

UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales Departamento de Matemática

Tesis de Licenciatura

Grafos amigo-enemigo en el plano

Inés Eugenia Saltiva

Director: Dra. Flavia Bonomo

Fecha de presentación: Mayo 2017

Abstract

En este trabajo principalmente he explorado la existencia de dibujos válidos para grafos amigo-enemigo en el plano considerando las normas 1 e infinito. Para ello hice un planteo de programación lineal entera que resuelve tal problema en el caso de la norma 1 con el que pude detectar los grafos de a lo sumo 8 nodos sin dibujo válido y minimales. Para los grafos de a lo sumo 7 nodos agregué una demostración formal de lo obtenido. El trabajo se completa con un análisis de los grafos estrella en $(\mathbb{R}^N,\|\cdot\|_{\infty})$ y una observación sobre la clase de los grafos de boxicity a lo sumo 2.

Introducción

"Ningún hombre es una isla."

Vivimos inmersos en redes sociales y, como le sucede a todo lo que nos rodea, queremos saber cómo funcionan. Desde los '50 que se intenta caracterizar estas redes utilizando grafos signados. Para ello se considera que en un grafo donde cada persona es un nodo, una arista con signo más dice que esas personas tienen algún tipo de relación social positiva, es decir que son "amigos", y una arista con signo menos representa una relación negativa, o sea, son "enemigos". El hecho de que dos nodos no se conecten refleja el hecho de que esas personas no se relacionan entre sí o que de algún modo son "indiferentes", esta opción no será considerada en este trabajo.

En este marco se han buscado propiedades que definan a un grafo signado como representante adecuado de una red social. En ese camino se han planteado distintos conceptos como el de los grafos balanceados y agrupables, sin embargo resultaron ser estructuras demasiado rígidas para representar la variedad de las relaciones sociales.

En 2011, A. M. Kermarrec y C. Thraves introdujeron un enfoque diferente sobre el tema. La idea de fondo es que tendemos a relacionarnos con personas hacia las que tenemos una valoración positiva, es decir que tratamos de tener más cerca a nuestros amigos que a nuestros enemigos. Esto se traduce en generar un dibujo donde los nodos "amigos" estén más cerca entre sí que los nodos "enemigos", a dicho dibujo lo llamaremos dibujo válido del grafo.

En 2012, M. Cygan, Marcin y Michal Pilipczuk y J.O. Wojtaszczyk lograron demostrar que un grafo cumpliría esta condición sobre la recta si y sólo si es un grafo de intervalos propios.

En esta tesis se analiza el problema considerando el dibujo resultante en el plano, trabajando con la métrica dada por las normas 1 e infinito.

En el capítulo **El problema** presento el problema métrico original y desde allí la evolución hacia un problema de programación lineal entera equivalente.

En el siguiente capítulo, **El algoritmo**, describo el planteo computacional y doy un script en concreto para el armado del input necesario para resolver usando Matlab. Corriendo este programa para los grafos conexos de hasta 8

nodos obtuve los grafos que no tienen dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$.

En el capítulo **Los grafos** doy demostraciones de existencia o no existencia de dibujos válidos para diversos grafos. En principio muestro algunas propiedades generales, una de las cuales permite cambiar el espacio de trabajo de $(\mathbb{R}^2, \|\cdot\|_1)$ a $(\mathbb{R}^2, \|\cdot\|_\infty)$ que resulta más cómodo para las demostraciones. Con este cambio pruebo que los ciclos siempre tienen dibujo válido en $(\mathbb{R}^2, \|\cdot\|_\infty)$ y que con los grafos estrella se puede conseguir un grafo sin dibujo válido para cada $(\mathbb{R}^N, \|\cdot\|_\infty)$, ésto último no necesariamente implica que valga lo mismo para $\|\cdot\|_1$ si N>2. Se completa con una sección donde demuestro la no existencia de dibujo válido para una serie de grafos de a lo sumo 7 nodos.

En el capítulo final, **Los extras**, se define la noción de grafo sin dibujo válido minimal y se muestra que los grafos de la sección **Casos particulares** del capítulo anterior son todos minimales. O sea, dichos grafos son los únicos grafos sin un dibujo válido minimales de a lo sumo 7 nodos. Además se agrega una lista de los únicos posibles grafos sin dibujo válido minimales de 8 nodos. Para finalizar, doy algunas observaciones sobre dos grafos que parecieran dar una familia sin dibujo válido pero al aumentar la cantidad de nodos no resulta de este modo y, cerrando este trabajo, se muestra que la clase de los grafos con dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$ (y por equivalencia en $(\mathbb{R}^2, \|\cdot\|_1)$ está propiamente incluida en la clase de los grafos con boxicity a lo sumo 2.

El problema

Análisis del problema

En pocas palabras, el objetivo original es decidir si un grafo signado completo tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$, o sea que cada nodo tiene más cerca a sus nodos amigos que a sus nodos enemigos. Para facilitar la notación se nombrarán los nodos del grafo original con números naturales y los nodos del dibujo en el plano a través de una función D que da la asignación del nodo i a la posición p_i . El conjunto de aristas positivas será E^+ y el de aristas negativa será E^- . De vuelta, en este trabajo no se considera la opción "nodos indiferentes".

Problema 0. Dado un grafo G = (V, E) con $V = \{1, ..., n\}$ y $E = E^+ \cup E^- = \{(i, j) : i \neq j\}$ se quiere decidir si existe $D : V \to \mathbb{R}^2$, $D(i) = p_i$ inyectiva tal que $||p_i - p_j||_1 < ||p_i - p_k||_1$ para cada i y para cada par j, k con $(i, j) \in E^+$, $(i, k) \in E^-$.

Ahora, dado que G es completo se tiene que, o bien $(i,j) \in E^+$ o bien $(i,j) \in E^-$. Por lo tanto, se puede considerar el grafo no signado formado por todos los vértices de V y las aristas positivas. A este grafo se lo llama el grafo positivo de G, $G^+ = (V, E^+)$ y salvo el caso de $E^- = \emptyset$, G^+ ya no es completo.

Entonces queda el problema equivalente:

Problema 1. Dado un grafo G = (V, E) con $V = \{1, ..., n\}$ se quiere decidir si existe $D: V \to \mathbb{R}^2$ inyectiva, $D(i) = p_i$ tal que $||p_i - p_j||_1 < ||p_i - p_k||_1$ para cada i y para cada par j, k con $(i, j) \in E$, $(i, k) \notin E$.

Al planteo anterior se le puede sumar la condición de que G sea conexo. Esto se deberá a la siguiente propiedad:

Propiedad. Sea G = (V, E). Si existe un dibujo válido para cada componente conexa de G en $(\mathbb{R}^2, \|\cdot\|)$, entonces G tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|)$.

Demostración. Sean $G_i = (V_i, E_i)$, con i = 1, ..., N las componentes conexas de G. Para cada G_i existe $D_i : V_i \to \mathbb{R}^2$, dibujo válido de G, o sea que para cada $j, k, l \in V_i$ con $(j, k) \in E_i$, $(j, l) \notin E_i$, $p_j = D_i(j)$, $p_k = D_i(k)$ y $p_l = D_i(l)$ vale $||p_j - p_k|| < ||p_j - p_l||$.

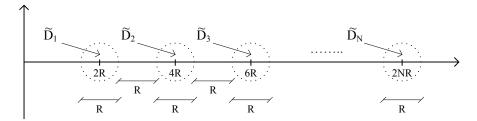
Como el grafo tiene finitos vértices, para cada i existe $R_i > 0$ tal que $||p_k - p_j|| < R_i \ \forall k, j \in V_i, \ k \neq j$. Entonces $Im(D_i) \subset B_{R_i/2}(c_i)$ para algún $c_i \in \mathbb{R}^2$.

En general, si se consideran $\tilde{p}_j = \tilde{D}_i(j) = D_i(j) + q_i = p_j + q_i$ para i = 1, ..., N y $q_i \in \mathbb{R}^2$, sigue valiendo que

$$\|\tilde{p}_j - \tilde{p}_k\| = \|p_j - p_k\| < \|p_j - p_l\| = \|\tilde{p}_j - \tilde{p}_l\|$$

para $j,k,l\in V_i$ con $(j,k)\in E_i,$ $(j,l)\notin E_i$ por lo que \tilde{D}_i resulta un dibujo válido para G_i e $Im(\tilde{D}_i)=\{p_j+q_i:j\in V_i\}\subset B_{R_i/2}(c_i+q_i)$

Eligiendo apropiadamente q_i , se pueden obtener \tilde{D}_i tales que $Im(\tilde{D}_i) \subset B_{R/2}(2iR,0)$ con $R = \max_{i=1,\dots,N} \{R_i\}$. Como se ve en la figura.



Si ahora se considera D definido por $D|_{V_i} = \tilde{D}_i$ para i = 1, ..., N entonces D resulta un dibujo válido para G = (V, E). Veamos que esto es efectivamente así.

Sean $j \in V_i$ y k, l tales que $(j, k) \in E$ y $(j, l) \notin E$.

Si $j \in V_i$ y $(j, k) \in E$ entonces $k \in V_i$ por ser $G_i = (V_i, E_i)$ la componente conexa a la que pertenece j. En cambio, podría pasar que l perteneciera o no a V_i .

- Si $l \in V_i$ entonces $j, k, l \in V_i$ con $(j, k) \in E_i(j, l) \notin E_i \subset E$ y como $D = \tilde{D}_i$ es un dibujo válido en G_i se tiene $\|\tilde{p}_j \tilde{p}_k\| < \|\tilde{p}_j \tilde{p}_l\|$ como se quería.
- Si $l \notin V_i$ entonces $\|\tilde{p}_j \tilde{p}_k\| < R < \|\tilde{p}_j \tilde{p}_l\|$ ya que $\tilde{p}_l \notin \tilde{D}_i$ y lo más cerca que puede estar en los casos $\tilde{p}_j \in \tilde{D}_{i-1}$ o $\tilde{p}_j \in \tilde{D}_{i+1}$ además de que $\tilde{p}_j, \tilde{p}_k \in \tilde{D}_i \subset B_{R/2}(2iR, 0)$.

Tenemos entonces el siguiente problema:

Problema 2. Dado un grafo G = (V, E) conexo con $V = \{1, ..., n\}$ se quiere decidir si existe $D: V \to \mathbb{R}^2$ inyectiva, $D(i) = p_i$ tal que $||p_i - p_j||_1 < ||p_i - p_k||_1$ para cada i y para cada par j, k con $(i, j) \in E$, $(i, k) \notin E$.

Este planteo ya puede traducirse a un problema de programación lineal entera. Sin embargo, con algunas modificaciones más se pueden obtener mejores resultados computacionales.

Llamando $r_{ij} = ||p_i - p_j||_1$ vale que (para cada i fijo)

$$r_{ij} < r_{ik} \quad \forall (i,j) \in E \Leftrightarrow \max_{(i,j) \in E} \{r_{ij}\} < r_{ik}$$

У

$$r_{ij} < r_{ik} \quad \forall (i, k) \notin E \Leftrightarrow r_{ij} < \min_{(i, k) \notin E} \{r_{ik}\}$$

Si se definen $m_i = \min\{r_{ij} : (i,j) \notin E\}$ y $M_i = \max\{r_{ij} : (i,j) \in E\}$ la condición $r_{ij} < r_{ik} \quad \forall (i,j) \in E \quad \forall (i,k) \notin E$ se puede reemplazar por $M_i < m_i$.

Esto se interpreta como pedir que, para cada p_i , el más lejano de sus amigos esté más cerca que el más cercano de sus enemigos.

Ahora, el cálculo de máximos y mínimos no se acomoda bien con planteos de PLE. Por suerte, no son necesarios.

Volviendo un paso atrás en la observación queda

$$r_{ij} < r_{ik} \quad \forall (i,j) \in E \Leftrightarrow \max_{(i,j) \in E} \{r_{ij}\} < r_{ik} \Leftrightarrow \exists \quad \epsilon_i > 0 \quad / \max_{(i,j) \in E} \{r_{ij}\} + \epsilon_i \le r_{ik}$$

O sea que la elección del máximo M_i se puede relajar. Lo mismo sucede para el mínimo m_i . Lo que se busca en realidad es que valga

$$r_{ij} < M_i < m_i < r_{ik}$$

para algunos $m_i, M_i \in \mathbb{R}$.

Con este cambio el problema final sería:

Problema 3. Dado un grafo G = (V, E) conexo con $V = \{1, ..., n\}$ se quiere decidir si existen $D: V \to \mathbb{R}^2$ inyectiva con $D(i) = p_i$ y $m_i, M_i \in \mathbb{R}$ para i = 1, ..., n tales que

- 1. $m_i \leq ||p_i p_j||_1 \quad \forall (i, j) \notin E \text{ para cada i fijo.}$
- 2. $M_i \ge ||p_i p_j||_1 \quad \forall (i, j) \in E \text{ para cada } i \text{ fijo.}$
- 3. $M_i < m_i \quad \forall i = 1, \dots, n$.

Veamos que son planteos equivalentes. En primer lugar, si existen D, m_i, M_i que cumplen las condiciones 1, 2 y 3 entonces

 $||p_i - p_j||_1 \le M_i < m_i \le ||p_i - p_k||_1$ para cada i fijo y para cada $(i, j) \in E$ e $(i, k) \notin E$; por lo que D resulta un dibujo válido.

En segundo lugar, si se tiene un dibujo válido D y se definen m_i y M_i como antes ya se vio que se cumplen las condiciones 1, 2 y 3.

El algoritmo

Planteo del problema

Se busca adaptar el problema a uno de programación lineal entera (PLE), o sea, se quiere transformarlo a uno en el que haya que buscar el mínimo de una función lineal f sobre un conjunto dado por las condiciones

$$\begin{cases} A\vec{x} \leq \vec{b} \\ \vec{l} \leq \vec{x} \leq \vec{u} \\ x_i \in \mathbb{Z} & i \in I \end{cases}$$

Variables

El vector de variables " \vec{x} " incluirá

- x_i , para i = 1, ..., n la primer coordenada de p_i , siendo p_i la posición asignada al nodo i por el dibujo.
- y_i , para i = 1, ..., n la segunda coordenada de p_i .
- $d_{x_{ij}} = |x_i x_j|$, para i < j.
- $d_{y_{ij}} = |y_i y_j|$, para i < j.
- m_i, M_i , para i = 1, ..., n del planteo del problema, o sea

$$m_i = \min\{r_{ij} : (i,j) \notin E\} \quad M_i = \max\{r_{ij} : (i,j) \in E\}.$$

• δ_{1ij} , δ_{2ij} , para i < j variables auxiliares binarias.

Cotas

Respecto de las cotas \vec{l} y \vec{u} , algunas serán naturales desde el planteo original mientras que otras resultarán de la necesidad de darle el formato requerido al problema.

En primer lugar, la asignación $D(i) = p_i$ podría darse en cualquier lugar del plano. Sin embargo, como la cantidad de nodos es finita y ya se vio que la existencia de un dibujo válido es invariante por traslaciones, se puede considerar $D \subset [0, K_1] \times [0, K_2]$. Es decir que el dibujo se busca en el primer cuadrante del plano y se imponen las cotas

•
$$0 \le x_i \le K_1$$
 $0 \le y_i \le K_2$ $\forall i = 1, \dots, n$

 K_1 y K_2 del orden de 2n resultaron suficientes pero podrían elegirse mucho más grandes para dar confianza en la respuesta del algoritmo.

Una vez fijadas K_1 y K_2 se tiene que

•
$$0 \le d_{x_{ij}} \le K_1 \ y \ 0 \le d_{y_{ij}} \le K_2$$
:

si $0 \le x_i, x_j \le K_1$ entonces $0 \le |x_i - x_j| \le K_1$ y lo mismo sucede para $|y_i - y_j|$.

• $0 \le m_i, M_i \le K_1 + K_2$:

 m_i y M_i son cotas para $||p_i - p_j||_1 = d_{x_{ij}} + d_{y_{ij}} \in [0, K_1 + K_2].$ Por último tenemos las variables auxiliares binarias que cumplen

• $0 \le \delta_{1ij}, \delta_{2ij} \le 1 \text{ con } \delta_{1ij}, \delta_{2ij} \in \mathbb{Z}$

Condiciones

Volviendo al problema 3, se quiere decidir si existen posiciones $p_i = (x_i, y_i)$ y números m_i y M_i tales que

a)
$$d_{x_{ij}} + d_{y_{ij}} = |x_i - x_j| + |y_i - y_j| = ||p_i - p_j||_1$$

b)
$$m_i \le ||p_i - p_j||_1 \quad \forall (i, j) \notin E$$

c)
$$||p_i - p_j||_1 \le M_i \quad \forall (i, j) \in E$$

d)
$$M_i < m_i \quad \forall i = 1, \dots, n$$

e) $||p_i - p_j||_1 > 0$, ésto garantiza que D sea inyectiva.

y en caso afirmativo, encontrar dichas posiciones.

Veamos que esto puede expresarse como solución de un sistema de la forma $A\vec{x} \leq \vec{b}$.

a) En general, $|a-b| = \max\{a-b; b-a\}$ también puede definirse como la única solución de

$$\begin{cases} |a-b| \ge a-b \\ |a-b| \ge b-a \\ |a-b| \le a-b \quad o \quad |a-b| \le b-a \end{cases}$$

Las primeras dos condiciones sólo necesitan de una inversión de la desigualdad. Para adaptar la tercer condición se introducen dos nuevas variables, δ (binaria) y $K \in \mathbb{R}$ suficientemente grande con las cuales se

plantea el siguiente sistema equivalente
$$\begin{cases} |a-b| \le -a+b+K\delta \\ |a-b| \le a-b+K(1-\delta) \end{cases}$$

K debe ser tal que valgan $|a-b| \le -a+b+K$ y $|a-b| \le a-b+K$

De esta manera si
$$\delta = 0$$
 queda
$$\begin{cases} |a-b| \le -a+b & \text{siendo la se-} \\ |a-b| \le a-b+K \end{cases}$$

gunda inecuación verdadera y si
$$\delta=1$$
 queda
$$\begin{cases} |a-b| \leq -a+b+K \\ |a-b| \leq a-b \end{cases}$$

siendo la primer inecuación verdadera. Como δ es binaria, alguno de los dos sistemas debe valer y así alguna de las condiciones que no se cumplen automáticamente se deben cumplir, de esa manera se recupera la tercer condición.

