showed that there is importance in model regularization
by fitting a Logistic Regression classifier and comparing how its Log-loss varies
across different regularization values. This affected both the training and test set
performance in a similar way.

At the same time we introduced other relevant concepts in the Machine Learning
and we illustrated them with examples from the long-term human migration problems.
As is common in the literature, in Figure 4.2.1 we saw that increasing a decision
tree’s complexity leads to a clear case of overfitting the training data when trying to
approximate the generalization error.

The same procedure was used to illustrate the concept of “Cross Validation” in
Figure 4.3.1. We found that when making predictions on which users were endemic
in the past, the test score was inside a one standard deviation band from the CV
score, across a varying hyperparameter value for the Logistic Regression classifier.
These findings are consistent with lots of other experiments found in the literature
where by cross validating the search of optimal hyperparameters, we can have a fair
estimation of the test error.

Towards the end of Chapter 4 we performed a deeper experimentation with this
same problem and also on unidirectional users: those that moved out of the endemic
region from the past to the present time frame. Here we used the same classifier as
before but on the whole dataset in what defined our systematic approach of analyzing
classifiers performance.

The runtime for this experiment had a lower bound of one and a half hours. This
was for all of the cross-validated fits and for the whole set. Also since we limited the
number of iterations to at most one hundred steps, this runtime is actually smaller
than the real optimization time for this algorithm, Another issue found with this
algorithm was its extremely poor F1 performance on the prediction of these users
that migrated out of the endemic region. We found that it had a test score lower
than 17%. As we will see later in other statistical learners, we had that the overall
precision of the classifier was very poor due to not being able to accurately predict
positive samples. The algorithm was very inefficient in this aspect of overestimating
users that migrated out of the endemic region, and this misclassification had a direct
impact in the observed F1. However, this low score was not repeated in the rest of
the metrics we evaluated. For this same problem, both the best Recall and Accuracy
test and CV rates were over 61%.

Another relevant observation was that best-fit C values were not consistent along
all fits, because these resulting values were seen to differ by orders of magnitude.
Solutions for C ranged from to 10−3 to 10−1 on different fits. With this we can
still positively affirm that the best-fit models for this experiment were those which
penalized the loss function with strong regularization terms.

In contrast, when using this classifier to predict past endemic users residents, we
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found that we could get a ROCAUC score of 76%. Moreover, this score is achieved
when cross validating solely on the l1 regularization parameter. A similar test score
of 74.4% was reached when optimizing for the l2 hyperparameter of regularization.
Each were optimized separately in order to exemplify how the overall ROCAUC
varied along different regularization thresholds.

This outcome of better ROCAUC scores, when compared with the experiments on
migrations out of the endemic region, underscore the difference among the problems’
difficulty. If we recall the highly unbalanced class relations for Problem 2, we confirm
our hypothesis that these predictions characterize a problem which is very difficult
to precisely attack. This problem sought to predicting those users that had migrated
in one direction, out of the endemic region from the past to the present time.

Overall, both procedures had best fits on the more regularized C values. A
similar result can be found for regularization models and on procedures where
hyperparameters were cross validated. Both optimizations improved the model’s
predictive power in varying degrees.

The previous results outline a complete systematical Machine Learning approach
and tool set used to evaluate the long-term migrations prediction problem. In this
way, we provide a methodical way to analyze classifiers performing on this problem.
With this we tackled the task with the introduction of new algorithms in the following
chapters.

In Chapter 5 we introduced four new classifiers along with their properties and
characteristics. Three of these, Sections 5.1 to 5.3, were tree based methods whilst
the last, Section 5.4, was a Naive Bayes Classifier used for benchmarking purposes.
For each, we presented an introductory review and pointed the reader to further
literature references where applicable.

All but the Decision Tree learners were put through a number of experiments
to evaluate how they performed across all prediction problems. For each model,
we tried to draw the greatest prediction performance from the features extracted
from the dataset. However, Random Forest and Gradient Boosting models were
evaluated in further detail whilst Decision Trees were not systematically analyzed.
This base learner still served as common ground from which the following, more
complex, learners were built upon.