En nuestro caso, para definir apropiadamente $d_{x_{ij}} = |x_i - x_j|$ a través de inecuaciones se puede usar la constante $2K_1$. Efectivamente, como $0 \le x_i, x_j \le K_1$ se tiene que tanto $|x_i - x_j|$ como $x_i - x_j$ y $x_j - x_i$ son menores o iguales a K_1 por lo que

$$|x_i - x_j| + x_i - x_j \le K_1 + K_1 y |x_i - x_j| + x_j - x_i \le K_1 + K_1.$$

Es decir que vale que
$$|x_i-x_j| \le -x_i+x_j+2K_1$$
 y que $|x_i-x_j| \le x_i-x_j+2K_1$.

Teniendo todo esto en cuenta y haciendo un razonamiento análogo para $d_{y_{ij}}$ se tiene que, definir $d_{x_{ij}} = |x_i - x_j|$, es equivalente a pedir que se cumplan las siguientes inecuaciones

i)
$$-x_i + x_j - d_{x_{ij}} \le 0$$
.

ii)
$$x_i - x_j - d_{x_{ij}} \le 0$$
.

iii)
$$x_i - x_j + d_{x_{ij}} - 2K_1 \delta_{1ij} \le 0.$$

iv)
$$-x_i + x_j + d_{x_{ij}} + 2K_1\delta_{1ij} \le 2K_1$$
.

y para definir $d_{y_{ij}} = |y_i - y_j|$ se necesitan las siguientes inecuaciones

$$v) -y_i + y_j - d_{y_{ij}} \le 0$$

vi)
$$y_i - y_j - d_{y_{ij}} \le 0$$

vii)
$$y_i - y_j + d_{y_{ij}} - 2K_2\delta_{2ij} \le 0$$

viii)
$$-y_i + y_j + d_{y_{ij}} + 2K_2\delta_{2ij} \le 2K_2$$

De esta manera se tiene que $||p_i - p_j||_1 = d_{x_{ij}} + d_{y_{ij}}$.

En principio, esto debería calcularse para $1 \le i, j \le n$, pero como $||p_i - p_i||_1 = 0$ y $||p_i - p_j||_1 = ||p_j - p_i||_1$ sólo se considerará $1 \le i \le n-1$ y j > i para reducir la cantidad de variables en el problema.

b) Es inmediato de a) que queda

ix)
$$m_i - d_{x_{ij}} - d_{y_{ij}} \leq 0 \quad \forall (i,j) \notin E$$
.

c) Es inmediato de a) que queda

$$(x) d_{x_{ij}} + d_{y_{ij}} - M_i \le 0 \quad \forall (i, j) \in E.$$

d) Como la desigualdad $M_i - m_i < 0$ es estricta, no sirve para usar en el sistema directamente. Esto usualmente se resuelve agregando una variable $\epsilon > 0$ y cambiando la inecuación por $M_i - m_i + \epsilon \leq 0$.

En este caso no será necesario agregar una variable sino que se puede fijar ϵ ya que la existencia de un dibujo válido no depende de la escala. En efecto, si $D: V \to \mathbb{R}^2$ inyectiva con $D(i) = p_i$ es un dibujo válido para G = (V, E) entonces $\tilde{D}(i) = c.p_i$ $(c \in \mathbb{R})$ también lo es, ya que

$$||cp_i - cp_j||_1 = |c|||p_i - p_j||_1 < |c|||p_i - p_k||_1 = ||cp_i - cp_k||_1$$

 $\forall (i, j) \in E \quad \forall (i, k) \notin E \text{ para cada } i \text{ fijo.}$

Si existe un dibujo válido con $m_i \leq ||p_i - p_j||_1 \quad \forall (i, j) \notin E$ y $M_i \geq ||p_i - p_j||_1 \quad \forall (i, j) \in E$, vale que $M_i < m_i$. O sea que existe $\epsilon_i > 0$ tal que $M_i - m_i + \epsilon_i < 0$. Por ejemplo, si se quisiera que ϵ_i valiera 1 para todo i bastaría con considerar $\tilde{D} = cD$ con $1/c = \min\{\epsilon_i : i = 1, \ldots, n\}$.

Observemos que

 $\tilde{m}_i = \min\{\|\tilde{p}_i - \tilde{p}_j\|_1 : (i, j) \notin E\} = \min\{\|cp_i - cp_j\|_1 : (i, j) \notin E\} = c \min\{\|p_i - p_j\|_1 : (i, j) \notin E\} = cm_i \text{ ya que } c > 0.$ Análogamente se tiene que $\tilde{M}_i = cM_i$.

Entonces

$$\tilde{M}_i - \tilde{m}_i + 1 = cM_i - cm_i + 1 = c.(M_i - m_i + 1/c) < c.(M_i - m_i + \epsilon_i) < 0.$$

Esto nos dice que por cada dibujo válido que tenga el grafo, existe un dibujo reescalado de dicho dibujo para el cual se puede pedir

xi)
$$M_i - m_i \le -1$$
 para $i = 1, ..., n$.

e) Con un análisis similar al realizado en d) se reemplaza la condición $||p_i - p_j||_1 > 0$ por $||p_i - p_j||_1 \ge 1$ y queda

xii)
$$-d_{x_{ij}} - d_{y_{ij}} \le -1$$
 para $i = 1, \dots, n$.

Esto dice que si $i \neq j$ entonces $D(i) \neq D(j)$, en caso contrario se tendría $||p_i - p_j||_1 = 0$.

Una observación importante es que ya se tiene un sistema con restricciones que sirve para encontrar un dibujo válido, en el caso de que exista. O sea que alcanza con que el problema de PLE tenga una solución factible para que exista un dibujo válido para G = (V, E) y viceversa independientemente de la función lineal f a elegir.

Para obtener dibujos más centrados hacia el origen utilicé la función $f(x) = \sum_{i=1}^{n} x_i + y_i \ge 0$.

Otra opción hubiera sido considerar las constantes K_1 y K_2 como variables dentro del planteo con la condición de que acotaran a x_i e y_i respectivamente. En este caso se podría usar la función minimizante $f = K_1 + K_2$ para controlar el tamaño del dibujo.

Esto da más flexibilidad a las cotas sobre las variables efectivas del problema pero también agrega variables e inecuaciones al planteo original generando un problema de mayores dimensiones.

Implementación

Dado que diversos programas tienen comandos específicos para resolver problemas de PLE de la forma planteada con eficacia, me centraré en la descripción del armado de la matriz A que da las inecuaciones descriptas en la sección anterior.

Indexación de variables

En el vector de variables se supone el siguiente orden:

- 1. Los lugares 1 a n corresponden a las variables x_1, \ldots, x_n con x_i en la coordenada i para $1 \le i \le n$
- 2. Los lugares n+1 a 2n corresponden a las variables y_1, \ldots, y_n con y_i en la coordenada n+i para $1 \le i \le n$
- 3. Los lugares 2n + 1 a 2n + n(n-1)/2 corresponden a las variables $d_{x_{ij}}$ para $1 \le i \le n-1$, i < j.

Todas las variables que necesiten doble indexación se ordenarán poniendo primero las correspondientes a i=1, segundo las correspondientes a i=2 y así sucesivamente hasta i=n-1 con j desde i+1 hasta n en cada grupo. Por ejemplo, si n=4 quedarían $d_{x_{12}}, d_{x_{13}}, d_{x_{14}}, d_{x_{23}}, d_{x_{24}}, d_{x_{34}}$.

Entonces, en general, la posición de la variable $d_{x_{ij}}$ dentro del grupo $(d_{x_{12}}, \ldots, d_{x_{n-1,n}})$ será (i-1)(2n-i)/2+j-i.

El primer sumando corresponde a todas las $d_{x_{kl}}$ con $1 \le k \le i - 1$, $k + 1 \le l \le n$ que ocupan los

$$\sum_{k=1}^{i-1} n - k = n(i-1) - \sum_{k=1}^{i-1} = n(i-1) - (i-1)i/2 = (i-1)(2n-i)/2$$

lugares anteriores.

El binomio j-i corresponde a las $d_{x_{il}}$ con $i+1 \le l \le j-1$ anteriores a $d_{x_{ij}}$ más 1 de la posición buscada.

Dentro del vector completo de variables, a $d_{x_{ij}}$ le corresponde la coordenada 2n + (i-1)(2n-i)/2 + j - i con $1 \le i \le n-1$ y $j = i+1, \ldots, n$.

- 4. Los lugares 2n+n(n-1)/2 a n^2+n corresponden a las variables $d_{y_{ij}}$ para $1 \le i \le n-1$, i < j. Usando el mismo tipo de indexación que en 3. la variable $d_{y_{ij}}$ está en la coordenada 2n+n(n-1)/2+(i-1)(2n-i)/2+j-i con $1 \le i \le n-1$ y $j=i+1,\ldots,n$.
- 5. Los lugares $n^2 + n + 1$ a $n^2 + 2n$ corresponden a las variables m_i para $1 \le i \le n$ con m_i en la coordenada $n^2 + n + i$ con $1 \le i \le n$.
- 6. Los lugares $n^2 + 2n + 1$ a $n^2 + 3n$ corresponden a las variables M_i para $1 \le i \le n$ con m_i en la coordenada $n^2 + 2n + i$ con $1 \le i \le n$.
- 7. Los lugares $n^2 + 3n + 1$ a $n^2 + 3n + n(n-1)/2$ corresponden a las variables δ_{1ij} para $1 \le i \le n-1$, i < j. Indexando como en 3., δ_{1ij} queda en el lugar $n^2 + 3n + (i-1)(2n-i)/2 + j i$ con $1 \le i \le n-1$ y $j = i+1, \ldots, n$.

8. Los lugares $n^2 + 3n + n(n-1)/2 + 1$ a $2n^2 + 2n$ corresponden a las variables δ_{2ij} para $1 \le i \le n-1$, i < j. Indexando como en 3., δ_{2ij} queda en el lugar $n^2 + 3n + n(n-1)/2 + (i-1)(2n-i)/2 + j - i$ con $1 \le i \le n-1$ y $j = i+1, \ldots, n$.

Observación. El problema tiene $2n^2 + 2n$ variables.

Cotas

Siguiendo el orden indicado para las variables, el vector \vec{u} que guarda las cotas superiores queda

- $u_1, \ldots, u_n \ y \ u_{2n+1}, \ldots u_{2n+n(n-1)/2}$ iguales a $K_1 \ (x_i, d_{x_{ij}})$.
- u_{n+1}, \ldots, u_{2n} y $u_{2n+n(n-1)/2+1}, \ldots u_{n^2+n}$ iguales a K_2 $(y_i, d_{y_{ij}})$.
- $u_{n^2+n+1}, \ldots, u_{n^2+3n}$ iguales a $K_1 + K_2$ (m_i, M_i) .
- $u_{n^2+3n+1}, \ldots, u_{2n^2+2n}$ iguales a 1 $(\delta_{1ij}, \delta_{2ij})$.

Por el otro lado, el vector \vec{l} que guarda las cotas inferiores es $\vec{l} = \vec{0} \in \mathbb{R}^{2n^2+2n}$.

Script usando Matlab

Matriz del problema y término independiente

Se quiere generar el input del sistema $A\vec{x} \leq \vec{b}$ formado por las inecuaciones i) - xii). Lo más sencillo es trabajar en simultáneo cada fila de A y su correspondiente coordenada en \vec{b} , para eso se considera que A es [A|b].

En cada inecuación aparecen a lo sumo cuatro variables, por lo que conviene partir de una matriz de ceros e ir modificando fila a fila esos pocos coeficientes. Para hacer esto, es mejor conocer de antemano la cantidad total de inecuaciones.

Las desigualdades de las formas i) a viii) y xii) son n(n-1)/2 cada una y además hay n de la forma xi). Por separado, no se pueden contar las inecuaciones de las formas ix) y x); sólo se puede acotar cuántas serán ya que, para cada $i=1,\ldots,n$, la cantidad de nodos j adyacentes o no adyacentes depende del grafo analizado.

Sin embargo, para cada i se tiene que si $j \neq i$, o bien $(i,j) \in E$ y se agrega la condición x) o bien $(i,j) \notin E$ y se agrega la condición ix). Esto dice que, en conjunto, se tienen n(n-1) inecuaciones para los casos ix) y x). Esto da en total $5, 5n^2 - 4, 5n$ filas.

O sea que, para un grafo de n vértices, se tiene que resolver un problema de PLE de $5,5n^2-4,5n$ inecuaciones con $2n^2+2n$ incógnitas de las cuales n(n-1) son binarias.

A continuación presento un script que da la matriz [A|b] buscada usando como dato la matriz de adyacencia de G y las constantes K_1 y K_2 .

```
function desig=desig(Ad,K1,K2)
%Ad matriz de adyacencia del grafo
%K1 cota para las variables x
%K2 cota para las variables y
n=size(Ad,1);
                         %cantidad de vértices
N1=2*n^2+2*n;
                         %cantidad de variables
N2=5.5*n^2-4.5*n;
                         %cantidad de desigualdades
A=zeros(N2,N1+1);
                         %matriz ampliada A b
m1=n*(n-1)/2;
                         %número usado varias veces
m2=2*n;
                         %donde empiezan en X las dxij
m3=2*n+m1;
                         %donde empiezan en X las dyij
m4=n^2+n;
                         %donde empiezan en X las mi
m5=m4+n;
                         %donde empiezan en X las Mi
m6=m5+n;
                         %donde empiezan en X las \delta1ij
m7=1.5*n^2+2.5*n;
                         %donde empiezan en X las \delta2ij
%1 -xi+xj-dxij<=0 para i<j
k=1;
                   %k es el número de fila donde va la
                   %ecuación, por eso en cada paso se
                   %actualiza con k=k+1
i=1;
while k<=m1
    while i<=n-1
        for j=i+1:n
                                                  %-xi
               A(k, i) = -1;
            A(k,j)=1;
                                                  % xj
            A(k, m2+(i-1)*(2*n-i)/2+j-i)=-1;
                                                  %-dxij
            k=k+1;
        end
        i=i+1;
    end
    k=k+1;
end
응2
   xi-xj-dxij<=0 i<j
k=m1+1; i=1;
while k \le 2 * m1
    while i<=n-1
        for j=i+1:n
            A(k,j) = -1; A(k,i) = 1;
            A(k, m2+(i-1)*(2*n-i)/2+j-i)=-1;
            k=k+1;
        end
        i=i+1;
    end
    k=k+1;
end
                       15
```

```
xi-xj+dxij-2K1 \delta 1ij <= 0 i < j
k=2*m1+1; i=1;
while k \le 3 \times m1
    while i<=n-1
         for j=i+1:n
             A(k,j) = -1; A(k,i) = 1;
             A(k, m2+(i-1)*(2*n-i)/2+j-i)=1;
             A(k, m6+(i-1)*(2*n-i)/2+j-i)=-2*K1;
         end
         i=i+1;
    end
    k=k+1;
end
     -xi+xj+dxij+2K1 \delta 1ij <= 2K1 i < j
%esta desigualdad tiene coordenada en b no nula
y se modifica la columna N1+1 de A
k=3*m1+1; i=1;
while k \le 4 \times m1
    while i<=n-1
         for j=i+1:n
             A(k,j)=1; A(k,i)=-1;
             A(k, m2+(i-1)*(2*n-i)/2+j-i)=1;
             A(k,m6+(i-1)*(2*n-i)/2+j-i)=2*K1;
                                                                   응b
             A(k, N1+1) = 2 * K1;
             k=k+1;
         end
         i=i+1;
    end
    k=k+1;
end
     -yi+yj-dyij<=0 i<j
응5
k=4*m1+1; i=1;
while k \le 5*m1
    while i \le n-1
         for j=i+1:n
             A(k, n+j)=1;
             A(k, n+i) = -1;
             A(k,m3+(i-1)*(2*n-i)/2+j-i)=-1;
             k=k+1;
         end
         i=i+1;
    end
    k=k+1;
end
```

```
yi-yj-dyij<=0 i<j
k=5*m1+1; i=1;
while k <= 6*m1
    while i<=n-1
         for j=i+1:n
             A(k, n+j) = -1;
             A(k, n+i) = 1;
             A(k,m3+(i-1)*(2*n-i)/2+j-i)=-1;
             k=k+1;
         end
         i=i+1;
    end
    k=k+1;
end
     yi-yj+dyij-2K2 \delta2ij<=0 i<j
응7
k=6*m1+1; i=1;
while k \le 7 \times m1
    while i<=n-1
         for j=i+1:n
             A(k, n+j) = -1;
             A(k, n+i)=1;
             A(k,m3+(i-1)*(2*n-i)/2+j-i)=1;
             A(k, m7+(i-1)*(2*n-i)/2+j-i)=-2*K2;
             k=k+1;
         end
         i=i+1;
    end
    k=k+1;
응8
      -yi+yj+dyij+2K2 \delta2ij<=2K2 i<j
k=7*m1+1; i=1;
while k \le 8 \times m1
    while i \le n-1
         for j=i+1:n
             A(k, n+j)=1;
             A(k, n+i) = -1;
             A(k,m3+(i-1)*(2*n-i)/2+j-i)=1;
             A(k, m7+(i-1)*(2*n-i)/2+j-i)=2*K2;
             A(k, N1+1) = 2 * K2;
                                                            용b
             k=k+1;
         end
         i=i+1;
    end
    k=k+1;
end
```

```
mi-dxij-dyij) <=0, i distinto de j
%se tiene que separar en dos casos ya que sólo están las
%variables de distancia para i<j
k=8*m1+1;
for i=1:n
    for j=1:n
        if i<j && Ad(i,j)==0</pre>
            A(k,m4+i)=1;
            A(k, m2+(i-1)*(2*n-i)/2+j-i)=-1;
            A(k,m3+(i-1)*(2*n-i)/2+j-i)=-1;
            k=k+1;
        elseif i>j && Ad(i,j)==0
            A(k, m4+i)=1;
            A(k, m2+(j-1)*(2*n-j)/2+i-j)=-1;
            A(k,m3+(j-1)*(2*n-j)/2+i-j)=-1;
            k=k+1;
        end
    end
end
%10
      -Mi+dxij+dyij<=0, i distinto de j
for i=1:n
    for j=1:n
        if i<j && Ad(i,j)==1</pre>
            A(k, m5+i) = -1;
            A(k, m2+(i-1)*(2*n-i)/2+j-i)=1;
            A(k,m3+(i-1)*(2*n-i)/2+j-i)=1;
            k=k+1;
        elseif i>j && Ad(i,j)==1
            A(k, m5+i) = -1;
            A(k, m2+(j-1)*(2*n-j)/2+i-j)=1;
            A(k, m3+(j-1)*(2*n-j)/2+i-j)=1;
            k=k+1;
        end
    end
end
%11 Mi-mi<=-1 i
for i=1:n
    A(k, m4+i) = -1;
    A(k, m5+i)=1;
    A(k, N1+1) = -1;
                        %b
    k=k+1;
end
```

Observación

Si en las condiciones originales se admitieran las posibilidades de que dos nodos fueran amigos, enemigos o indiferentes ya no se tendría un grafo completo signado. Sin embargo, podría considerarse un grafo completo pesado en el cual, si los nodos i y j son amigos la rama (i,j) pesa 1, si son enemigos (i,j) pesa -1 y si son indiferentes (i,j) pesa 0.

Más aún, podría analizarse la relación amigo-enemigo-indiferente como no necesariamente recíproca. En este caso, el grafo debería ser orientado.

En todos estos casos se pueden repetir todos los planteos anteriores y en el resultado final sólo es necesario cambiar la condición

" $(i,j) \in E$ vs. $(i,j) \notin E$ " por la respectiva condición de decisión de los problemas.

O sea que todas esas situaciones se pueden reducir a problemas de PLE.

Los grafos

Preliminares

En esta sección se verán algunas propiedades geométricas y de medida y su adaptación al problema de la existencia de un dibujo válido.

Propiedad. Sean
$$P_1, P_2 \in \mathbb{R}^2$$
 y $T(x, y) = (x - y, x + y)$. Entonces $||P_1 - P_2||_1 = ||Q_1 - Q_2||_{\infty}$ con $Q_i = T(p_i)$ para $i = 1, 2$.

Demostración. Si $P_i = (x_i, y_i)$, entonces se quiere ver que $|x_1 - x_2| + |y_1 - y_2| = \max\{|x_1 - y_1 - (x_2 - y_2)|; |x_1 + y_1 - (x_2 + y_2)|\} =$ $= \max\{|x_1 - x_2 - y_1 + y_2|; |x_1 - x_2 + y_1 - y_2|\}\$

- Caso 1: $|x_1 - x_2 - y_1 + y_2| \le |x_1 - x_2 + y_1 - y_2|$ y $x_1 - x_2 + y_1 - y_2 \ge 0$ Es decir, $||Q_1 - Q_2||_{\infty} = x_1 - x_2 + y_1 - y_2$. Entonces

$$-x_1 + x_2 - y_1 + y_2 \le x_1 - x_2 - y_1 + y_2 \le x_1 - x_2 + y_1 - y_2.$$

De la primer designaldad se tiene que $x_2 \leq x_1$, o sea que $|x_1 - x_2| =$ x_1-x_2 .

De la segunda desigualdad se tiene que $y_2 \leq y_1$, o sea que $|y_1 - y_2| =$ y_1-y_2 .

Esto dice que, efectivamente,

$$||Q_1 - Q_2||_{\infty} = x_1 - x_2 + y_1 - y_2 = |x_1 - x_2| + |y_1 - y_2| = ||P_1 - P_2||_1.$$

- Caso 2: $|x_1 - x_2 - y_1 + y_2| \le |x_1 - x_2 + y_1 - y_2|$ y $x_1 - x_2 + y_1 - y_2 \le 0$ Entonces

$$x_1 - x_2 + y_1 - y_2 \le x_1 - x_2 - y_1 + y_2 \le -x_1 + x_2 - y_1 + y_2$$

y se tiene que $y_1 \leq y_2$ y $x_1 \leq x_2$. Por lo que

$$||Q_1 - Q_2||_{\infty} = -x_1 + x_2 - y_1 + y_2 = ||P_1 - P_2||_1.$$

- Caso 3: $|x_1 - x_2 + y_1 - y_2| < |x_1 - x_2 - y_1 + y_2|$ $\forall x_1 - x_2 - y_1 + y_2 > 0$ Entonces

$$-x_1 + x_2 + y_1 - y_2 \le x_1 - x_2 + y_1 - y_2 \le x_1 - x_2 - y_1 + y_2$$
y se tiene que $y_1 \le y_2$ y $x_2 \le x_1$. Por lo que $\|Q_1 - Q_2\|_{\infty} = x_1 - x_2 - y_1 + y_2 = \|P_1 - P_2\|_1$.

- Caso 4: $|x_1 - x_2 + y_1 - y_2| \le |x_1 - x_2 - y_1 + y_2|$ y $x_1 - x_2 - y_1 + y_2 \le 0$ Entonces

$$x_1 - x_2 - y_1 + y_2 \le x_1 - x_2 + y_1 - y_2 \le -x_1 + x_2 + y_1 - y_2$$

y se tiene que $y_2 \le y_1$ y $x_1 \le x_2$. Por lo que $\|Q_1 - Q_2\|_{\infty} = -x_1 + x_2 + y_1 - y_2 = \|P_1 - P_2\|_1$.

Esta propiedad permite, dado un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$, construir otro dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$. Como además la transformación lineal que se usa es inversible puede hacerse la construcción también en el otro sentido.

П

Proposición. Sea G = (V, E) un grafo. G tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$ si y sólo si G tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

Demostración. Se consideran $V = \{1, ..., n\}$ y $E = \{(i, j) : i \text{ es adjacente a } j\}$

 \Rightarrow) Sean $\{p_1, \ldots, p_n\}$ los nodos del dibujo válido de G en $(\mathbb{R}^2, \|\cdot\|_1)$, o sea que para $i = 1, \ldots, n$ vale que $\|p_i - p_j\|_1 < \|p_i - p_k\|_1$ para cada j tal que $(i, j) \in E$ y para cada k tal que $(i, k) \notin E$ siendo $p_i = D(i)$ con $D: V \to \mathbb{R}^2$.

Si se definen $q_i = T(p_i)$ para i = 1, ..., n y T(x, y) = (x - y, x + y) vale que $||p_i - p_j||_1 = ||q_i - q_j||_{\infty} < ||q_i - q_k||_{\infty} = ||p_i - p_k||_1$

para $(i, j) \in E$ y para $(i, k) \notin E$ para todo i = 1, ..., n fijo y $q_i = T(p_i) = T(D(i)) = T \circ D(i) = \tilde{D}(i)$ con $\tilde{D} : V \to \mathbb{R}^2$.

Por lo tanto $\{q_1, \ldots, q_n\}$ son los nodos de un dibujo válido de G en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

 \Leftarrow) La demostración es análoga dado que existe $T^{-1}(x,y)=(\frac{x+y}{2},\frac{y-x}{2})$.

Gracias a esta proposición, aunque el algoritmo esté preparado para decidir sobre la existencia de dibujos válidos para $\|\cdot\|_1$, la mayoría de las demostraciones se harán para $\|\cdot\|_{\infty}$ lo cual es menos engorroso.

Propiedad. La función $\|\cdot\|_{\infty} : \mathbb{R}^n \to \mathbb{R}^n$ es invariante por simetrías respecto de los ejes coordenados.

Demostración. Sea
$$T(x) = (t_1(x_1), t_2(x_2), \dots, t_n(x_n))$$
 con $t_i(x_i) = x_i$ o $t_i(x_i) = -x_i$.

Como $|t_i(x_i)| = |x_i| = |-x_i|$, entonces

$$||T(x)||_{\infty} = \max_{i=1,\dots,n} \{|t_i(x_i)|\} = \max_{i=1,\dots,n} \{|x_i|\} = ||x||_{\infty}$$

Propiedad. La función $\|\cdot\|_{\infty}: \mathbb{R}^2 \to \mathbb{R}^2$ es invariante por una rotación de

Demostración. Si
$$T(\vec{x}) = A\vec{x}$$
 con $A = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Entonces $T(x,y) = (-y,x)$ y

$$||T(x,y)||_{\infty} = \max\{|-y|;|x|\} = \max\{|x|;|y|\} = ||(x,y)||_{\infty}$$

Propiedad. La función $\|\cdot\|_{\infty}: \mathbb{R}^2 \to \mathbb{R}^2$ es invariante por la simetría respecto de la recta x = y.

Demostración. Si
$$T(x,y)=(y,x)$$
 entonces $||T(x,y)||_{\infty}=\max\{|y|,|x|\}=||(x,y)||_{\infty}$.

De estas propiedades se deduce que, de existir un dibujo válido para un grafo, éste no es único y que además se pueden suponer algunas condiciones previas para la posición de los nodos.

Propiedad. Sean
$$p_1 = (x_1, y_1)$$
, $p_2 = (x_2, y_2)$ y $A = \{\min\{x_1, x_2\} \le x \le \max\{x_1, x_2\}; \min\{y_1, y_2\} \le y \le \max\{y_1, y_2\}\}.$ Si $p \in A$ entonces $||p - p_1||_{\infty} \le ||p_1 - p_2||_{\infty}$ $y ||p - p_2||_{\infty} \le ||p_1 - p_2||_{\infty}$

Demostración. En general vale que si $a \le x \le b$ entonces

$$\begin{cases} a \le x - a \le b - a \\ a - b \le x - b \le 0 \end{cases} \quad \text{por lo tanto} \begin{cases} |x - a| \le b - a = |a - b| \\ |x - b| \le b - a = |a - b| \end{cases}$$

Demostracion. En general vale que si
$$a \le x \le b$$
 entonces
$$\begin{cases} a \le x - a \le b - a \\ a - b \le x - b \le 0 \end{cases} \text{ por lo tanto } \begin{cases} |x - a| \le b - a = |a - b| \\ |x - b| \le b - a = |a - b| \end{cases}$$
 Si $p = (x, y) \in A$ entonces x está entre x_1 y x_2 e y está entre y_1 e y_2 . Por lo anterior
$$\begin{cases} |x - x_i| \le |x_1 - x_2| \\ |y - y_i| \le |y_1 - y_2| \end{cases} \text{ para } i = 1, 2, \text{ con lo que } \\ \max\{|x - x_i|, |y - y_i|\} \le \max\{|x_1 - x_2|, |y_1 - y_2|\} \end{cases}$$
 O sea $\|p - p_i\|_{\infty} \le \|p_1 - p_2\|_{\infty}$ para $i = 1, 2$.

Definición. Se dirá que p = (x, y) está entre $p_1 = (x_1, y_1)$ y $p_2 = (x_2, y_2)$ si $p \in \{\min\{x_1, x_2\} \le x \le \max\{x_1, x_2\}; \min\{y_1, y_2\} \le y \le \max\{y_1, y_2\}\}.$

Propiedad. Si se consideran p_0 , p_1 y p_2 nodos en un dibujo válido tales que

- p_0 está entre p_1 y p_2
- p_1 y p_2 son advacentes

entonces p_0 debe ser advacente a p_1 y p_2 .

Demostración. Como p_0 está entre p_1 y p_2 vale que $||p_0 - p_i||_{\infty} \le ||p_1 - p_2||_{\infty}$ para i = 1, 2. Dado que la arista (1, 2) está en el grafo y éste tiene un dibujo válido, las aristas (0, 1) y (0, 2) también deben estar en el grafo.

Definición. Dado $p_0 = (x_0, y_0)$ se definen los cuadrantes desde p como

$$C_{1}(p) = \{\vec{x} \in \mathbb{R}^{2} : x \geq x_{0}, y \geq y_{0}\}\$$

$$C_{2}(p) = \{\vec{x} \in \mathbb{R}^{2} : x \leq x_{0}, y \geq y_{0}\}\$$

$$C_{3}(p) = \{\vec{x} \in \mathbb{R}^{2} : x \leq x_{0}, y \leq y_{0}\}\$$

$$C_{4}(p) = \{\vec{x} \in \mathbb{R}^{2} : x \geq x_{0}, y \leq y_{0}\}\$$

$$C_{3}(p_{0})$$

$$C_{4}(p_{0})$$

Propiedad 1. Sean $p_0, p_1, p_2 \in \mathbb{R}^2$ tales que $p_1, p_2 \in C_i(p_0)$ para algún i = 1, 2, 3, 4. Entonces vale que

$$||p_1 - p_2||_{\infty} \le ||p_1 - p_0||_{\infty} \ o \ ||p_1 - p_2||_{\infty} \le ||p_2 - p_0||_{\infty}$$

Demostración. Dada la invarianza de la norma respecto a traslaciones y simetrías respecto a los ejes coordenados se puede suponer $p_0 = (0,0)$ e i = 1. O sea que se quiere probar que si $p_1 = (x_1, y_1)$ y $p_2 = (x_2, y_2)$ están en el primer cuadrante desde el origen entonces

$$||p_1 - p_2||_{\infty} \le ||p_1||_{\infty} \circ ||p_1 - p_2||_{\infty} \le ||p_2||_{\infty}.$$

Sea $R = \max\{x_1, x_2, y_1, y_2\} = \max\{||p_1||_{\infty}, ||p_2||_{\infty}\}.$

Como $|x_1 - x_2| = x_1 - x_2 \le x_1 \le R$ o $|x_1 - x_2| = -x_1 + x_2 \le x_2 \le R$ se tiene que $|x_1 - x_2| \le R$. De la misma manera se prueba que $|y_1 - y_2| \le R$.

Entonces
$$||p_1-p_2||_{\infty} = \max\{|x_1-x_2|, |y_1-y_2|\} \le R$$
 y dado que $R = ||p_1||_{\infty}$ o $R = ||p_2||_{\infty}$ se obtiene lo buscado

La aplicación de esta propiedad al análisis de la existencia de dibujos válidos será frecuente a través de la siguiente proposición.

Proposición. Sean p_0, p_1, p_2 nodos de un dibujo válido. Si p_1 y p_2 son adyacentes a p_0 y además p_1, p_2 están en el mismo cuadrante desde p_0 entonces p_1 y p_2 deben ser adyacentes entre sí.

Demostración. Es inmediata por la propiedad anterior.

Si $||p_1 - p_2||_{\infty} \le ||p_1 - p_0||_{\infty}$ con p_1 y p_0 advacentes entonces p_1 y p_2 deben ser advacentes para que el dibujo sea válido.

Observación. Otra forma de plantear lo anterior es decir que, si p_0 , p_1 y p_2 son nodos en un dibujo válido tales que p_1 y p_2 son adyacentes a p_0 pero no son adyacentes entre sí entonces p_1 y p_2 deben estar en distintos cuadrantes desde p_0 .

Proposición. Sean p_0, p_1, \ldots, p_k nodos en un dibujo válido. Si además se supone que

- p_1, \ldots, p_{k-1} son advacentes a p_0
- $p_k \in \overline{B_R}(p_0) \ con \ R = \max_{i=1,\dots,k-1} \{ \|p_0 p_i\|_{\infty} \}$

entonces p_k debe ser advacente a p_0 .

Demostración. Basta con notar que $p_k \in \overline{B_R}(p_0) \Leftrightarrow ||p_0 - p_k||_{\infty} \leq R = ||p_0 - p_i||_{\infty}$ para algún $i = 1, \dots, k-1$ y que p_i es adyacente a p_0 .

Ahora, trabajar con $\overline{B_R}(p_0)$ puede ser difícil por lo que se busca algún conjunto más manejable.

Definición. Se dirá que "p está entre p_1, \ldots, p_k " con $p_i = (x_i, y_i)$ si

$$p \in \{\min_{i=1,\dots,k} \{x_i\} \le x \le \max_{i=1,\dots,k} \{x_i\}; \min_{i=1,\dots,k} \{y_i\} \le x \le \max_{i=1,\dots,k} \{y_i\}\}$$

Propiedad. Sean p, p_0, p_1, \ldots, p_k nodos en un dibujo válido. Si p_1, \ldots, p_k son adyacentes a p_0 y además p está entre p_1, \ldots, p_k entonces p_0 y p deben ser adyacentes.

Demostración. Basta con demostrar que

$$A = \{ \min_{i=1,\dots,k} \{x_i\} \le x \le \max_{i=1,\dots,k} \{x_i\}; \min_{i=1,\dots,k} \{y_i\} \le x \le \max_{i=1,\dots,k} \{y_i\} \} \subseteq \overline{B_R}(p_0)$$

con $R = \max_{i=1,\dots,k}\{\|p_0 - p_i\|_{\infty}\}$ y usar la propiedad anterior.

 $p = (x, y) \in A \Rightarrow \exists i_1, i_2, i_3, i_4 / x_{i_1} \le x \le x_{i_2}, y_{i_3} \le y \le y_{i_4}$ entonces

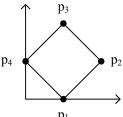
$$-R \le -\|p_{i_1} - p_0\|_{\infty} \le -|x_{i_1} - x_0| \le x_{i_1} - x_0 \le x - x_0$$
y $x - x_0 \le x_{i_2} - x_0 \le |x_{i_2} - x_0 \le \|p_{i_2} - p_0\|_{\infty} \le R$
O sea $-R \le x - x_0 \le R$, entonces $|x - x_0| \le R$.

De la misma manera se obtiene que $|y-y_0| \le R$ por lo que $|p-p_0||_{\infty} \le R$ y $p \in \overline{B_R}(p_0)$.

De esta manera se obtuvo un conjunto más pequeño y que no depende de la posición del nodo p_0 del que el resto es adyacente.

Ejemplo. Se considera el grafo $G = (\{1, 2, 3, 4\}, \{(1, 2), (1, 4), (2, 3), (3, 4)\}).$

Un dibujo válido para G sería $p_1=(1,0), p_2=(2,1),$ $p_3=(1,2)$ y $p_4=(0,1).$ Entonces $q_i=T(p_i)$ para i=1,2,3,4 con T(x,y)=(-x,y) también lo sería por la invarianza de T respecto de $\|\cdot\|_{\infty}$.



Más en general, dados p_1, \ldots, p_4 los nodos de un dibujo válido para ese grafo con $p_i = (x_i, y_i)$ se puede suponer que

- a) $x_1 \le x_3$: si $x_3 < x_1$, considerando $q_i = T(p_i)$ con T(x, y) = (-x, y) se tiene que $q_i = (-x_i, y_i)$ y $x_3 < x_1 \quad \Leftrightarrow -x_1 < -x_3. \text{ O sea que los } q_i \text{ cumplen lo supuesto.}$
- b) $y_1 \leq y_3$: como en a), usando T(x,y) = (x,-y) se obtiene un nuevo dibujo válido con la condición deseada.
- c) $||p_1 p_3||_{\infty} = x_3 x_1$: asumiendo las condiciones a) y b) se tiene que $||p_1 p_3||_{\infty} = \max\{x_3 x_1, y_3 y_1\}$. O sea que la condición equivale a pedir $y_3 y_1 \le x_3 x_1$.