As a start, we showed through a validation curve that, for the problem of users
moving out of the endemic regions, the learners would become overfit if we let the
trees grow in depth. We had that the cross-validated scores and the test scores
diverged rapidly after a tree-depth of 7 and this is plotted in Figure 4.2.1. The wide
gap in the scores resulted in a difference larger than 30%.

In conclusion, the overfitting effect in this learner was visible in the experiments
where deep trees and complex configurations underpowered the resulting model’s
generalization error. This is not surprising as Decision Trees are known to become
highly complex after a certain level of tree growth.

We also fit two Decision Tree instances for the same problem to evaluate the
model with an Accuracy score. The first of two fits run over a smaller hyperparameter
space and, in particular, this configuration did not consider a re-balancing of the
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samples when computing the value of the loss function over the whole set. Then in
the second fit we performed sample balancing in the loss function to quantify the
algorithm’s outcome with and without this configuration.

To aid our understanding of this model’s outcome we also decided to create
visualizations for both fitted trees. Each tree is plotted in a graph which shows up
to five levels of splits. With this we showed, for each node, the attribute used in that
splitting decision and the actual split value.

These plots provided some insights into what features were initially being used
by the algorithm to separate samples, according to their split index performance.
For instance, in both fits the root split was based on the user’s mobility diameter,
with split values near to 47.5 kilometers in both cases. This means that a mobility
diameter of 47.5 was the best split decision the algorithm could take in order to
improve the Gini index of the sub groups. Recall here that the mobility diameter
quantifies the user’s area of influence given by their mobile connections.

The other significant features, selected at splits near to the tree’s root level, was
the user’s home antenna call count. Both the volume of calls during the whole week
and usage specifically during weeknights time was important to the node-splitting
algorithm.

For both trees, the split values for these two variables were relatively similar,
where in the volume of weeknight calls using the home antenna was of 10.5, whilst
for total volume of home antenna calls, at any given time, the values were 139 and
186 calls for each case. These split values were characterizing segments of heavy
users, that is users that are higher than the median values for the home antenna
usage variables.

Here we must note however, that both best-fit trees result in a low Accuracy
scores of 43.2%,and 57.9% respectively. Under these circumstances we find that these
top features selected when building the trees could not be very informative of the
overall problem in users that migrated out of the endemic region. This means that,
due to the low performance of these learners, the interpretations we build from this
output can be based on the wrong assumptions.

Interestingly enough, in these experiments we found that for this learner, re-
balancing the set helped us increase the learner’s score by a great amount. We
hypothesize that the hyperparameter is a valuable in helping face problems where
target classes are heavily unbalanced.

The rest of the Chapter 5 continues with the introduction of other learners. All of
them are presented with a brief explanation of their formulation and their distinctive
characteristics.

For each of these, we successively experiment the same difficult predictive task.
Where we look to tag users that migrated out of the endemic region, from time
periods T0 to T1. In this way, we set a common ground to compare and evaluate the
algorithms. As we will see later in Table 6.1.1, this task, Problem 2, happened to be
the hardest one, as it resulted in the lowest metric scores for all classifiers.

When tested over with the Random Forest classifier, we saw better Accuracy
scores than with the Decision Learner over a 10-fold cross-validation procedure. This
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model improved the mean cross validated score to reach a high score of 81%, for
trees of depth bigger than 15. Note that in this experiment we reweighed samples in
the loss function by default, following the improved results we obtained by doing
this for the Decision Learner classifier.

We also saw that there was barely no change in the average CV score when we
increased the number of trees used in the ensemble. Having an ensemble of 20 was
enough to capture most of the predictive information we needed to correctly tag the
unidirectional migrants of the endemic region. From this it seems that adding more
trees would not improve the generalization error in great values. Still, the optimal
number of trees was found to be around 130 for the CV procedure, and this gives
scores which are only 3% better than the ones for an ensemble of 20 trees.

In comparison to the previous model, the Forest also overfit the data when we
deepened the tree depth. However it did so at higher depths, where the first deviation
across the mean error rates for both the CV and training sets was at a depth of 9,
compared to the previous level of 7.

At the same time we had that for this model, the biggest differences between the
average training and CV errors, across hyperparameter values, was at most of 10%.
This result is expected in this learner which is designed to lower the base models’
variance. The downside in this learner was that the optimizations run for longer,
taking at least 20 minutes for both cases.