Si sucede lo contrario, se considera el dibujo válido con los nodos $q_i = (y_i, x_i)$ que cumple lo pedido, además de mantener las desigualdades a) y b).

d) En las condiciones ya pedidas, si $R = ||p_1 - p_3||_{\infty}$ entonces $p_2 \in \{x_1 < x < x_3, \quad y_3 \le y < y_1 + R\}$ y $p_4 \in \{x_1 < x < x_3, \quad y_3 - R < y \le y_1\}$:

Si se asume que valen a), b) y c) entonces

$$B_R(p_1) \cap B_R(p_3) = \{x_1 < x < x_3, y_3 - R < y < y_1 + R\}$$

En efecto,

$$(x,y) \in B_R(p_1) \Leftrightarrow \begin{cases} |x - x_1| < x_3 - x_1 \\ |y - y_1| < x_3 - x_1 \end{cases} \Leftrightarrow \begin{cases} x_1 - x_3 < x - x_1 < x_3 - x_1 \\ x_1 - x_3 < y - y_1 < x_3 - x_1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_1 - x_3 < x < x_3 \\ x_1 - x_3 + y_1 < y < x_3 - x_1 + y_1 \end{cases}$$

Además
$$(x, y) \in B_R(p_3) \Leftrightarrow \begin{cases} x_1 < x < x_3 + x_3 - x_1 \\ x_1 - x_3 + y_3 < y < x_3 - x_1 + y_3 \end{cases}$$

Como $x_1+x_1-x_3 < x_1$ y $x_3+x_3-x_1 > x_3$, la condición que queda para x es $x_1 < x < x_3$. Por otro lado, como $y_1 < y_3$ y $R = \|p_1-p_3\|_{\infty} = x_3-x_1$, queda

$$y_3 - R = x_1 - x_3 + y_3 < y < x_3 - x_1 + y_1 = y_1 + R$$

Ahora, como p_2 y p_4 son adyacentes a p_1 y p_3 , que no lo son entre sí, vale que $p_2, p_4 \in B_R(p_1) \cap B_R(p_3)$. Esto es inmediato, dado que $||p_i - p_1||_1 < ||p_1 - p_3||_{\infty}$ y $||p_i - p_3||_1 < ||p_1 - p_3||_{\infty}$ para i = 2, 4.

Por último, si se analizan las posiciones de p_2 y p_4 respecto de p_1 se tiene que deben estar en distintos cuadrantes porque p_2 y p_4 no son adyacentes entre sí.

Por la simetría del grafo es indistinto cuál de los nodos queda en $C_1(p_1)$ y cuál en $C_4(p_1)$. Eligiendo $p_4 \in C_4(p_1)$ queda la condición $p_4 \in \{x_1 < x < x_3, y_3 - R < y \le y_1\} = B_R(p_1) \cap B_R(p_3) \cap C_4(p_1)$

Esto deja a $p_2 \in C_1(p_1)$ con la condición $y_2 \geq y_1$ que todavía no es lo buscado para p_2 . Si se observa que $y_1 < y_3$, entonces $p_4 \in C_3(p_3)$ y a p_2 sólo le queda ocupar $C_2(p_3)$ por lo que $y_2 \geq y_3$ y se tiene que

$$p_2 \in \{x_1 < x < x_3, y_3 \le y < y_1 + R\} = B_R(p_1) \cap B_R(p_3) \cap C_3(p_3)$$

Ciclos

Proposición. Si un grafo es un ciclo de n nodos entonces tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$ y por lo tanto también lo tiene en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

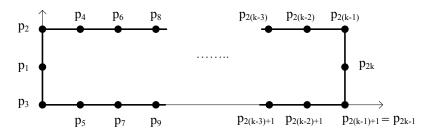
Demostración. Los casos $n=3,4,\ldots,7$ se verifican fácilmente de las siguientes figuras.

Caso $n = 2k \operatorname{con} k \ge 4$:

Se numeran los nodos de manera tal que la tabla de adyacencia del grafo cumpla

$$\begin{array}{|c|c|c|c|}\hline & \text{nodos adyacentes}\\\hline p_1 & p_2, p_3\\ p_2 & p_1, p_4\\ p_{2j} & p_{2(j-1)}, p_{2(j+1)} \text{ para } j=2,\ldots,k-1\\ p_{2j+1} & p_{2(j-1)+1}, p_{2(j+1)+1} \text{ para } j=1,\ldots,k-1\\ p_{2k} & p_{2(k-1)}, p_{2k-1}\\ \end{array}$$

Esto hace que quede la mitad del ciclo numerada con nodos pares conectados y la otra mitad con nodos impares, uniéndose estas mitades en las aristas que conectan p_1 con p_2 y p_{2k} con p_{2k-1} .



Con esta numeración la siguiente asignación da un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$:

-
$$p_1 = (0,1)$$

-
$$p_{2k} = (k-2,1)$$

-
$$p_{2j} = (j-1,2)$$
 para $j = 1, \dots, k-1$

-
$$p_{2j+1} = (j-1,0)$$
 para $j = 1, \dots, k-1$

Veamos que las distancias verifican lo necesario.

i) p_1

Distancia a nodos adyacentes:

$$||p_1 - p_2||_1 = ||(0,1) - (0,2)||_1 = 1$$

$$||p_1 - p_3||_1 = ||(0, 1) - (0, 0)||_1 = 1$$

Distancia a nodos no advacentes:

$$||p_1 - p_{2j}||_1 = ||(0,1) - (j-1,2)||_1 = |j-1| + 1 > 1 \text{ para } j = 2, 3, \dots, k-1$$

$$||p_1 - p_{2j+1}||_1 = ||(0,1) - (j-1,0)||_1 = |j-1| + 1 > 1$$

$$para j = 2, 3, \dots, k-1$$

$$||p_1 - p_{2k}||_1 = ||(0,1) - (k-2,1)||_1 = |k-2| \ge 2$$
 ya que $k \ge 4$

Entonces se tiene que

$$||p_1 - p_2||_1$$
, $||p_1 - p_3||_1 < ||p_1 - p_j||_1$ para $j \ge 4$.

ii) p_{2k}

Distancia a nodos adyacentes:

$$||p_{2k} - p_{2(k-1)}||_1 = ||(k-2,1) - ((k-1)-1,2)||_1 = |k-2 - (k-2)| + 1 = 1$$

$$||p_{2k} - p_{2k-1}||_1 = ||p_{2k} - p_{2(k-1)+1}||_1 = ||(k-2,1) - (k-1-1,0)||_1 = 1$$
Distancia a nodos no advacentes:

$$||p_{2k}-p_{2j}||_1 = ||(k-2,1)-(j-1,2)||_1 = |k-j-1|+1 \text{ para } j=1,\ldots,k-2$$

 $||p_{2k}-p_{2j+1}||_1 = ||(k-2,1)-(j-1,0)||_1 = |k-j-1|+1 \text{ para } j=1,\ldots,k-2$

Como $j \le k-2$ se tiene que $1 \le k-j-1$ y $||p_{2k}-p_{2j}||_1$, $||p_{2k}-p_{2j+1}||_1 > 1$ para $j = 1, \ldots, k-2$.

Además, del punto anterior, vale que $||p_{2k}-p_1||_1 \geq 2$. Entonces $||p_{2k}-p_i||_1 < ||p_{2k}-p_j||_1$ si p_{2k} y p_i son adyacentes pero p_{2k} y p_j no lo son.

iii) p_2

Distancia a nodos adyacentes:

$$||p_2 - p_1||_1 = 1 \text{ de i}$$

$$||p_2 - p_4||_1 = ||p_2 - p_{2.2}||_1 = ||(0, 2) - (2 - 1, 2)||_1 = 1$$

Distancia a nodos no advacentes:

$$||p_2 - p_{2j}||_1 = ||(0, 2) - (j - 1, 2)||_1 = |j - 1| \ge 2 > 1 \text{ para } j = 3, \dots, k - 1$$

$$||p_2 - p_{2j+1}||_1 = ||(0, 2) - (j - 1, 0)||_1 = |j - 1| + 2 > 1 \text{ para } j = 1, \dots, k - 1$$

$$||p_2 - p_{2k}||_1 = ||(0, 2) - (k - 2, 1)||_1 = |k - 1| + 1 > 1 \text{ por } k \ge 4$$

Entonces

 $||p_2 - p_i||_1 < ||p_2 - p_j||_1$ si p_2 y p_i son advacentes pero p_2 y p_j no lo son.

iv) p_3

Distancia a nodos adyacentes:

$$||p_3 - p_1||_1 = 1 \text{ de i}$$

$$||p_3 - p_5||_1 = ||p_{2.1+1} - p_{2.2+1}||_1 = ||(0,0) - (1,0)||_1 = 1$$

Distancia a nodos no adyacentes:

$$||p_3 - p_{2j+1}||_1 = ||(0,0) - (j-1,0)||_1 = |j-1| > 1 \text{ para } j = 3, \dots, k-1$$

 $||p_3 - p_{2j}||_1 = ||(0,0) - (j-1,2)||_1 = |j-1| + 2 > 1 \text{ para } j = 1, \dots, k-1$
 $||p_3 - p_{2k}||_1 = ||(0,0) - (k-2,1)||_1 = |k-2| + 1 > 1 \text{ por } k > 4$

Entonces

 $\|p_3-p_i\|_1<\|p_3-p_j\|_1$ si p_3 y
 p_i son adyacentes pero p_3 y
 p_j no lo son.

v) $p_{2(k-1)}$

Distancia a nodos adyacentes

$$||p_{2(k-1)} - p_{2(k-2)}||_1 = ||(k-2,2) - (k-3,2)||_1 = 1$$

$$||p_{2(k-1)} - p_{2k}||_1 = ||(k-2,2) - (k-2,1)||_1 = 1$$

Distancia a nodos no advacentes

$$||p_{2(k-1)} - p_1||_1 = ||(k-2,2) - (0,1)||_1 = |k-2| + 1 > 1 \text{ por } k \ge 4$$

 $||p_{2(k-1)} - p_{2j+1}||_1 = ||(k-2,2) - (j-1,0)||_1 = |k-j-1| + 2 > 1 \text{ para } j = 1, \dots, k-1$

$$||p_{2(k-1)} - p_{2j}||_1 = ||(k-2,2) - (j-1,2)||_1 = |k-j-1|$$

para $j = 1, \dots, k-3$

Para $j \le k-3$ vale que $2 \le k-j-1$ entonces

 $||p_{2(k-1)} - p_i||_1 < ||p_{2(k-1)} - p_j||_1$ si $p_{2(k-1)}$ y p_i son advacentes pero $p_{2(k-1)}$ y p_j no lo son.

vi) p_{2k-1}

Distancia a nodos advacentes

$$||p_{2k-1} - p_{2k}|| = 1$$
de ii)

$$||p_{2k-1}-p_{2k-3}||_1 = ||p_{2(k-1)+1}-p_{2(k-2)+1}||_1 = ||(k-2,0)-(k-3,0)||_1 = 1$$

Distancia a nodos no advacentes

$$||p_{2k-1} - p_{2j}||_1 = ||(k-2,0) - (j-1,2)||_1 = |k-j-1| + 2 > 1$$
 para $j = 1, \dots, k-1$

$$||p_{2k-1} - p_1||_1 > 1 \text{ de i})$$

$$||p_{2k-1} - p_{2j+1}||_1 = ||(k-2,0) - (j-1,0)||_1 = |k-j-1|$$
 para $j = 1, \dots, k-3$

Para $j \le k-3$ vale que $2 \le k-j-1$ entonces

 $||p_{2k-1}-p_i||_1 < ||p_{2k-1}-p_j||_1$ si p_{2k-1} y p_i son advacentes pero p_{2k-1} y p_j no lo son.

vii) $p_{2j} \text{ con } j = 2, \dots, k-2$

Distancia a nodos advacentes

$$||p_{2j} - p_{2(j+1)}||_1 = ||(j-1,2) - (j,2)||_1 = 1$$
 porque $3 \le j+1 \le k-1$

$$||p_{2j} - p_{2(j-1)}||_1 = ||(j-1,2) - (j-2,2)||_1 = 1$$
 porque $1 \le j-1 \le k-3$

Distancia a nodos no advacentes

$$||p_{2i} - p_1||_1 > 1 \text{ de i}$$

$$||p_{2j} - p_{2k}||_1 > 1$$
 de ii)

$$||p_{2j} - p_{2m+1}||_1 = ||(j-1,2) - (m-1,0)||_1 = |j-m| + 2 > 1$$
 para $m = 1, \dots, k-1$

$$||p_{2j} - p_{2m}||_1 = ||(j-1,2) - (m-1,2)||_1 = |j-m|$$
 para $m = 1, \dots, j-2, j+2, \dots, k-1$.

Si
$$m \le j-2$$
 entonces $j-m \ge 2>1$ y si $m \ge j+2$ entonces $0>-2\ge j-m \Rightarrow |j-m|\ge 2>1$

Por lo tanto, para cada j vale que

 $||p_{2j}-p_i||_1 < ||p_{2j}-p_m||_1$ si p_{2j} y p_i son advacentes pero p_{2j} y p_m no lo son.

viii)
$$p_{2j+1}$$
 con $j = 2, ..., k-2$

Distancia a nodos advacentes

$$||p_{2j+1} - p_{2(j+1)+1}||_1 = ||(j-1,0) - (j,0)||_1 = 1$$

porque $3 \le j+1 \le k-1$

$$||p_{2j+1} - p_{2(j-1)+1}||_1 = ||(j-1,0) - (j-2,0)||_1 = 1$$

porque $1 \le j-1 \le k-3$

Distancia a nodos no adyacentes

$$||p_{2i+1}-p_1||_1>1$$
 de i)

$$||p_{2i+1} - p_{2k}||_1 > 1$$
 de ii)

$$||p_{2j+1} - p_{2m}||_1 = ||(j-1,0) - (m-1,2)||_1 = |j-m| + 2 > 1$$
 para $m = 1, \dots, k-1$

$$||p_{2j+1} - p_{2m+1}||_1 = ||(j-1,0) - (m-1,0)||_1 = |j-m|$$
 para $m = 1, \dots, j-2, j+2, \dots, k-1$.

Si
$$m \le j-2$$
 entonces $j-m \ge 2>1$ y si $m \ge j+2$ entonces $0>-2\ge j-m \Rightarrow |j-m|\ge 2>1$

Por lo tanto, para cada *j* vale que

 $||p_{2j+1} - p_i||_1 < ||p_{2j+1} - p_m||_1$ si p_{2j+1} y p_i son advacentes pero p_{2j+1} y p_m no lo son.

Caso n = 2k + 1 para $k \ge 4$:

Se numeran los vértices de manera tal que la tabla de adyacencia del grafo cumpla

	nodos adyacentes
	p_2, p_5
p_2	p_1, p_3
p_3	p_2, p_4
p_4	p_3, p_6
p_5	$\mid p_1, p_7 \mid$
p_{2j}	$p_{2(j-1)}, p_{2(j+1)} \text{ para } j = 3, \dots, k-1$
	$p_{2(j-1)+1}, p_{2(j+1)+1} \text{ para } j = 3, \dots, k-1$
p_{2k}	$\left \begin{array}{l} p_{2(k-1)}, \ p_{2k+1} \\ p_{2k}, \ p_{2k-1} \end{array} \right $
p_{2k+1}	p_{2k}, p_{2k-1}

Con esta numeración de los vértices, la siguiente asignación da un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$.

$$p_1 = (0,0)$$

$$-p_2=(0,1)$$

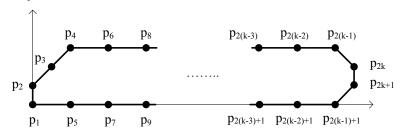
$$- p_3 = (1,2)$$

$$-p_{2k} = (2k-3,2)$$

-
$$p_{2k+1} = (2k-3,1)$$

-
$$p_{2j} = (2(j-1), 3)$$
 para $j = 2, \dots, k-1$

-
$$p_{2j+1} = (2(j-1), 0)$$
 para $j = 2, \dots, k-1$



La comprobación es similar al caso n = 2k.

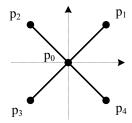
Grafos estrella

Definición. Se llama
$$S_n$$
 al grafo estrella de $n+1$ nodos. Si $S_n = (V, E)$ entonces $V = \{0, 1, ..., n\}$ $y \in S_6$

Caso \mathbb{R}^2

Observación. Si se considera en $(\mathbb{R}^2, \|\cdot\|_{\infty})$, el grafo S_4 tiene dibujo válido.

Por ejemplo, si
$$p_0 = (0,0)$$
 $p_1 = (1,1)$
 $p_2 = (-1,1)$ $p_3 = (-1,-1)$ $p_4 = (1,-1)$
entonces $||p_0 - p_i||_{\infty} = 1$ con $i = 1, \dots, 4$ y
 $||p_i - p_j||_{\infty} = 2$ para $i, j = 1, \dots, 4$ $i \neq j$.



Proposición. S_5 no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

Demostración. Como p_1 , p_2 , p_3 , p_4 y p_5 son advacentes a p_0 pero no son advacentes entre sí deben ocupar distintos cuadrantes desde p_0 .

Como hay 4 cuadrantes, no se pueden ubicar los 5 nodos. En efecto, si $p_i, p_j \in C_k(p_0)$ entonces son adyacentes entre sí lo que da una contradicción.

Observación. En [4] se da un dibujo válido para S_5 en $(\mathbb{R}^2, \|\cdot\|_2)$, más precisamente se asignan a los nodos el centro de coordenadas y las raíces quintas de la unidad. En el mismo trabajo se demuestra que S_6 no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_2)$.

Independientemente de la demostración que se da en [4] se puede dar otra con similitudes respecto a la hecha en la proposición anterior, para eso se necesita la siguiente propiedad.

Propiedad. Si $p \in \{\vec{x} \in \mathbb{R}^2 : \vec{x} = R(\cos \alpha, \sin \alpha), R \geq 0, |\alpha| \leq \pi/3\}$ entonces $||p - (1, 0)||_2 \leq \max\{R, 1\}$

Demostración. Se quiere ver que

a)
$$||p - (1,0)||_2^2 \le R^2$$
 si $R \ge 1$

b)
$$||p - (1,0)||_2^2 \le 1$$
 si $R \le 1$

En ambos casos

$$||p - (1,0)||_2^2 = ||(R\cos\alpha, R\sin\alpha)||_2^2 = (R\cos\alpha - 1)^2 + (R\sin\alpha)_2^2 =$$
$$= R^2\cos^2\alpha - 2R\cos\alpha + 1 + R^2\sin^2\alpha = R^2 - 2R\cos\alpha + 1$$

a): $R^2 - 2R\cos\alpha + 1 \le R^2 \Leftrightarrow 1 \le 2R\cos\alpha \Leftrightarrow \frac{1}{2\cos\alpha} \le R$ ya que para $|\alpha| \le \pi/3$ se tiene $\cos\alpha > 0$.

Más específicamente $0<1/2\le\cos\alpha\le 1$. Entonces $\frac{1}{2\cos\alpha}\le 1\le R$ como se quería demostrar.

b): $R^2 - 2R\cos\alpha + 1 \le 1 \Leftrightarrow R^2 - 2R\cos\alpha \le 0 \Leftrightarrow R(R - 2\cos\alpha) \le 0$. Como $R \ge 0$, lo anterior equivale a $R - 2\cos\alpha \le 0$. Pero, como en a), se tiene que $1/2 \le \cos\alpha$ y entonces $R \le 1 \le 2\cos\alpha$ y vale lo pedido.