These results for the Random Forest model were also compared to the Gradient
Boosting model. The same two hyperparameters were validated across a range of
values, and for each we looked at how the Training and CV scores varied. Similarly,
we found that this model’s score won’t be greatly affected by the number of trees
used in the ensemble, and that most of its predictive performance can be captured
by using only 20 trees. Still, we note that the best-fit CV value was of 95.

For this learner, we also found that it will rapidly overfit the data once the base
learners get a maximum depth of 6. What was interesting here was that the mean CV
Accuracy constantly hovered around 86%, whilst the score for the training gradually
improved as the tree-depth grew, up to a score of 96%. This algorithm rapidly
overfits users that migrated out of the endemic region, which is similar to what we
saw with the Decision Tree Learner. Still, and compared to the Forest learner, we
get a better CV error, at the expense of a runtime which at least 50% slower.

In a second stage of experiments, we performed extensive testing both on the
Random Forest and Gradient Tree Boosting learners for the problem of tagging
the same users that migrated out of the endemic region, but only considering as
user-base, those users which are currently living outside of the endemic region.

For both, we ran a full CV procedure in two feature versions, one with all the
features and one in which target-correlated features were removed.

As a general statement we can say that the Random Forests experiments have
lower runtimes because take better advantage over the algorithm’s parallelizability.
Also, we can not affirm that one algorithm is strictly better than the other. Both of
them exceed each other across different metrics. It seems overall that the Random
Forest is better at correctly classifying positive instances, while the Booster is slightly
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better over the Recall. These asymmetrical performances across Precision and
Recall scores resulted in that no algorithm outperformed the other when evaluated
using the F1 score. Due to the low Precision rates, both achieved low F1 scores
with similar outcomes, where the maximum of these values was 37%.

On other scores such as Accuracy and ROCAUC the experiments showed high
classifier rates, where all of these ranged between percentages of 83% and 90%. These
high scores show there is enough predictive capacity in using these algorithms for
this problem of tagging migrants from the endemic region.

On the best-fit hyperparameter values, we see that both algorithm’s values agree
in that a large number of base learners are needed to perform better. This is evidenced
by the fact that, for all experiments, the optimal value was higher than 100 trees, up
to a maximum of 300 base learners. A similar result is seen with the tree’s depth,
where all best-fit values were, at least, over a depth of 12.

Both the Random Forest and Gradient Boosting models played an important role
in all of the prediction tasks we made. The high scores that result in some of the
metrics indicate that there is predictive information for the problems of long-term
human migrations. Another advantage of these two algorithms, is that they provide
heuristics on the best-features that we can use from the dataset.

From the process of calculating those best-features, we can say that for this
prediction task of finding, of those currently non-endemic users, which are the
migrants that moved out of the endemic region, the feature selection heuristics of
ensemble algorithms agreed upon a group of features. These were highlighted, for a
number of times, over the rest of the features and they provide insights into what
CDR variables provided most predictive value. Note though that this heuristic does
not provide any information into how the feature favors the prediction, be it in a
positive or negative way. Below we can find a descriptive collection of those features
for these learners, where we have broken down all of this information into feature
categories:

• Calls made in older months and in December: Interactions of different type,
that occurred closer to the split month between both periods T0 and T1 (July),
were also distinguished. The model frequently used interactions from the
months of August and September, as well as December. We conjecture that
this last result can be due to the fact that December is a month where user’s
increase their mobile activity with their families.

• Vulnerable calling patterns: As we first suspected in Chapter 2, the vulnerability
in the mobile interaction between users was relevant. The duration and
volume of and volume of calls, at different time periods, were highlighted for
their importance and in a number of occassions the interactions to and from
vulnerable users was relevant to the algorithm. We make the reminder here
that these measurements were the basis of our construction of the heatmaps
in Chapter 2, where for a given visualization we were showing how a month
worth of communications was aggregated at the antenna level. These plots
aggregated calling patterns for all users with vulnerable calls.
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• Mobility size: Finally, different measures of the distance in human mobility were
determined to be important by the model. Both mobility diameter attributes
were highlighted, where in one considered the mobility of users during weekdays
and for the other, only specific mobility during weeknights. General mobility
diameters and weekday or weeknight specific mobility were relevant. The
importance of these features were highlighted on a number of occasions by the
ensemble learners. We can also note that in Section 5.1.4 the Decision Tree
Learners selected this features for the higher nodes.

These factors identify strong predictors in long-term human mobility and provide
additional insights into our original hypothesis of which predictors were most valuable
for the task. Understanding these factors can further provide information into the
problem of Chagasic disease spread in the long run.

As a final remark that we must add here, the previous best-features list carries
some bias introduced by the model’s feature-target correlations. A similar argument
can be made for the best-features calculated from the Gradient Boosting experiment
that used only a filtered set of features, previously selected by the Random Forest
experiment’s best-features result. There is a strong feature-target correlation and
there is a leakage of target information within this experiment.

To look at a more thorough examination of these results and how they were
selected, the reader can refer to Tables 5.2.2 and 5.3.2.

Given all of the previous findings we collected, we can say that there is no absolute
single method that can be single-handedly applied to all problems and evaluation
performances. However, our results outline that the Gradient Boosting methods were,
in general, top performing for all tasks and classification metrics, except for the F1
score. Surprisingly enough, for some problems the Naive Bayes was outperforming
all learners in the F1 metric. The algorithm was more conservative in its positive
predictions and this difference saw a trade off in its performance across other metrics.

However we can say that results show that the performance of Gradient Boosting
models is best than other models such as Logistic Regression or Naive Bayes algo-
rithms for most tasks, and slightly better than the Random Forests. These models
can find complex interactions in the data whilst handling enough care not to lose
generalization power.

6.1 Master Table of Results

Table 6.1.1 shows a compendium of the results obtained from the CDR dataset, using
all classification models. For each problem and model, we found the best performing
learner with a cross validation procedure which searched over an extensive grid
of hyperparameters. In all cases, the hyperparameter configuration with highest
cross-validated ROCAUC was selected as the best-fit. The table shows the best-fit
classifier’s performance across three scores on the test set T∫ : Accuracy, F1 and
ROCAUC.
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Table 6.1.1
Master results table comparing results for all of the classifiers run in this work. For each

task and classifier, we show the its Accuracy, ROCAUC and F1 test-set scores, along with
the runtimes of a full cross validation procedures on the learner.

Problem 1

Accuracy ROCAUC F1 Runtime(m)

Logistic Regression 0.893 0.857 0.9 96
Random Forest 0.878 0.857 0.9 33

Gradient Tree Boosting 0.974 0.978 0.952 41
Naive Bayes 0.84 0.82 0.75 2

Problem 2

Accuracy ROCAUC F1 Runtime(m)

Logistic Regression 0.714 0.726 0.248 119
Random Forest 0.79 0.776 0.278 45

Gradient Tree Boosting 0.838 0.819 0.291 54
Naive Bayes 0.64 0.61 0.31 2

Problem 3

Accuracy ROCAUC F1 Runtime(m)

Logistic Regression 0.705 0.754 0.307 115
Random Forest 0.792 0.845 0.346 21

Gradient Tree Boosting 0.811 0.855 0.359 33
Naive Bayes 0.65 0.63 0.45 1

Problem 4

Accuracy ROCAUC F1 Runtime(m)

Logistic Regression 0.883 0.85 0.331 106
Random Forest 0.898 0.853 0.393 19

Gradient Tree Boosting 0.885 0.873 0.384 47
Naive Bayes 0.85 0.76 0.62 1
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Table 6.1.1 exposes all combinations in model performance and runtime across
the problems studied for this work. At first glance there are some notable results
exposed in this table.

6.1.1 Runtime Performance

It is clear that the Naive Bayes algorithms outperforms all other models in runtime
and, in some cases, this improvement is in orders of magnitude. The algorithm’s
worst performance for all problems is of two minutes whilst the best runtime for any
other classifier is for the Random Forest, with 19 minutes of runtime for the problem
of labeling users that traveled out of the endemic region, yet only for a subset of the
users base: namely those users which are currently settled outside of the endemic
region.