Veamos ahora que S_6 no tiene un dibujo válido en $(\mathbb{R}^2, \|\cdot\|_2)$.

Trasladando la propiedad anterior a un grafo con dibujo válido en $(\mathbb{R}^2, \|\cdot\|_2)$ queda que si p_1 y p_2 son advacentes a p_0 con $p_0 = (0,0), p_1 = (1,0)$ y $p_2 \in \{(R\cos\alpha, R\sin\alpha) : R \geq 0, |\alpha| \leq \pi/3\}$, entonces p_1 y p_2 deben ser advacentes entre sí. En efecto, como $\|p_1 - p_2\|_2 = \|(1,0) - p_2\|_2 \leq \max\{R,1\}$ vale que

$$||p_1 - p_2||_2 \le R = ||p_2||_2 = ||p_2 - p_0||_2 \text{ o}$$

 $||p_1 - p_2||_2 \le 1 = ||p_1||_2 = ||p_1 - p_0||_2.$

Esto sucede sólo si p_1 y p_2 son advacentes.

Como además $\|\cdot\|_2$ es invariante por rotaciones y traslaciones, lo anterior se puede generalizar para p_0 cualquiera, p_1 tal que $\|p_0 - p_1\|_2 = 1$ y

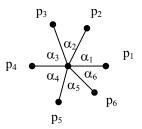
$$\pi/3$$
 p_0
 p_1

$$p_1 = p_1 = 1$$
 y $p_2 \in \{p_0 + p : p = (R\cos\alpha, R\sin\alpha), R \ge 0, |\alpha - \beta| \le \pi/3\}$ con $p_1 - p_0 = (\cos\alpha, \sin\alpha)$.

Por otro lado ya se vio que si p_1, \ldots, p_n son los nodos en un dibujo válido de un grafo, entonces $\lambda p_1, \lambda p_2, \ldots, \lambda p_n$ son los nodos de otro dibujo válido para el mismo grafo.

En conclusión, si dos nodos p_1 y p_2 son adyacentes a un tercero p_0 pero no son adyacentes entre sí entonces el ángulo que forman (centrado en p) debe ser mayor a $\pi/3$. Esto dice que puede haber a lo sumo 5 nodos no adyacentes entre sí conectados a un sexto.

En efecto, si $\alpha_1, \ldots, \alpha_6$ son los ángulos formados por los nodos enumerados en forma antihoraria se tiene $\alpha_1 + \cdots + \alpha_6 \leq 2\pi$. Pero $\alpha_i > \pi/3$, entonces $\alpha_1 + \cdots + \alpha_6 > 6\pi/3 = 2\pi$ lo que es un absurdo.



Caso \mathbb{R}^N

Proposición. El grafo S_{2^N} tiene dibujo válido en $(\mathbb{R}^N, \|\cdot\|_{\infty})$

Demostración. La siguiente asignación corresponde a un dibujo válido:

- Se asigna el nodo central a $p_0 = (0, 0)$.
- Se asigna a cada nodo p_1, \ldots, p_{2^N} una de las N-úplas cuyas coordenadas son 1 o -1. O sea, $p_i = (x_1^i, \dots, x_N^i)$ con $|x_i^i| = 1$.

Como todas las posibles combinaciones dan 2^N puntos distintos, cada posible asignación queda bien definida. Veamos que se corresponden con un dibujo válido.

Como p_0 es adyacente al resto de los nodos cumple las condiciones de distancia en forma trivial. Para el resto hay que ver que $||p_i - p_0||_{\infty} < ||p_i - p_j||_{\infty} \text{ para } j = 1, \dots, 2^N \text{ con } i \neq j.$

$$||p_i - p_0||_{\infty} = ||p_i - \vec{0}||_{\infty} = ||p_i||_{\infty} = \max_{j=1,\dots,2^N} \{|x_j^i|\} = 1$$

$$||p_i - p_j||_{\infty} = \max_{k=1,\dots,2^N} \{|x_k^i - x_k^j|\} > 0$$

pues la asignación es inyectiva. Por lo tanto existe algún k tal que $|x_k^i-x_k^j|>0$, como además $x_k^i, x_k^j\in\{-1,1\}$ vale $|x_k^i-x_k^j|=2$. Entonces $||p_i-p_j||_\infty\geq |x_k^i-x_k^j|=2>1$ como se quería demostrar.

Proposición. El grafo S_{2^N+1} no tiene dibujo válido en $(\mathbb{R}^N, \|\cdot\|_{\infty})$.

Demostración. Supongamos que $S_{2^{N}+1}$ tiene un dibujo válido. Por invariaza de la norma respecto a traslaciones se puede asumir que $p_0 = (0, 0)$.

Generalizando la idea de cuadrantes, se considera $\mathbb{R}^N = \bigcup_{k=1}^{2^N} C_k$ con $C_k = \{\vec{x} \in \mathbb{R}^N : x_i \geq 0 \ si \ i \in I_k, \ x_i < 0 \ si \ i \notin I_k\}$ e $I_k, 1 \leq k \leq 2^N$ todos los posibles subconjuntos de $\{1, \ldots, N\}$.

Veamos que, para k fijo, si $p_i, p_j \in C_k$ entonces p_i y p_j deben ser adya-

Por la invarianza de la norma infinito con las simetrías respecto de los ejes coordenados basta probar que si $p_1, p_2 \in C = \{\vec{x} \in \mathbb{R}^N : x_i \geq 0 \mid i = 1\}$ $1, \ldots, N$ entonces p_1 y p_2 deben ser advacentes.

Alcanza con probar que

 $||p_1 - p_2||_{\infty} \le ||p_1 - \vec{0}||_{\infty} = ||p_1||_{\infty} \text{ o } ||p_1 - p_2||_{\infty} \le ||p_2 - \vec{0}||_{\infty} = ||p_2||_{\infty} \text{ ya}$ que p_1 y p_2 son adyacentes a $p_0 = (0, 0)$.

Si
$$p_1 = (x_1, ..., x_N)$$
 y $p_2 = (y_1, ..., y_N)$ entonces

$$||p_1 - p_2||_{\infty} = \max_{i=1,\dots,N} \{|x_i - y_i|\} \quad (x_i \ge 0 \quad y_i \ge 0)$$

y para cada i se tiene

$$0 \le |x_i - y_i| = x_i - y_i \le x_i = |x_i| \le ||p_1||_{\infty} \text{ o}$$

$$0 \le |x_i - y_i| = y_i - x_i \le y_i = |y_i| \le ||p_2||_{\infty}.$$

Por lo tanto $|x_i - y_i| \le \max\{\|p_1\|_{\infty}, \|p_2\|_{\infty}\}$ $\forall i = 1, ..., N$. O sea que, o bien $\|p_1 - p_2\|_{\infty} \le \|p_1\|_{\infty}$ (si $\|p_2\|_{\infty} \le \|p_1\|_{\infty}$), o bien $\|p_1 - p_2\|_{\infty} \le \|p_2\|_{\infty}$ (si $\|p_1\|_{\infty} \le \|p_2\|_{\infty}$).

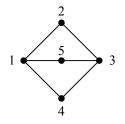
Volviendo al grafo, como p_i, p_j para $i \neq j$ e $i, j = 1, ..., 2^N + 1$ son adyacentes a $p_0 = (0, 0)$ pero no son adyacentes entre sí, en cada conjunto C_k puede estar a lo sumo uno de los nodos. De esta manera habría $2^N + 1$ nodos para 2^N conjuntos, lo que es un absurdo.

Observación. Dado que en $(\mathbb{R}^2, \|\cdot\|_2)$ se pudo adaptar el razonamiento válido para $(\mathbb{R}^2, \|\cdot\|_{\infty})$, esto indicaría que $\exists K(N)/S_{K(N)}$ no tiene dibujo válido en $(\mathbb{R}^N, \|\cdot\|_2)$ usando un planteo similar al anterior.

Casos particulares

Grafo de 5 nodos

Proposición. El grafo $K_{2,3}$ no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y que existe un dibujo válido de nodos $p_i = (x_i, y_i)$ para i = 1, ..., 5.

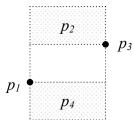
• Por simetría en la estructura del grafo, para el subgrafo inducido por p_1 , p_2 , p_3 y p_4 se puede asumir que:

a)
$$||p_1 - p_3||_{\infty} = R = x_3 - x_1$$
e $y_3 \ge y_1$.

b)
$$p_2 \in \{x_1 < x < x_3, y_3 \le y < y_1 + R\}.$$

c)
$$p_4 \in \{x_1 < x < x_3, y_3 - R < y \le y_1\}.$$

Entonces se tiene que $p_2 \in C_1(p_1) \cap C_2(p_3)$ y $p_4 \in C_4(p_1) \cap C_3(p_3)$.



 $B_R(p_1) \cap B_R(p_3)$

- Como p_2 , p_4 y p_5 son adyacentes a p_1 pero no lo son entre sí, ocupan distintos cuadrantes desde p_1 y debe ser $p_5 \in C_2(p_1) \cup C_3(p_1)$. De esto se deduce que $x_5 \leq x_1$.
- Además p_2 , p_4 y p_5 también son adyacentes a p_3 . Por el mismo razonamiento se tiene que, como p_2 y p_4 están a la izquierda de p_3 , p_5 debe estar a la derecha. Es decir $x_3 \leq x_5$.

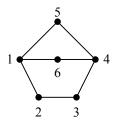
Entonces queda el absurdo $x_5 \le x_1 < x_3 \le x_5$, por lo que no se tenía un dibujo válido.

Observación. En [4] se demuestra que este grafo tampoco tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_2)$.

Grafos de 6 nodos

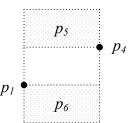
Observación. Ya se demostró que el grafo S_5 no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

Proposición. El grafo twin- C_5 no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y que existe un dibujo válido de nodos $p_i = (x_i, y_i)$ para i = 1, ..., 6.

- Por simetría en el grafo, para el subgrafo inducido por p_1 , p_4 , p_5 y p_6 se puede asumir que:
 - a) $||p_1 p_4||_{\infty} = x_4 x_1 = R \text{ e } y_4 > y_1.$
 - b) $p_5 \in \{x_1 < x < x_4, y_4 \le y < y_1 + R\}.$
 - c) $p_6 \in \{x_1 < x < x_4, y_4 R < y \le y_1\}.$



 $B_R(p_1) \cap B_R(p_4)$

- Como p_2 , p_5 y p_6 son advacentes a p_1 y no son advacentes entre sí, ocupan distintos cuadrantes desde p_1 . Dado que p_5 y p_6 toman los cuadrantes a la derecha de p_1 , p_2 debe situarse a la izquierda de p_1 .
- Una situación análoga se tiene con p_3 , p_5 , p_6 y p_4 ; de lo que se deduce que p_3 se ubica a la derecha de p_4 .

En resumen, $x_2 \leq x_1$ y $x_3 \geq x_4$.

• De lo anterior resulta

$$|x_2-x_3| = x_3-x_2 \ge x_4-x_2 \ge x_4-x_1 = R \Rightarrow ||p_2-p_3||_{\infty} \ge |x_2-x_3| \ge R$$

Dado que p_2 no es adyacente a p_5 ni a p_6 , en un dibujo válido se debe cumplir que

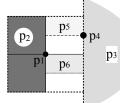
$$||p_2 - p_3||_{\infty} < ||p_2 - p_5||_{\infty}$$

y que

$$||p_2 - p_3||_{\infty} < ||p_2 - p_6||_{\infty}$$

por ser p_2 y p_3 advacentes entre sí.

• Por otro lado, como p_2 es adyacente a p_1 y no a p_4 se tiene que $p_2 \in B_R(p_1)$. O sea $p_2 \in \{x_1 - R < x \le x_1, \quad y_1 - R < y < y_1 + R\}$.



Caso 1: p_2 debajo de p_1

Si $y_1 - R < y_2 \le y_1$ entonces $|y_2 - y_6| < R$, ya que $y_1 - R \le y_4 - R < y_6 \le y_1$ $y - y_1 \le -y_2 < R - y_1$; por lo que $y_1 - R - y_1 < y_6 - y_2 < y_1 + R - y_1$ y $-R < y_6 - y_2 < R.$

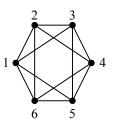
Como además $|x_2 - x_6| = x_6 - x_2 < x_3 - x_2 \le ||p_2 - p_3||_{\infty}$ se tiene que $||p_2 - p_6||_{\infty} = \max\{|x_2 - x_6|, |y_2 - y_6|\} \le \max\{||p_2 - p_3||_{\infty}, R\} = ||p_2 - p_3||_{\infty}.$ Esto contradice que p_2 es advacente a p_3 y no a p_6 .

Caso 2: p_2 arriba de p_1

Si $y_1 \le y_2 < y_1 + R$ entonces $|y_2 - y_5| < R$, ya que $y_1 \le y_4 \le y_5 < y_1 + R$ $y - y_1 - R < -y_2 \le -y_1$; por lo que $y_1 - y_1 - R < y_5 - y_2 < y_1 + R - y_1$ y $-R < y_5 - y_2 < R.$

Como además $|x_2 - x_5| = x_5 - x_2 < x_3 - x_2 \le ||p_2 - p_3||_{\infty}$ se tiene que $||p_2 - p_5||_{\infty} = \max\{|x_2 - x_5|, |y_2 - y_5|\} \le \max\{||p_2 - p_3||_{\infty}, R\} = ||p_2 - p_3||_{\infty}.$ Lo que contradice que p_2 es adyacente a p_3 y no a p_5 .

Proposición. El grafo $\overline{3K_2}$ no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura, o sea que los únicos pares de nodos no adyacentes son $\{(1,4),(2,5),(3,6)\}$. Supongamos que existe un dibujo válido con los nodos $p_i = (x_i, y_i)$.

• p_2 , p_3 , p_5 y p_6 son advacentes a p_1 y a p_4 que no son advacentes entre sí, o sea que

 $||p_i - p_1||_{\infty} < ||p_1 - p_4||_{\infty}$ y $||p_i - p_4||_{\infty} < ||p_1 - p_4||_{\infty}$ para i = 2, 3, 5, 6. Por lo tanto $p_2, p_3, p_5, p_6 \in B_R(p_1) \cap B_R(p_4)$ con $R = ||p_1 - p_4||_{\infty}$.

Dada la invarianza de $\|\cdot\|_{\infty}$ por rotación a 90° y simetrías respecto a los ejes coordenados se puede suponer $x_1 < x_4, y_1 \le y_4, R = x_4 - x_1$.

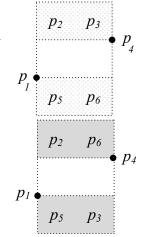
Esto implica $p_2, p_3, p_5, p_6 \in \{x_1 < x < x_4, y_4 - R < y < y_1 + R\}.$

- p_2 y p_5 no son adyacentes entre sí, por lo que ocupan distintos cuadrantes desde p_4 y desde p_1 . Dada la simetría del grafo, se puede suponer $y_2 > y_4$ e $y_5 < y_1$.
- p_3 y p_6 no son advacentes entre sí, por lo que ocupan distintos cuadrantes desde p_4 y desde p_1 . Como ya se supuso la posición de p_2 y p_5 , se deben analizar las dos posibilidades para p_3 y p_6 .

Caso 1: $y_3 > y_4$, $y_6 < y_1$

Si $y_5 < y_6$, entonces p_6 está entre p_1 , p_4 y p_5 adyacentes a p_3 y se tendría p_6 adyacente a p_3 .

Si $y_6 \leq y_5$, entonces p_5 queda entre p_1 , p_4 y p_6 advacentes a p_2 y se tendría p_5 advacente a p_2 .



Caso 2: $y_6 > y_4$, $y_3 < y_1$

Si $y_5 < y_3$ entonces p_3 queda entre p_1 , p_4 y p_5 adyacentes a p_6 y se tendría p_3 adyacente a p_6 . Si $y_3 \le y_5$ entonces p_5 queda entre p_1 , p_3 y p_4

adyacentes a p_2 y se tendría p_2 adyacente a p_5 .

Como se tiene que, o bien p_3 es adyacente a p_6 o bien p_2 es adyacente a p_5 el dibujo no puede ser válido.

Grafos de 7 nodos

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

Demostración. Se considera la numeración de la figura

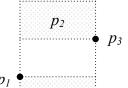
Supongamos que el grafo tiene un dibujo válido con nodos $p_i = (x_i, y_i)$ para i = 1, ..., 7.

• Para el subgrafo inducido por p_1, p_2, p_3 y p_4 se puede asumir

a)
$$||p_1 - p_3||_{\infty} = R = x_3 - x_1, y_3 \ge y_1.$$

b)
$$p_2 \in \{x_1 < x < x_3, y_3 < y < y_1 + R\}.$$

c)
$$p_4 \in \{x_1 < x < x_3, y_3 - R < y < y_1\}.$$



 $B_R(p_1) \cap B_R(p_3)$

- p_1 , p_3 y p_7 son advacentes a p_2 y no son advacentes entre sí, por lo que ocupan distintos cuadrantes desde p_2 . Como p_1 y p_3 están en los cuadrantes inferiores, se tiene que p_7 debe estar por encima de p_2 . O sea $y_7 > y_2$.
- p_7 p_2 p_3 p_1 p_4 p_5
- p_1 , p_3 y p_5 son advacentes a p_4 y no son advacentes entre sí, con un razonamiento similar al anterior se tiene $y_5 < y_4$.
- Como p_5 y p_7 son adyacentes a p_6 , si p_i está entre p_5 y p_7 entonces p_i debe ser adyacente a p_6 lo cual no es cierto para i = 1, 2, 3, 4. Por lo tanto

 $p_i \notin \{\min\{x_5, x_7\} \le x \le \max\{x_5, x_7\}; \min\{y_5, y_7\} \le y \le \max\{y_5, y_7\}\}$ para i = 1, 2, 3, 4.

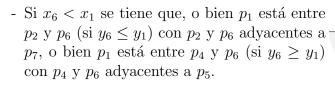
Observando que $y_5 < y_4 < y_1 < y_3 < y_2 < y_7$ se tiene que la condición que debe fallar es $\min\{x_5, x_7\} \le x_i \le \max\{x_5, x_7\}$ para i=1,2,3,4. Esto dice que, para cada i=1,2,3,4, $x_i < \min\{x_5, x_7\}$ o $x_i > \max\{x_5, x_7\}$. Entonces, o bien $x_i < x_5$ y $x_i < x_7$ o bien $x_i > x_5$ y $x_i > x_7$.

Juntando todas las condiciones se verá que no hay combinación posible para las posiciones de p_5 , p_6 y p_7 .

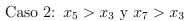
Caso 1: $x_5 < x_1 y x_7 < x_1$

- Si $x_6 \ge x_1$ se tiene que, o bien p_1 está entre p_6 y p_7 (para $y_6 \le y_1$), o bien p_1 está entre p_5 y p_6 (para $y_6 \ge y_1$).

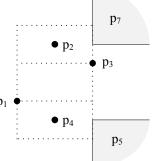
Ambos casos dan una contradicción ya que p_1 no es adyacente ni a p_5 ni a p_7 pero p_6 si lo es.



De vuelta, ambas situaciones dan una contradicción, ya que p_1 no es adyacente ni a p_5 ni a p_7 .



Por la simetría en el grafo, este caso es análogo al anterior haciendo ocupar a p_3 el lugar de p_1 .

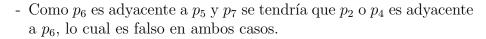


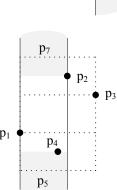
 p_7

 p_5

Caso 3: $x_1 \le x_5 \le x_0$, $x_1 \le x_7 \le x_0$ con $x_0 = \max\{x_2, x_4\}$

- Si $x_6 < x_1$ se tiene que, o bien p_1 está entre p_6 y p_7 (si $y_6 \le y_1$) o bien p_1 está entre p_5 y p_6 (si $y_6 \ge y_1$) y ya se ha visto que esto genera una contradicción.
- Si $x_6 > x_0$ entonces, o bien p_2 está entre p_6 y p_7 (si $y_6 \le y_2$) o bien p_4 está entre p_5 y p_6 (si $y_6 \ge y_2$).





- Si $x_1 \le x_6 \le x_0$, p_6 no puede estar entre p_1 , p_2 y p_4 ya que $\{x_1 \le x \le x_0, y_4 \le y \le y_2\} \subset B_r(p_1)$ para $r = \max\{\|p_1 - p_2\|_{\infty}, \|p_1 - p_4\|_{\infty}\}$, p_6 no es adyacente a p_1 y p_2 y p_4 sí lo son.

Esto deja sólo dos posibilidades: $y_6 \ge y_2$ o $y_6 \le y_4$. Ahora, dada la simetría en la estructura del grafo alcanza con considerar el caso $y_6 \ge y_2$ con $x_4 \le x_2$ ya que el otro es análogo.

Como se tiene un dibujo válido, los nodos p_1 , p_2 y p_6 cumplen que $||p_1 - p_2||_{\infty} < ||p_1 - p_6||_{\infty}$.

Si
$$||p_1 - p_6||_{\infty} = |x_1 - x_6| = x_6 - x_1$$
 entonces $|x_1 - x_2| \le ||p_1 - p_2||_{\infty} < x_6 - x_1$.

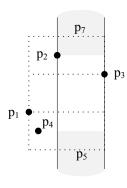
O sea, $x_2 - x_1 < x_6 - x_1$ y por lo tanto $x_2 < x_6$ que contradice la hipótesis del caso. Luego, $||p_1 - p_6||_{\infty} = y_6 - y_1 = |y_1 - y_6|$.

Por otro lado, $||p_1 - p_6||_{\infty} > ||p_5 - p_6||_{\infty} \ge |y_6 - y_5| = y_6 - y_5$, de lo que se obtiene $y_6 - y_1 > y_6 - y_5$. O sea que $y_5 > y_1$, lo que nuevamente contradice las posiciones consideradas.

Caso 4: $x_0 \le x_5 \le x_3$, $x_0 \le x_7 \le x_3$ con $x_0 = \max\{x_2, x_4\}$

Observando que

 $p_6 \notin \{\min\{x_2, x_4\} \leq x \leq x_3, y_4 \leq y \leq y_2\} \subset B_r(p_3)$ con $r = \max\{\|p_2 - p_3\|_{\infty}, \|p_4 - p_3\|_{\infty}\}$ (puesto que p_2 y p_4 son advacentes a p_3 y p_6 no lo es) se deduce que $x_6 < \min\{x_2, x_4\}$ o $x_6 > x_3$ o $y_6 < y_4$ o $y_6 > y_2$. Veamos que todos los casos conducen a una contradicción.



 $- x_6 < \min\{x_2, x_4\}$

Si $y_6 \ge y_2$ entonces $x_6 < x_2$ y p_2 queda entre p_5 y p_6 por lo que sería adyacente a p_6 . Si $y_6 < y_2$, como $x_6 < x_2$, p_2 queda entre p_6 y p_7 y de nuevo sería adyacente a p_6 .

 $-x_6 > x_3$

En este caso p_3 está entre p_6 y p_7 (si $y_6 \le y_3$) o entre p_5 y p_6 (si $y_6 \ge y_3$), por lo que sería p_3 adyacente a p_6 .

 $- y_6 < y_4$

De los dos casos anteriores se tiene $\min\{x_2, x_4\} \le x_6 \le x_3$. Pero si x_6 está entre x_2 y x_4 , como $x_2, x_4 \le x_7$ y $y_6 < y_4 < y_2 < y_7$ vale que, o bien p_2 está entre p_6 y p_7 (si $x_4 \le x_6 \le x_2 \le x_7$), o bien p_4

está entre p_6 y p_7 (si $x_2 \le x_6 \le x_4 \le x_7$). Esto dice que p_2 o p_4 debería ser adyacente a p_6 .

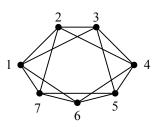
Por lo tanto $\max\{x_2, x_4\} \le x_6 \le x_3$. En particular, $x_4 \le x_6 \le x_3$, entonces $0 \le x_6 - x_4 \le x_3 - x_4$. O sea que $|x_6 - x_4| \le |x_3 - x_4| \le |p_3 - p_4||_{\infty}$.

Como $||p_3 - p_4||_{\infty} < ||p_4 - p_6||_{\infty}$, debe ser $||p_4 - p_6||_{\infty} = |y_4 - y_6| = y_4 - y_6$.

Por otro lado, $||p_6 - p_7||_{\infty} < ||p_6 - p_4||_{\infty}$, por lo que $|y_6 - y_7| < y_4 - y_6 \Rightarrow y_7 - y_6 < y_4 - y_6 \Rightarrow y_7 < y_4$ que contradice que $y_7 \ge y_2 > y_4$.

- $y_6 > y_2$ Análogo al caso anterior.

Proposición. El grafo $\overline{C_7}$ no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y que existe un dibujo válido de nodos $p_i = (x_i, y_i)$ para i = 1, ..., 7.

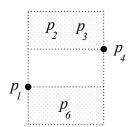
• p_2 , p_3 y p_6 son adyacentes a p_1 y a p_4 que no son adyacentes entre sí, entonces

$$p_2, p_3, p_6 \in B_R(p_1) \cap B_R(p_4) \text{ con } R = ||p_1 - p_4||_{\infty}.$$

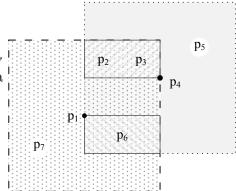
Por invarianza de $\|\cdot\|_{\infty}$ respecto de la rotación a 90° y a las simetrías respecto a los ejes coordenados se puede suponer que $R=x_4-x_1$ e $y_4 \geq y_1$.

Entonces $p_2, p_3, p_6 \in \{x_1 < x < x_4, y_4 - R < y < y_1 + R\}.$

• p_2 y p_3 no son advacentes a p_6 por lo que ocupan cuadrantes distintos desde p_1 y desde p_4 . Por la estructura simétrica del grafo se puede suponer $p_2, p_3 \in C_2(p_4)$ y $p_6 \in C_4(p_1)$. O sea, $y_2 \geq y_4$, $y_3 \geq y_4$ e $y_6 \leq y_1$.



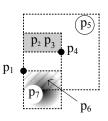
• $p_7 \in B_R(p_1)$ y $p_5 \in B_R(p_4)$ por p_7 advacente a p_1 y p_5 advacente a p_4 pero p_1 no advacente a p_4 .



- Como $p_2 \in C_2(p_4)$ y p_5 es advacente a p_4 pero no lo es a p_2 , entonces $p_5 \notin C_2(p_4)$.
- p_3 , p_4 , p_6 y p_7 son advacentes a p_5 y p_1 no lo es, por lo tanto p_1 no puede estar entre p_3 , p_4 , p_6 y p_7 .
 - Si $p_7 \in C_2(p_1)$ entonces p_1 está entre p_6 y p_7 .
 - Si $p_7 \in C_3(p_1)$ entonces p_1 está entre p_3 y p_7 .

O sea que $p_7 \in C_1(p_1)$ o $C_4(p_1)$.

Por otro lado, si $p_7 \in C_1(p_1)$ entonces ocupa el mismo cuadrante desde p_1 que p_3 pero sin ser adyacente a p_3 y con p_1 adyacente a p_7 y p_3 . Como esto no puede ser en un dibujo válido vale que $p_7 \in C_4(p_1)$, más específicamente $p_7 \in C_4(p_1) \cap B_R(p_1)$. Entonces $p_7 \in \{x_1 < x < x_4, y_1 - R < y < y_1\}$.



- p_4 no es adyacente a p_7 por lo que no puede estar entre p_5 y p_7 . Como $p_7 \in C_3(p_4)$ se tiene que $p_5 \notin C_1(p_4)$ y juntando con la condición anterior $(p_5 \notin C_2(p_4))$ se tiene que $y_5 < y_4$.
- p_2 es adyacente a p_1 , p_4 y p_7 y no es adyacente a p_6 , entonces p_6 no está entre p_1 , p_4 y p_7 . O sea,

 $p_6 \notin \{\min\{x_1, x_4, x_7\} \le x \le \max\{x_1, x_4, x_7\}, \min\{y_1, y_4, y_7\} \le y \le \max\{y_1, y_4, y_7\}\} = \{x_1 \le x \le x_4, \quad y_7 \le y \le y_4\}.$

Como ya se tiene $x_1 < x_6 < x_4$ e $y_6 \le y_1 < y_4$, debe ser $y_6 < y_7$.

• $||p_4 - p_6||_{\infty} < ||p_4 - p_7||_{\infty}$ porque p_4 y p_6 son advacentes y p_4 y p_7 no lo son.

Si
$$||p_4 - p_7||_{\infty} = |y_4 - y_7| = y_4 - y_7$$
 entonces

 $|y_4-y_6| = y_4-y_6 \le ||p_4-p_6||_{\infty} < y_4-y_7$ y queda $y_7 < y_6$ que contradice la conclusión del punto anterior.

Por lo tanto, $||p_4 - p_7||_{\infty} = |x_4 - x_7| = x_4 - x_7$ (ya que $p_7 \in B_R(p_1)$ y $x_7 < x_1 + R = x_4$) y se tiene

$$|x_4 - x_2| = x_4 - x_2 \le ||p_4 - p_2||_{\infty} < ||p_4 - p_7||_{\infty} = x_4 - x_7$$

$$\Rightarrow x_7 < x_2$$

$$|y||x_4 - x_3| = x_4 - x_3 \le ||p_4 - p_3||_{\infty} < ||p_4 - p_7||_{\infty} = x_4 - x_7$$

$$\Rightarrow x_7 < x_3$$

ya que p_2 y p_3 son adyacentes a p_4 y p_7 no lo es.

- p_3 , p_4 , p_6 y p_7 son advacentes a p_5 y p_2 no lo es, entonces $p_2 \notin \{\min\{x_3, x_4, x_6, x_7\} \le x \le \max\{x_3, x_4, x_6, x_7\}, \min\{y_3, y_4, y_6, y_7\} \le y \le \max\{y_3, y_4, y_6, y_7\}\} = \{\min\{x_6, x_7\} \le x \le x_4, \quad y_6 \le y \le y_3\}.$ Como $x_2 > x_7 \ge \min\{x_6, x_7\}, \quad x_2 < x_4 \text{ e } y_2 \ge y_4 > y_6, \text{ debe ser } y_2 > y_3.$
- $||p_7 p_2||_{\infty} < ||p_7 p_3||_{\infty}$ porque p_7 y p_2 son advacentes y p_7 y p_3 no lo son.

Si
$$||p_7 - p_3||_{\infty} = |y_7 - y_3| = y_3 - y_7$$
 entonces

 $|y_7-y_2| = y_2-y_7 \le ||p_7-p_3||_{\infty} < y_3-y_7$ y queda $y_2 < y_3$ que contradice la conclusión del punto anterior.

Por lo tanto
$$||p_7 - p_3||_{\infty} = |x_7 - x_3| = x_3 - x_7$$
 y vale

$$|x_7 - x_2| \le ||p_7 - p_2||_{\infty} < x_3 - x_7 \Rightarrow x_2 - x_7 < x_3 - x_7$$

entonces $x_2 < x_3$. En conjunto con condiciones anteriores queda $x_7 < x_2 < x_3$.

• p_4 no puede estar entre p_1 , p_2 , p_5 y p_6 advacentes a p_7 , entonces $p_4 \notin \{\min\{x_1, x_2, x_5, x_6\} \le x \le \max\{x_1, x_2, x_5, x_6\}, \min\{y_1, y_2, y_5, y_6\} \le x \le \max\{y_1, y_2, y_5, y_6\}\} = \{x_1 \le x \le \max\{x_1, x_2, x_5, x_6\}, \min\{y_5, y_6\} \le y \le y_2\}.$

Como $x_4 > x_1, x_4 > x_2, x_4 > x_6$ y min $\{y_5, y_6\} \le y_6 < y_4 < y_2$ sólo puede ser

$$x_4 > \max\{x_1, x_2, x_5, x_6\} \Rightarrow x_4 > x_5.$$

• p_7 es adyacente a p_2 y p_5 no adyacentes entre sí entonces p_2 y p_5 ocupan distintos cuadrantes desde p_7 .

- p_7 es adyacente a p_1 y p_5 no adyacentes entre sí entonces p_1 y p_5 ocupan distintos cuadrantes desde p_7 .
- Por lo anterior p_5 ocupa distintos cuadrantes que p_1 y p_2 desde p_7 . Como $p_2 \in C_1(p_7)$ (por $x_7 < x_2$) y $p_1 \in C_2(p_7)$, es decir que p_1 y p_2 ocupan los cuadrantes superiores desde p_7 , se tiene que $\mathbf{y_5} < \mathbf{y_7}$.
- $||p_5 p_4||_{\infty} < ||p_5 p_1||_{\infty}$ ya que p_5 y p_4 son advacentes y p_5 y p_1 no lo son.

Si
$$||p_5 - p_1||_{\infty} = |y_5 - y_1| = y_1 - y_5 \ (y_5 < y_7 < y_1)$$
 entonces $|y_5 - y_4| = y_4 - y_5 \le ||p_4 - p_5||_{\infty} < y_1 - y_5$

y sería $y_4 < y_1$ lo cual contradice la suposición inicial.

Por lo tanto
$$||p_5 - p_1||_{\infty} = |x_5 - x_1| = x_5 - x_1 \ (p_5 \in B_R(p_4))$$

y $x_5 > x_4 - R = x_1$.

Como
$$||p_3 - p_1||_{\infty} < ||p_5 - p_1||_{\infty}$$
 se tiene

$$|x_3 - x_1| \le ||p_3 - p_1||_{\infty} < x_5 - x_1$$
.

Entonces $x_3 - x_1 < x_5 - x_1 \text{ y } x_3 < x_5$.

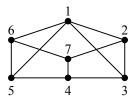
Se vio que $||p_3 - p_7||_{\infty} = x_3 - x_7$. Además $||p_7 - p_5||_{\infty} < ||p_7 - p_3||_{\infty}$ ya que p_7 y p_5 son advacentes pero p_7 y p_3 no lo son, entonces

$$|x_7 - x_5| \le ||p_7 - p_5||_{\infty} < x_3 - x_7$$

$$\Rightarrow x_5 - x_7 < x_3 - x_7 \Rightarrow x_5 < x_3$$

lo que contradice el último ítem. Por lo tanto el dibujo no era válido.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



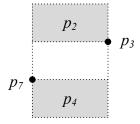
Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con los nodos $p_i = (x_i, y_i)$ para i = 1, ..., 7.

Considerando el subgrafo inducido por los nodos p_2 , p_3 , p_4 y p_7 se puede considerar que

-
$$R = ||p_3 - p_7||_{\infty} = x_3 - x_7$$
.

-
$$y_3 \ge y_7$$
.

-
$$p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$$
.



Como la estructura del grafo no es simétrica, en principio se deberían analizar los casos:

1.
$$y_2 > y_3 e y_4 < y_7$$
.

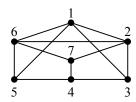
$$B_R(p_3) \cap B_R(p_7)$$

2. $y_2 < y_7$ e $y_4 < y_3$. Como resultan ser casos análogos, sólo se desarrollará el primero.

- p_2 , p_4 y p_6 ocupan distintos cuadrantes desde p_7 ya que son adyacentes a éste pero no son adyacentes entre sí. Como p_2 y p_4 ocupan los cuadrantes a la derecha de p_7 , se tiene que $x_6 < x_7$.
- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 ya que son adyacentes a éste pero no lo son entre sí. Como p_3 y p_7 ocupan los cuadrantes superiores, se tiene que $y_5 < y_4$.
- p_7 no puede estar entre p_3 y p_6 porque no es adyacente a p_3 y p_6 sí lo es. Como $x_6 < x_7 < x_3$ e $y_7 < y_3$ debe ser $y_6 \ge y_7$, sino se tendría $y_6 < y_7 < y_3$.
- p_7 tampoco puede estar entre p_5 y p_6 por no ser adyacente a p_5 . Como $y_5 < y_4 < y_7 \le y_6$ y $x_6 < x_7$, debe ser $x_7 \ge x_5$.

Entonces $x_5 \le x_7 \le x_3$ e $y_5 \le y \le y_3$, o sea p_7 está entre p_3 y p_5 . Pero p_5 y p_3 son advacentes a p_1 y p_7 no lo es, por lo que el dibujo no puede ser válido.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

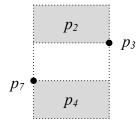


Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$ para i = 1, ..., 7.

Considerando el subgrafo inducido por los nodos $p_2,\,p_3,\,p_4$ y p_7 se puede considerar que

- $R = ||p_3 p_7||_{\infty} = x_3 x_7$.
- $y_3 \ge y_7$.
- $p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$.