The Naive Bayes algorithm’s runtime shows a strong difference with the Logistic
Regression which was the slowest method overall, with the fastest runtime for all
problems being greater than an hour and a half. Having the Logistic Regression as
the slowest performing algorithm may be surprising to the reader. Consider that
in the runtimes measure timings on the cross validation procedures and that the
logistic classifier has a short list of hyperparameters combinations to optimize, when
compared to tree based methods. Still, we suspect that the time bottleneck in this
algorithm comes in the slow optimization procedure where, for every iteration, the
whole dataset needs to be reused to build the direction of steepest descent.

Another result here is that the Gradient Boosting algorithm had a higher runtime
than the Random Forest and, in certain cases, the results showed almost the double
time taken to fit the model. Even though the boosting algorithms implement several
heuristics to speed up the algorithms with local gradient approximations, we also
have that when building the Random Forest ensemble, the weak learners need not
be dependent, so the optimization routine can create them in parallel computations.
Thus this algorithm benefits strongly from parallelization procedures. On the contrary,
the boosting procedure builds successive trees that improve on the most current
model. This dependency limits the optimization routine parallelization opportunities.

At this point it is worth mentioning that the runtimes resulted from experiments
that were not performed under controlled computing environments. For example, we
cannot assure that all cross-validation procedures were done in settings with equal
available computational resources. Even though results seemed consistent across all
problems, we know that these results shouldn’t be considered as benchmarks.

6.1.2 Low F1 Scores

Overall, we can say that, excepting the problem of predicting users that had lived in
the endemic region in the past, no model had satisfactory F1 scores for any of the
problems. The top two F1 scores for Problems 2 to 4 and for any best-fit learners,
were 0.62 and 0.31. Both these scores were attained by the Naive Bayes algorithm for
the problems of currently non-endemic users that were living in the endemic region
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in the past, and for the problem of tagging users that had migrated in any direction.
Interestingly enough, these poor scores for the Naive Bayes algorithm were, in

comparison, much higher than the ones reached by any other classifier, when compared
in relative terms. All of the other classifiers had extremely poor F1 performances in
all of Problems 2 to 4. The best F1 score for the rest of the classifiers, across these
problems, was 0.393. This was attained by the Random Forest learner when tagging
people that had migrated out of the endemic region, from a user-base of those who
are currently non-endemic.

We mentioned this situation earlier for the experiments specifically performed on
this same Problem 4. We saw that all of the learner’s output a very low Precision
score and this impacted the overall F1 score.

The overconfidence shown by the models derived a high misclassification rate
for the samples in the positive class. This error was so strong, that it drove the
F1 scores to low values, even when they output acceptable Recall scores. Still, the
trade-off in the precision of their positive predictions was very strong.

We mentioned that this situation might appear in highly unbalanced classification
problems, such as the ones we are working with here. The overconfidence effect
in learners is affected by the unbalanced target class. With this we can say that
precisely tagging migrant users is a very difficult prediction problem, with the data
available.

It was surprising to discover that a very modest and fast model could, under this
metric, outperform all of the other more complex ones. We suspect that the Naive
Bayes’s formulation helps limit the overconfidence of the final model, allowing it to
still reach acceptable Recall scores. In all, we saw that this was the best model for
all problems of migrant users, and when evaluated on the F1 score.

In contrast, the problem of predicting users who, in the past, had homes in the
endemic region, by only taking into account their information from the present, is a
task that does not present this ill-conditioned class imbalance. Results show that
the Gradient Tree Boosting learner reaches very high F1 scores of 95% whilst both
the Logistic Regression and Random Forests reach values of 90%.

A similar situation was observed in other scores and across all problems.

6.1.3 Other Scores

For the ROCAUC and Accuracy test scores, we can say that, in general, the best
performing learner for all problems were the Gradient Boosting Trees models.1 It
scored high across all problems in the ROCAUC metric, where values ranged from
81.9% for the problem of tagging unidirectional migrants, up to 97% for the task of
predicting which users had lived in the endemic region in the past.

We confirm there that this learner, being more complex than the others presented,
effectively outputs higher scores in these metrics and that the model can better

1. There is only one specific case where the Boosted learner does not achieve the highest score,
and that is for the problem of tagging users that moved out of the endemic region, but only for
those users that are currently not endemic.
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predict those different user migrations with lower bias. We still had to be careful not
to overfit the model on the training set by configuring shallow base learners or by
using stronger regularization of the parameters.