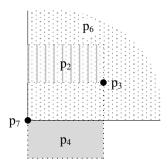
Caso 1: $y_2 > y_3 e y_4 < y_7$



 $B_R(p_3) \cap B_R(p_7)$

- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 . Como p_3 y p_7 ocupan los cuadrantes superiores se tiene que $y_5 < y_4$.
- En el grafo anterior se podía deducir que $x_6 < x_7$ del hecho que p_2 no era adyacente a p_6 . Si, en efecto $x_6 < x_7$, las condiciones que llevaban a una contradiccón también están presentes en este grafo por lo que no habría dibujo válido. Por lo tanto se puede suponer que $x_6 \ge x_7$.
- p_4 y p_6 son adyacentes a p_7 y no lo son entre sí. Dado que $p_4 \in C_4(p_7)$ se tiene que $p_6 \notin C_4(p_7)$. Si se agrega la condición anterior sobre x_6 se tiene que

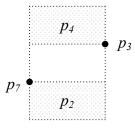
$$p_6 \in \{x \ge x_7, y > y_7\}$$
. O sea $p_6 \in C_1(p_7)$.



- p_5 y p_7 ocupan distintos cuadrantes desde p_6 ya que son adyacentes a éste pero no lo son entre sí. Hasta ahora se tiene que $y_6 > y_7$, $y_6 > y_4 > y_5$, es decir que p_5 y p_7 ocupan los cuadrantes inferiores desde p_6 . Como además $p_7 \in C_3(p_6)$, vale que $p_5 \in C_4(p_6)$ y por lo tanto $p_6 \in C_2(p_5)$ y $x_6 < x_5$.
- Análogamente, p_6 y p_4 ocupan distintos cuadrantes desde p_5 con $y_6 > y_5$, $y_4 > y_5$ y $p_6 \in C_2(p_5)$. Entonces $p_4 \in C_1(p_5)$ y $\boldsymbol{x_5} < \boldsymbol{x_4}$.

Entonces, como $x_5 < x_4 < x_3$ e $y_5 < y_4 < y_3$, p_4 está entre p_3 y p_5 adyacentes a p_1 . Esto contradice que p_4 y p_1 no son adyacentes y el dibujo no es válido.

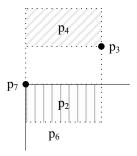
Caso 2: $y_4 > y_3 e y_2 < y_7$



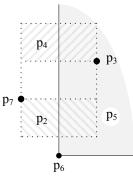
 $B_R(p_3) \cap B_R(p_7)$

Como en el caso 1 se considera $x_6 \ge x_7$ ya que si $x_6 < x_7$ la inexistencia del dibujo válido se verifica como en el grafo anterior.

- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 . Como p_3 y p_7 ocupan los cuadrantes inferiores, debe ser $y_5 > y_4$.
- p_6 y p_4 ocupan distintos cuadrantes desde p_7 . Como $p_4 \in C_1(p_7)$ y $x_6 \ge x_7$ (p_6 a la derecha de p_7), debe ser $p_6 \in C_4(p_7)$.



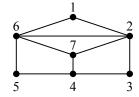
• p_5 y p_7 ocupan distintos cuadrantes desde p_6 . Como $p_7 \in C_2(p_6)$ e $y_5 > y_6$ porque $y_5 > y_4 > y_7$, entonces $p_5 \in C_1(p_6)$.



• p_6 y p_4 ocupan distintos cuadrantes desde p_5 . Como $p_6 \in C_3(p_5)$ e $y_4 < y_5$ (o sea que están ambos en los cuadrantes inferiores con p_6 a la izquierda) se tiene que $p_4 \in C_4(p_5)$ y $x_4 > x_5$.

Entonces $x_5 < x_4 < x_3$ e $y_3 < y_4 < y_5$ y p_4 queda entre p_3 y p_5 , advacentes a p_1 . Esto contradice que p_4 y p_1 no son advacentes y el dibujo no es válido.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

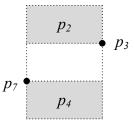


Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$ para $i = 1, \dots, 7$.

Considerando el subgrafo inducido por los nodos $p_2,\,p_3,\,p_4$ y p_7 se puede considerar que

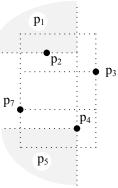
- $R = ||p_3 p_7||_{\infty} = x_3 x_7.$
- $y_3 \ge y_7$.
- $p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$.

Caso 1: $y_2 > y_3 e y_4 < y_7$



$$B_R(p_3) \cap B_R(p_7)$$

- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 . Como p_3 y p_7 ocupan los cuadrantes superiores se tiene que $y_5 < y_4$.
- p_1 , p_3 y p_7 ocupan distintos cuadrantes desde p_2 . Como p_3 y p_7 ocupan los cuadrantes inferiores se tiene que $y_1 > y_2$.
- p_3 y p_4 no están entre p_1 , p_5 y p_7 que son adyacentes a p_6 . Dado que $x_7 < x_3$, $x_7 < x_4$ e $y_5 < y_4 < y_3 < y_2 < y_1$ debe valer que $x_3 > \max\{x_1, x_5\}$ y que $x_4 > \max\{x_1, x_5\}$, o sea que $x_1 < x_4$ y $x_5 < x_4$.



• p_1 , p_5 y p_7 deben estar en distintos cuadrantes desde p_6 ya que no son adyacentes entre sí, esto no sucede si $x_6 \ge x_4$ o $y_6 \ge y_1$ o $y_6 \le y_5$. Por lo tanto $x_6 < x_4$ e $y_5 < y_6 < y_1$.

- p_6 ocupa un cuadrante distinto de p_4 desde p_7 , entonces $p_6 \notin C_4(p_7)$.
- p_7 no debe estar entre p_4 y p_6 (adyacentes a p_5), como $p_4 \in C_4(p_7)$ entonces $p_6 \notin C_2(p_7)$.
- p_7 no debe estar entre p_2 y p_6 (adyacentes a p_1), como $p_2 \in C_1(p_7)$ entonces $p_6 \notin C_3(p_7)$
- Resumiendo lo anterior, $p_6 \in C_1(p_7) \cap \{x < x_4, y_5 < y < y_1\} = \{x_7 < x < x_4, y_7 < y < y_1\}$
- p_7 no debe estar entre p_5 y p_6 ya que no es adyacente a p_5 y p_6 sí lo es. Como $p_6 \in C_1(p_7)$ e $y_5 < y_7$ vale que $x_7 \le x_6$ e $y_5 < y_7 < y_6$ y debe ser $x_7 < x_5$. Entonces $p_5 \in C_4(p_7)$.
- p_5 es advacente a p_6 y no es advacente a p_7 , entonces $||p_5 p_6||_{\infty} < ||p_5 p_7||_{\infty}$.

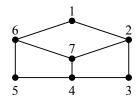
Si
$$||p_5 - p_7||_{\infty} = |y_5 - y_7| = y_7 - y_5$$
 entonces
 $|y_5 - y_6| = y_6 - y_5 \le ||p_5 - p_6||_{\infty} < ||p_5 - p_7||_{\infty} = y_7 - y_5$
e $y_6 < y_7$ lo que contradice que $p_6 \in C_1(p_7)$, por lo tanto
 $||p_5 - p_7||_{\infty} = |x_5 - x_7| = x_5 - x_7$.

• p_7 es adyacente a p_4 y no es adyacente a p_5 , entonces $|x_7 - x_4| = x_4 - x_7 \le ||p_7 - p_4||_{\infty} < ||p_7 - p_5||_{\infty} = x_5 - x_7$ y se tiene $x_5 < x_7$, lo que contradice que $p_5 \in C_4(p_7)$.

Como $||p_5-p_7||_{\infty}$ no puede ser ni $|x_5-x_7|$ ni $|y_5-y_7|$ ya que ambas suposiciones conducen a una contradicción, el grafo no puede tener un dibujo válido.

Caso 2:
$$y_4 > y_3$$
 e $y_2 < y_7$
Resulta análogo al anterior.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

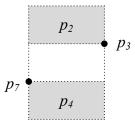


Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

Considerando el subgrafo inducido por los nodos p_2 , p_3 , p_4 y p_7 se puede considerar que

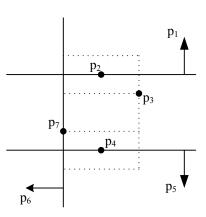
- $R = ||p_3 p_7||_{\infty} = x_3 x_7$.
- $y_3 \ge y_7$.
- $p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$.

Caso 1: $y_2 > y_3 e y_4 < y_7$



 $B_R(p_3) \cap B_R(p_7)$

- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 . Como p_3 y p_7 ocupan los cuadrantes superiores se tiene que $y_5 < y_4$.
- p_1 , p_3 y p_7 ocupan distintos cuadrantes desde p_2 . Como p_3 y p_7 ocupan los cuadrantes inferiores se tiene que $y_1 > y_2$.
- p_2 , p_4 y p_6 ocupan distintos cuadrantes desde p_7 , como p_2 y p_4 ocupan los cuadrantes a la derecha de p_7 entonces $x_6 < x_7$.

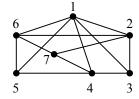


• p_7 no puede estar entre p_4 y p_6 (adyacentes entre sí). Como $p_4 \in C_4(p_7)$ entonces $p_6 \notin C_2(p_7)$. Agregando que $x_6 < x_7$ se tiene que $p_6 \in C_3(p_7)$.

De esta manera $p_6 \in C_3(p_7)$ y $p_2 \in C_1(p_7)$, con lo que p_7 queda entre p_2 y p_6 advacentes a p_1 . Esto contradice que p_7 y p_1 no son advacentes.

Caso 2: $y_4 > y_3$ e $y_2 < y_7$ Resulta análogo al anterior.

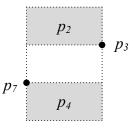
Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

Considerando el subgrafo inducido por los nodos p_2 , p_3 , p_4 y p_7 se puede considerar que

- $R = ||p_3 p_7||_{\infty} = x_3 x_7$.
- $y_3 \ge y_7$.
- $p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$.



 $B_R(p_3) \cap B_R(p_7)$

- p_7 no debe estar entre p_2 , p_3 , p_4 , p_5 y p_6 ya que son adyacentes a p_1 y p_7 no lo es. Como $x_7 < x_2, x_3, x_4$ e $y_4 < y_7 < y_2$, entonces $x_7 < \min\{x_5, x_6\}$, o sea que $x_5 > x_7$ y $x_6 > x_7$.
- p_4 y p_6 están en distintos cuadrantes desde p_7 , ya que son adyacentes a p_7 pero no lo son entre sí. Como $p_4 \in C_4(p_7)$ y $x_6 > x_7$ (o sea ambos a la de dercha de p_7 con p_4 abajo) se tiene que $y_6 > y_7$.
- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 . Como p_3 y p_7 ocupan los cuadrantes superiores, entonces $y_5 < y_4$.
- p_4 no puede estar entre p_5 y p_7 , advacentes a p_6 . Como $p_7 \in C_2(p_4)$ e $y_5 < y_4$, entonces $p_5 \in C_3(p_7)$.

Por lo tanto $p_5 \in \{x_7 < x < x_4, y < y_4\}$ (*).

- p_4 y p_6 ocupan distintos cuadrantes desde p_5 . Como $y_5 < y_4$, $y_5 < y_6$ (ambos en los cuadrantes superiores) y $x_5 < x_4$, se tiene que $x_5 > x_6$.
- p_6 es adyacente a p_5 y p_7 no lo es, entonces $||p_5 p_6||_{\infty} < ||p_5 p_7||_{\infty}$. Como

$$y_6 - y_5 = |y_5 - y_6| > |y_5 - y_7| = y_7 - y_5$$

porque $y_6 > y_7$, debe ser

$$||p_5 - p_7||_{\infty} = |x_5 - x_7| = x_5 - x_7.$$

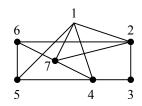
Con esta última condición se llega a una contradicción, ya que p_7 es adyacente a p_4 y no lo es a p_5 . Entonces valdría

 $x_4 - x_7 = |x_4 - x_7| \le ||p_7 - p_4||_{\infty} < ||p_7 - p_5||_{\infty} = x_5 - x_7 \Rightarrow x_4 < x_5$ lo que contradice (*).

Caso 2: $y_4 > y_3 e y_2 < y_7$

Resulta análogo al anterior.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

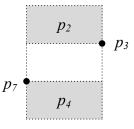


Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

Considerando el subgrafo inducido por los nodos p_2 , p_3 , p_4 y p_7 se puede considerar que

- $R = ||p_3 p_7||_{\infty} = x_3 x_7$.
- $y_3 \ge y_7$.
- $p_2, p_4 \in B_R(p_3) \cap B_R(p_7)$.

Caso 1: $y_2 > y_3 \in y_4 < y_7$



 $B_R(p_3) \cap B_R(p_7)$

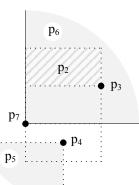
- p_3 , p_5 y p_7 ocupan distintos cuadrantes desde p_4 ya que son adyacentes a p_4 pero no lo son entre sí. Como p_3 y p_7 ocupan los cuadrantes superiores, se tiene que $y_5 < y_4$.
- p_4 no debe estar entre p_5 y p_7 ya que son adyacentes a p_6 y p_4 no lo es. Por un lado, $p_7 \in C_2(p_4)$ y entonces $p_5 \notin C_4(p_4)$ y por el otro $y_5 < y_4$ por lo que $p_5 \in C_3(p_4)$. O sea, $\mathbf{x_5} < \mathbf{x_4}$ e $\mathbf{y_5} < \mathbf{y_4}$.

• p_7 no debe estar entre p_4 y p_6 advacentes a p_5 . Como $p_4 \in C_4(p_7)$, se tiene $p_6 \notin C_2(p_7)$.

Además p_4 y p_6 ocupan distintos cuadrantes desde p_7 , por lo que $p_6 \notin C_4(p_7)$.

• Para el caso en que $p_6 \in C_1(p_7)$, además debe valer que p_6 no puede estar entre p_2 y p_7 (adyacentes a p_1) y que p_3 y p_6 ocupan distintos cuadrantes desde p_2 .

Si $y_6 \leq y_2$, lo primero implica $x_6 > x_2$ y lo segundo $x_6 < x_2$ generando una contradicción. Entonces deberá ser $y_6 > y_2$. Veamos que esto también genera una contradicción y por lo tanto se tiene que $p_6 \in C_3(p_7)$.

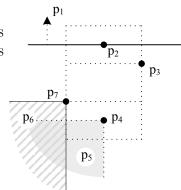


$$y_6 > y_2 \Rightarrow y_6 - y_5 > y_2 - y_5 \Rightarrow$$

$$\Rightarrow ||p_5 - p_6||_{\infty} \ge |y_5 - y_6| = y_6 - y_5 > y_2 - y_5 = |y_2 - y_5|$$

Como por adyacencias vale que $||p_5 - p_6||_{\infty} < ||p_5 - p_2||_{\infty}$, se tiene que $||p_5 - p_2||_{\infty} = |x_2 - x_5|$.

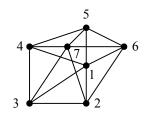
- Si $x_2 \ge x_5$ entonces $x_2 x_5 = \|p_2 p_5\|_{\infty} > \|p_2 p_7\|_{\infty} \ge |x_7 x_2| = x_2 x_7$. O sea que $x_7 > x_5$ y p_7 estaría entre $p_5 \in C_3(p_7)$ y $p_6 \in C_1(p_7)$. Esto contradice que p_7 y p_5 no son adyacentes.
- Si $x_2 \le x_5$ entonces $x_5 x_2 = ||p_2 p_5||_{\infty} > ||p_2 p_3||_{\infty} \ge |x_3 x_2| = x_3 x_2.$ O sea que $x_5 > x_3$, contradiciendo que $p_5 \in C_3(p_4)$ $(x_5 \le x_4 < x_3)$.
- p_1 , p_3 y p_6 ocupan distintos cuadrantes desde p_2 . Como p_3 y p_6 ocupan los cuadrantes inferiores, se tiene que $y_1 > y_2$.



- p_1 y p_3 ocupan distintos cuadrantes desde p_4 . Como $y_1 > y_4$, $y_3 > y_4$ y $x_3 > x_4$ entonces $x_1 < x_4$.
- p_7 no puede estar entre p_1 y p_4 ya que son adyacentes a p_5 y p_7 no lo es. Como $p_4 \in C_4(p_7)$ entonces $p_1 \notin C_2(p_7)$. Si juntamos esto con la condición $y_1 > y_2$ queda que $C_1(p_7)$ y $x_7 < x_1$.
- p_7 y p_5 ocupan distintos cuadrantes desde p_1 . Dado que $y_1 > y_7$ e $y_1 > y_5$, p_5 y p_7 ocupan los cuadrantes inferiores. Por lo anterior se tiene que $x_7 < x_1 < x_5$.
- Se tiene que $x_6 < x_7 < x_1 < x_5 < x_4$ e $y_5 < y_4$. Como p_5 no debe estar entre p_4 y p_6 (adyacentes a p_7), se tiene que $y_5 < y_6$ y queda $p_6 \in C_2(p_5)$.

Como también se tiene que $x_1 < x_5$ e $y_1 > y_5$ entonces $p_1 \in C_2(p_5)$. Esto no puede ser que ya que p_1 y p_6 ocupan distintos cuadrantes desde p_5 .

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

• p_2 , p_3 , p_4 , p_5 y p_6 son advacentes a p_1 y a p_7 , que no son advacentes entre sí. Entonces

$$p_2, p_3, p_4, p_5, p_6 \in B_R(p_1) \cap B_R(p_7) \text{ con } R = ||p_1 - p_7||_{\infty}$$

Por la simetría del grafo y porque p_2 y p_4 no son adyacentes se puede suponer

$$-R = x_7 - x_1$$

$$-y_7 \ge y_1$$

$$-p_2 \in C_2(p_7)$$

$$-p_4 \in C_4(p_1)$$

$$p_2$$

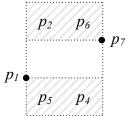
$$p_1$$

$$p_4$$

$$p_4$$

$$B_R(p_1) \cap B_R(p_7)$$

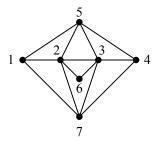
• $p_5 \notin C_1(p_1)$ pues p_5 y p_2 no son advacentes. Además $p_5 \in B_R(p_1) \cap B_R(p_1)$ entonces $x_5 > x_1$ $y p_5 \in C_4(p_1).$



- Análogamente $p_6 \in C_2(p_7)$ porque p_6 y p_4 no son advacentes.
- $p_3 \in B_R(p_1) \cap B_R(p_7)$, entonces $x_3 > x_1$.