A similar statement can be said for the Random Forest model. For these metrics
only, the results show that this model was in a 5% relative score distance to the
Gradient Boosting model, except for the first problem of predicting which users were
from the endemic region in the past, where the model was outperformed for more
than 10%. We still see that this model had extracted enough predictive information
from the dataset to correctly classify users according to these scores.

Under this view we would say that with this dataset provides enough information
to effectively predicted long-term migrations with the Random Forest and Gradient
Tree Boosting learners. The performance metrics were more than satisfactory,
building best-fit models which could accurately tag users under the ROCAUC and
Accuracy metrics. Also, when compared to the Logistic Classifier, in some cases we
see that they both have notable gain in the metrics and for others, such as for the
first problem, the Logistic model is on par.

On the other end of the spectrum, we had that the Naive Bayes model had the
worst ROCAUC and Accuracy scores for all problems where it reached a maximum
Accuracy of 84% for the problem of predicting users that were from the endemic
region in T0.

And the next best metric was a maximum ROCAUC of 76% for the case of
tagging migrants that moved out of the endemic region, but only making predictions
over users that are non-endemic in T1. These results show that we also had acceptable
rates for a model that is not expected to perform.

Overall we found that there are discrepancy in the evaluation scores across the
Machine Learning models here analyzed. Some are better at capturing the relevant
information to predict human movements in the long-term. This is because not all
social information is presented directly in the dataset, and feature interactions are
helpful.

With this we showed that it is possible to use the mobile phone records of users
during a bounded period (of 5 months) in order to predict whether they have lived
in the endemic zone EZ in a previous time frame (of 19 months). This task provided
to be the easiest classification one, since it resulted in the highest scores across all
learners.

The other effective tasks were the prediction of users that migrated in any
direction to and from the endemic region, and the tagging of users migrating out of
the endemic region, but only for those base of users which are currently non endemic.
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Conclusions

The purpose of this work was to analyze and explore how CDR data could be used
as a surrogate to other, more traditional, methods of disease control and surveillance.
We showed that it was possible to build strong classifiers to detect, from those users
currently not endemic, which users had migrated in the past from the endemic region.

This was done starting from the hypothesis that long-term migrations are relevant
to the Chagas disease spread. We analyzed people that moved from and to the
regions of high vector-borne infections because we understood from other works in
the literature that CDRs could be used for non business purposes. In this way we
took advantage of the CDRs by leveraging the georeferenced information contained
in them. In all, this work shows how the use of this data can help with the Chagas
disease problem.

This analysis allowed us to expose that the Risk maps we constructed are of
interest to national health authorities. These highlighted spots are likely of high
disease prevalence and they are associated with communities which had strong calling
interactions with the endemic region. These anomalous communities were highlighted
by means of data features which were later confirmed to be relevant in helping detect
long-term movement of users.

In this line, the risk maps produced interesting insights as to how migrations
might be occurring at a national level at a low production cost. They also helped
reinforce the hypothesis that these movements spread the disease out of the endemic
region.

Added to the previous points, this work served to provide an example of how
Machine Learning tools on CDR data can help authorities with disease-control
strategies in a way which is not intrusive to cellphone users. We showed how the
data can be effectively reused for reasons other than logging a user’s calling expenses
in a way which is relevant to public health issues.

Health-related measures can then be applied outside of the endemic region, and
directed towards specific neighborhoods and communities. Next to traditional health
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control actions, this research may provide a very insightful piece of information for
decision-makers. The insights derived from the probabilistic models provide insights
into the disease spread and it might also provide a research line for other diseases of
similar characteristics.

We carried out experiments which show there is evidence that Machine Learning
can provide a characterization of fluxes of human migrations and disease spread at
the user level. These experiments with supervised classification models showed a
systematic approach to analyze the problem with the information contained in the
data. They effectively helped understand how relevant the dataset is to the question,
and we explored how the algorithms used could assimilate the complexity and scale
of the data. We saw that large, at-scale, and temporal user mobility was captured
by the learners when using data from the CDRs, allowing us to understand a variety
of human movements throughout the country.

From the prediction experiments, we had results that highlighted the benefit of
using CDRs to characterize long-term human dynamics in the form of migration
patterns. Most of the tasks showed high prediction scores across most of the metrics.

On the other hand, we also outlined the difficulty in the specific problem of
tagging migrants that moved out of the endemic region at a national level. The same
happened when problems were measured with an F1 evaluation metric: except for
the problem of locating past endemic users, the algorithms achieved low prediction
scores across all tasks.

In this work we did a thorough comparison in the strengths and weaknesses of
the learners that were used to estimate the probability of each user’s migrations.
According to our results, there are algorithms which are reliable enough to detect
users which have migrated from old regions.

In some instances, we have achieved high values across all scoring measures and
we saw that, in general, the best learners for the tasks were the Random Forests
and Gradient Boosting models. Because of this, we focused our work on tuning
the ensemble learners to achieve higher predictions. This allowed us to find slight
performance differences in these ensemble methods, where the Gradient Tree Boosting
learner was found to be better than the Random Forest across most of the scores
tested.

We also explored which feature categories were most relevant to the predictions
in the ensemble algorithms, as selected by the “best-features” heuristic. Our findings
selected the following feature categories as relevant: a) the area of influence of the
users, where large mobility was indicative of past migrants, b) interactions and calling
patterns with vulnerable users, and c) calls placed in the months nearest to T0 and
also, calls placed in December.

Since we performed our analysis on two Latin-American countries and in one single
endemic region, we expect that this CDR usage can be extended to other similar
countries and diseases, with demographic, cultural and geographical similarities
beyond Chagasic spread in Mexico or Argentina.

The Argentinean and Mexican case studies allow us to find that it is possible
to characterize human movements of long duration. In all, cellphone datasets are
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rich enough in information to detect detailed patterns of users moving to and from a
particular area, at a national level.

At the moment, health experts from the Mundo Sano Foundation state that,
in Argentina, epidemic countermeasures include coordinating national surveillance
systems with institutions and primary health care organizations, vector-centered
policy interventions through fumigation of vector-infested regions and individual
in-field screening of people. These measures require costly infrastructures to set up
and be run.

On the other hand, this work provides a different point of view to the disease
spread problem and it is built only on top of existing mobile networks. We know then
that this analysis demands lower costs and takes advantage of the already available
infrastructure.

The potential value these results could add to health research is hereby exposed.
Finally, the results stand as a proof of concept which can be extended to other
countries or to diseases with similar characteristics.

7.1 Discussion on the methodology
There are several points that can be stated to point to weak spots on the methodology
used.

An important observation is that we cannot directly jump from the human
mobility insights found in this study, to conclusions from a model of disease spread.
Since we were looking solely at human mobility to and from endemic regions, we can
not imply disease spread or prevalence in a direct way. However, under the advice
of this topic’s researchers, this work does bring valuable insights to the problem,
reinforcing previous hypothesis that vulnerable users are not only to be found inside
vector-infested regions.

Added to the previous argument, we have stated numerous times before that
the methods shown suffer on datasets with high target class imbalance. We saw,
across all of the learners, low F1 scores on the problem of tagging user that migrated
out of the endemic region. This is a very significant negative outcome using this
methodology and these attributes.

Another issue with this work is the inherent biases in our dataset. As shown
in Table 2.4.2, there are significant differences in the percentage of population
represented by our dataset vs. current state distribution estimates. Due to this, we
have to interpret results with caution, since we do not hold any real-data comparisons.
We did not find any available georeferenced disease data outside of the endemic
region, at municipal or regional levels.1

Other interesting biases stemming from the data are related to international
pattern migrations. Here we measured migrations only from phone owners within a

1. As a matter of fact, we tried to contact health institutions and research organizations working
on the matter with the purpose of enriching the original dataset. This attempt did not add any
disease-related data of the kind.
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single country, yet we have seen in Chapter 2, that epidemic regions traverse political
borders. The current dataset is limited to only capturing national migrations, and
with this our analysis is limited to movements of TelCo users interacting with national
antennas only. A similar argument applies to the detection of mobility patterns for
people with no cell-phone usage.

Our dataset also presents problems when processing users’ home antennas. To
do this we had to define what we thought were the expected “working hours” for all
users and, in doing so, we assumed that this could be generalized to all samples. Even
though this decision was supported from past research we referenced, the definitions
might not be easily translated for datasets across other geographical and cultural
regions.

Finally, we know that we can have significant time seasonality and stationarity
in the data, yet we did not consider statistical methods to reduce this effect in a
thorough fashion. When processing the data, we specifically tagged weekend and
working hour attributes separately from the rest of the features. The same was done
for month specific attributes on user calling patterns. However we understand that
there could be other longer term time effect which was not considered under our
current codebase. There are possibilities of migration patterns being strongly related
to seasonal factors such as, for example, in agricultural workers having seasonal
migrations around different regions.

The importance of other user specific biases, such as demographics unbalance,
was not thoroughly examined. Yet these were out of the scope of this work, due to
the lack of ground truth data.

7.2 Lines of Future Work

The mobility and social information extracted from CDRs analysis has been shown to
be of practical use for long-term human migrations and for Chagas disease research.
it adds value and information to help make data driven decisions which in turn is
key to support epidemiological policy interventions in the region. For the purpose of
continuing this research line, the following is a list of possible extensions:

Results validation. Compare observed experiment results of risk maps and best
features against actual serology or disease prevalence surveys. Data collected
from fieldwork could be fed to the algorithm in order to supervise the learning
towards a target variable that is defined by the disease prevalence at a certain
level.

Differentiating rural antennas from urban ones. This is important as studies
show that rural areas have epidemiological conditions which are more favorable
to the expansion of the disease expansion. The vector-borne transmission
through Trypanosoma cruzi is helped with poor housing materials and domes-
tic animals. All contribute to complete the parasite’s life-cycle. Using the
CDR data, antennas could be automatically tagged as rural by analyzing the
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differences between the spatial distribution of the antennas in each area. A
similar goal could be to identify precarious settlements within urban areas,
with the help of census data sources.

International and seasonal migration analysis. Experts from theMundo Sano
Foundation underlined that many seasonal and international migrations occur
in the Gran Chaco region. Workers are known to leave the endemic area for
several months possibly introducing the parasite to foreign populations. The
same happens with foreign workers, which are not part of our dataset. The
mobility analysis on particular time periods or events, for example on holidays,
or specific migrations from bordering countries, can give information on which
communities have a higher influx of people from the endemic zone during a
certain period. This additional analysis would also lower the bias of the current
dataset.

Search for epidemiological data at a detailed level. For instance, specific his-
torical infection cases. If we can split the endemic region according to the
infection rate in different areas, or considering particular infections we can then
attempt to build a model complex enough to detect infected users nationwide.
For this to happen, it is of primary importance to have a reliable dataset
available, otherwise it would not be possible to reach a classifier with good
generalization performance.

Feature importance. From the best-features results shown in Chapter 6, we can
think of further exploring Machine Learning methods that focus solely on
exploring features’ predictive power to determine how attributes are associated
with a user’s long-term migration. Also, from these same results, we find that
it will be relevant to explore specific calling patterns on annual holidays during
the last week of the year, from the 24 to the 31 of December.

Test other classifiers. The probabilistic models introduced in this work are a brief
list of the ones available in the literature and of these, we know that only Naive
Bayes had an acceptable classification performance in Problem 2. It would
be interesting to see how other well-established and known methods perform
for this case and see if any of them can correct this. Some examples of other
algorithms not shown in this work are K-Nearest Neighbors, Support Vector
Machines and Classification Neural Networks.

Test other pre-processing techniques. In line with the problem addressed by
the previous point, there are multiple other data-based techniques to address
the problem of learning with highly unbalanced classes. These tend to focus
on under-sampling the majority class, over-sampling the minority class, or a
combination of both.

Domain Evaluation. The evaluation of Machine Learning algorithms needs to
incorporate domain specific knowledge to reassess the errors accordingly. In
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this sense, we can say that Type I or Type II errors may not be the same at
the eyes of a health researcher. In a future iteration, it would be interesting to
evaluate again the results with the opinion of other domain experts where the
algorithm’s performance could be seen differently.
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