Como p_5 y p_6 están a la derecha de p_1 y p_3 no ocupa los mismos cuadrantes que p_5 y p_6 desde p_1 , se tiene que $x_3 < x_1$ lo que genera una contradicción y, por lo tanto, el dibujo no era válido.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

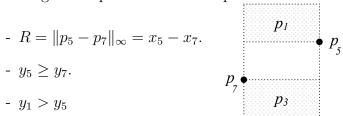


Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

Considerando el subgrafo inducido por los nodos p_1 , p_3 , p_5 y p_7 y la simetría del grafo se puede considerar que

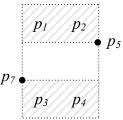
$$-R = ||p_5 - p_7||_{\infty} = x_5 - x_7$$

- $y_5 \ge y_7$.
- $-y_1 > y_5$
- $y_3 < y_7$



$$B_{R}(p_{5}) \cap B_{R}(p_{7})$$

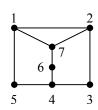
- p_2 y p_4 son advacentes a p_7 y a p_5 , por lo tanto $p_2, p_4 \in B_R(p_5) \cap B_R(p_7)$
- p_4 y p_1 están en distintos cuadrantes desde p_7 , entonces $p_4 \in C_4(p_7) \cap B_R(p_5) \cap B_R(p_7)$ y $p_4 \in C_3(p_5)$.
- p_2 y p_4 ocupan distintos cuadrantes desde p_5 y $p_2 \in B_R(p_5) \cap B_R(p_7)$, entonces $p_2 \in C_2(p_5)$.



- p_6 , p_5 y p_7 ocupan distintos cuadrantes desde p_2 . Como p_5 y p_7 ocupan los cuadrantes inferiores, debe ser $y_6 > y_2$.
- p_6 , p_5 y p_7 ocupan distintos cuadrantes desde p_3 . Como p_5 y p_7 ocupan los cuadrantes superiores, debe ser $y_6 < y_3$.

Entonces vale que $y_6 < y_3 < y_2 < y_6$, absurdo. Por lo tanto, el dibujo no era válido.

Proposición. El grafo de la figura no tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.



Demostración. Se considera la numeración de la figura y se supone que existe un dibujo válido con nodos $p_i = (x_i, y_i)$.

 p_6 es adyacente a p_4 y a p_7 que no son adyacentes entre sí, entonces p_6 $B_R(p_4) \cap B_R(p_7)$ con $R = ||p_4 - p_7||_{\infty}$.

Además se puede suponer $||p_4 - p_7||_{\infty} = x_7 - x_4$ e $y_7 \ge y_4$ por invariaza de la norma respecto a rotación de 90° y simetrías sobre los ejes.

Caso 1:
$$p_6 \in C_2(p_7)$$

$$P_4 \bullet P_7$$

$$B_R(p_4) \cap B_R(p_7)$$

- Como $x_6 > x_4$ e $y_6 > y_7 > y_4$ vale que $p_6 \in C_1(p_4)$.
- Como p_4 no debe estar entre p_5 y p_7 (adyacentes a p_1) ni entre p_3 y p_7 (adyacentes a p_2) y además $p_7 \in C_1(p_4)$, se tiene que $p_3, p_5 \notin C_3(p_4)$.
- p_3 , p_5 y p_6 ocupan distintos cuadrantes desde p_4 , entonces $p_5 \in C_2(p_4)$ y $p_3 \in C_4(p_4)$ o viceversa ya que $p_6 \in C_1(p_4)$ y $p_3, p_5 \notin C_3(p_4)$. Además $p_3, p_5, p_6 \in B_R(p_4)$ por ser adyacentes a p_4 .

Dada la estructura simétrica del grafo no es necesario analizar ambos casos y se considera

 $p_6 \in C_1(p_4)$ $p_5 \in C_2(p_4)$ $p_3 \in C_4(p_4)$.

- p_7 no puede estar entre p_1 y p_4 (advacentes a p_5) ni entre p_2 y p_4 (advacentes a p_3), entonces $p_1, p_2 \notin C_1(p_7)$.
- p_1 y p_2 ocupan distintos cuadrantes que p_6 desde p_7 , entonces $p_1, p_2 \notin C_2(p_7)$ y se tiene $\mathbf{y_1}, \mathbf{y_2} < \mathbf{y_7}$.
- p_4 no debe estar entre p_1 y p_5 ya que p_4 no es adyacente a p_1 y p_5 sí lo es, entonces $p_1 \notin C_4(p_4)$.

Como además p_1 es adyacente a p_7 y no es adyacente a p_4 vale que $p_1 \in B_R(p_7)$ y $x_1 > x_4$. Esto implica que $p_1 \in C_1(p_4)$ e $y_1 > y_4$.

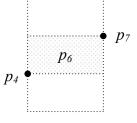
Por último, p_1 no puede estar entre p_4 y p_7 (adyacentes a p_6), entonces $p_1 \in \{x_7 < x < x_7 + R, y_4 < y < y_7\}.$

- p_6 no debe estar entre p_5 y p_7 (adyacentes a p_1), como $x_5 < x_6 < x_7$ e $y_7 < y_6$ entonces $y_5 < y_6$.
- p_6 es adyacente a p_4 y no es adyacente a p_5 , entonces vale que $||p_6 p_4||_{\infty} < ||p_6 p_5||_{\infty}$.

Por lo anterior $0 < y_6 - y_5 < y_6 - y_4 \le ||p_4 - p_6||_{\infty}$, entonces $||p_6 - p_5||_{\infty} = |x_6 - x_5| = x_6 - x_5$.

Entonces se tiene que $||p_5 - p_6||_{\infty} = x_6 - x_5 < x_1 - x_5 \le ||p_5 - p_1||_{\infty}$, lo que contradice que p_5 es adyacente a p_1 y no es adyacente a p_6 . Por lo tanto el dibujo no era válido.

Caso 2: p_6 entre p_4 y p_7



 $B_R(p_4) \cap B_R(p_7)$

• Como en el caso 1, $p_3, p_5 \notin C_3(p_4)$ y como sigue valiendo $p_6 \in C_1(p_4)$ se supone $p_5 \in C_2(p_4)$ y $p_3 \in C_4(p_4)$.

• También sigue valiendo que $p_1, p_2 \notin C_1(p_7)$ pues p_7 no debe estar entre p_4 y p_1 ni entre p_4 y p_2 .

- Como p_1 y p_2 ocupan distintos cuadrantes que p_6 desde p_7 se tiene que p_1 y p_2 pueden estar en $C_2(p_7)$ o en $C_4(p_7)$.
- p_6 no debe estar entre p_3 y p_7 (adyacentes a p_2). Como $y_3 < y_6 < y_7$ y $x_6 < x_7$ entonces vale que $x_6 < x_3$ (*).

$$x_6 < x_3 < x_7 \Rightarrow 0 < x_3 - x_6 = |x_6 - x_3| < x_7 - x_6 \le ||p_6 - p_7||_{\infty}$$

Dado que $||p_6 - p_7||_{\infty} < ||p_6 - p_3||_{\infty}$, se tiene que $||p_3 - p_6||_{\infty} = |y_3 - y_6| = y_6 - y_3$.

Por otro lado, $|y_2 - y_3| \le ||p_3 - p_2||_{\infty} < ||p_3 - p_6||_{\infty} = y_6 - y_3$. Entonces $y_3 - y_6 < y_2 - y_3 < y_6 - y_3 \Rightarrow y_2 < y_6 < y_7 \Rightarrow p_2 \in C_4(p_7)$ y $x_7 < x_2(^{**})$.

• De $y_2 < y_6 < y_7$ se tiene $0 < y_6 - y_2 = |y_2 - y_6| < y_7 - y_2 \le ||p_2 - p_7||_{\infty}$. Como p_2 es adyacente a p_7 y no a p_6 , debe ser $||p_2 - p_6||_{\infty} = |x_2 - x_6| = x_6 - x_2$.

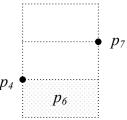
Como p_2 es adyacente a p_3 y no es adyacente a p_6 debe valer $||p_2 - p_3||_{\infty} < ||p_2 - p_6||_{\infty} = x_6 - x_2$ y en particular, $|x_2 - x_3| < x_6 - x_2 \Rightarrow x_2 - x_6 < x_2 - x_3 < x_6 - x_2$.

De la primer designaldad se tiene $x_3 < x_6$, que contradice (*).

De la segunda desigualdad se tiene que $x_2 < \frac{x_3 + x_6}{2} < x_3$, y por (**) queda el absurdo $x_7 < x_2 < x_3 < x_7$.

Por lo tanto el dibujo no era válido.

Caso 3: $p_6 \in C_4(p_4)$



 $B_R(p_4) \cap B_R(p_7)$

- $y_6 < y_4 < y_7$ y $x_4 < x_6 < y_7$, entonces $p_6 \in C_3(p_7)$ e $y_6 < y_7(*)$.
- Como en los casos anteriores, $p_3, p_5 \notin C_3(p_4)$
- p_3 , p_5 y p_6 ocupan distintos cuadrantes desde p_4 , entonces p_3 y p_5 se reparten en $C_1(p_4)$ y $C_2(p_4)$. Por la estructura del grafo alcanza con analizar el caso $p_5 \in C_2(p_4)$ y $p_3 \in C_1(p_4)$, o sea $x_5 < x_3(**)$.

- p_3 no debe estar entre p_4 y p_7 (adyacentes a p_6), como $x_4 < x_3 < x_7$ e $y_4 < y_3$ entonces debe ser $y_3 > y_7$.
- Como antes, p_7 no debe estar entre p_4 y p_1 ni entre p_4 y p_2 por lo que $p_1, p_2 \notin C_1(p_7)$.

Además p_1 y p_2 no ocupan el mismo cuadrante que p_6 desde p_7 , entonces $p_1, p_2 \notin C_3(p_7)$. O sea que $p_1, p_2 \in C_2(p_7) \cup C_4(p_7)$.

- p_3 no debe estar entre p_5 y p_7 (adyacentes a p_1), como $x_5 < x_3 < x_7$ e $y_3 > y_7$ se tiene que $y_5 < y_3$.
- p_3 no debe estar entre p_1 y p_5 ni entre p_1 y p_7 ya que no es adyacente a p_5 ni a p_7 .

De lo anterior se deduce que $p_1 \notin C_1(p_3)$ y $p_1 \notin C_2(p_3)$ (p_5 y p_7 están por debajo de p_3 por lo que p_1 no puede estar por arriba), entonces $y_1 < y_3$.

• $||p_1 - p_3||_{\infty} = |y_1 - y_3| = y_3 - y_1$:

Si se supone lo contrario, como p_1 es adyacente a p_5 y no es adyacente a p_3 , valdría que

$$x_1 - x_5 = |x_1 - x_5| \le ||p_1 - p_5||_{\infty} < ||p_1 - p_3||_{\infty} = |x_1 - x_3| \Rightarrow$$

$$\Rightarrow x_1 - x_5 < |x_1 - x_3| \Rightarrow x_1 - x_3 < -x_1 + x_5 \quad o \quad x_1 - x_3 > x_1 - x_5 \Rightarrow$$

$$\Rightarrow x_1 < \frac{x_3 + x_5}{2} \quad o \quad x_5 > x_3$$

La segunda desigualdad contradice (**).

Suponiendo que vale la primera desigualdad, se tendría $x_1 < \frac{x_3 + x_5}{2} < x_3$ y $x_1 < x_3 < x_7$. Por lo que

 $0 < x_3 - x_1 < x_7 - x_1 \le ||p_1 - p_7||_{\infty} < ||p_1 - p_3||_{\infty} = x_3 - x_1$ que es un absurdo.

- Como p_3 es adyacente a p_4 y no es adyacente a p_1 se tiene que $||p_3 p_4||_{\infty} < ||p_3 p_1||_{\infty}$. Por lo anterior queda $y_3 y_4 < ||p_3 p_1||_{\infty} = y_3 y_1 \Rightarrow y_1 < y_4 (\leq y_7)(***)$.
- Dadas las opciones previas para p_1 sólo puede ser $p_1 \in C_4(p_7)$, entonces $x_1 > x_7$ e $y_1 < y_7$.
- Como $x_5 < x_6 < x_7 < x_1$, entonces vale que $x_5 x_1 < x_6 x_1 < 0$ y $|x_1 x_6| < |x_1 x_5| \le ||p_1 p_5||_{\infty}$.

Por otro lado $||p_1 - p_5||_{\infty} < ||p_1 - p_6||_{\infty}$ ya que p_1 es adyacente a p_5 y no a p_6 . Entonces $||p_1 - p_6||_{\infty} = |y_1 - y_6|$.

Por último,

 $y_7 - y_1 = |y_1 - y_7| \le ||p_1 - p_7||_{\infty} < ||p_1 - p_6||_{\infty} = |y_1 - y_6|$ ya que p_1 es adyacente a p_7 y no a p_6 .

Como $y_7 - y_1 < |y_1 - y_6|$, se tiene que o bien $y_1 - y_6 < -y_7 + y_1$ o bien $y_1 - y_6 > y_7 - y_1$.

En el primer caso queda $y_7 < y_6$, que contradice (*).

En el segundo caso queda $y_1 > \frac{y_6 + y_7}{2} (> y_6)$, lo que contradice que $||p_6 - p_4||_{\infty} < ||p_6 - p_1||_{\infty}$.

En efecto, si $y_4 - y_6 \le ||p_6 - p_4||_{\infty} < ||p_6 - p_1||_{\infty} = y_1 - y_6$ entonces queda $y_4 < y_1$ que contradice (***).

Con los casos 1, 2 y 3 se demostró que no hay posición posible para p_6 , por lo tanto el dibujo no era válido.

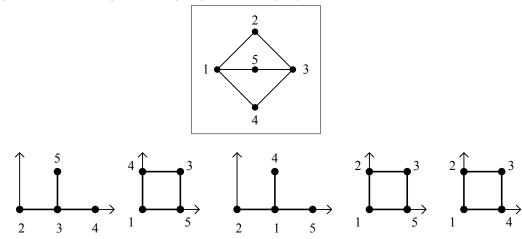
Los extras

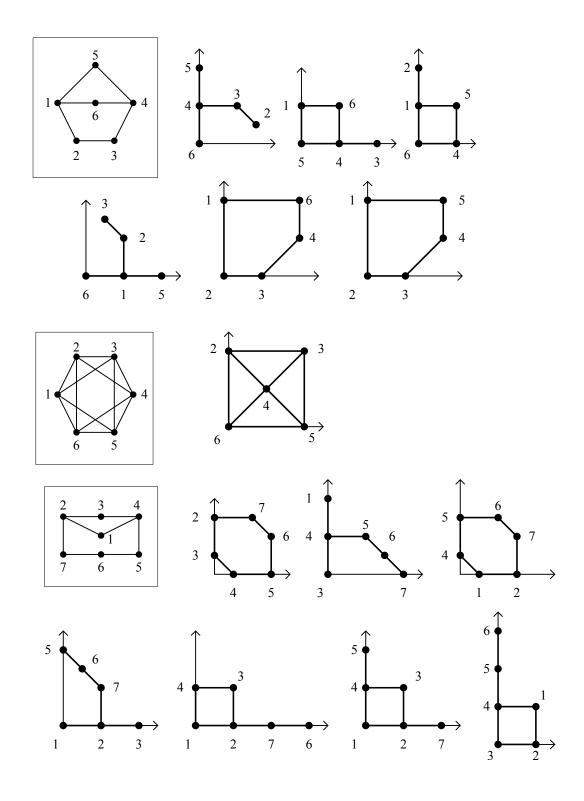
Grafos sin dibujo válido en \mathbb{R}^2 minimales

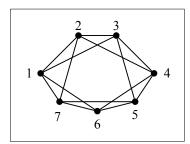
Se considera minimalidad en el sentido de la menor cantidad de vértices necesarios para que el grafo no tenga un dibujo válido. De allí que se use la siguiente definición.

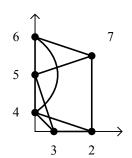
Definición. Sea G un grafo signado sin dibujo válido en \mathbb{R}^2 . Se dirá que G es un grafo sin dibujo válido en \mathbb{R}^2 **minimal** si cada subgrafo inducido propio de G tiene dibujo válido en \mathbb{R}^2 .

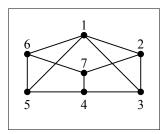
Todos los grafos que se han probado como sin dibujo válido son además minimales en $(\mathbb{R}^2, \|\cdot\|_1)$ y $(\mathbb{R}^2, \|\cdot\|_\infty)$. A continuación se muestran dibujos válidos para los subgrafos inducidos propios (obtenidos al quitar un vértice) de cada uno de ellos en $(\mathbb{R}^2, \|\cdot\|_1)$ obtenidos usando el planteo descripto en este trabajo. Con esto alcanza para ver que todos los subgrafos inducidos propios tienen dibujo válido ya que es una propiedad heredable.

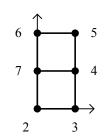


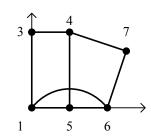


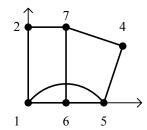


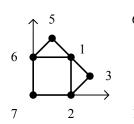


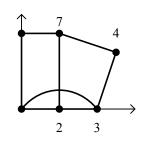


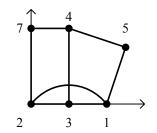


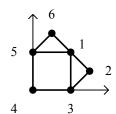


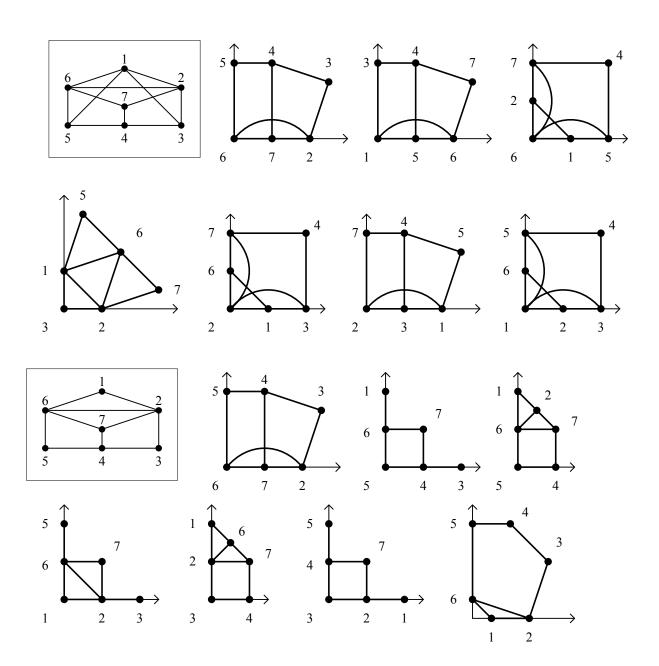


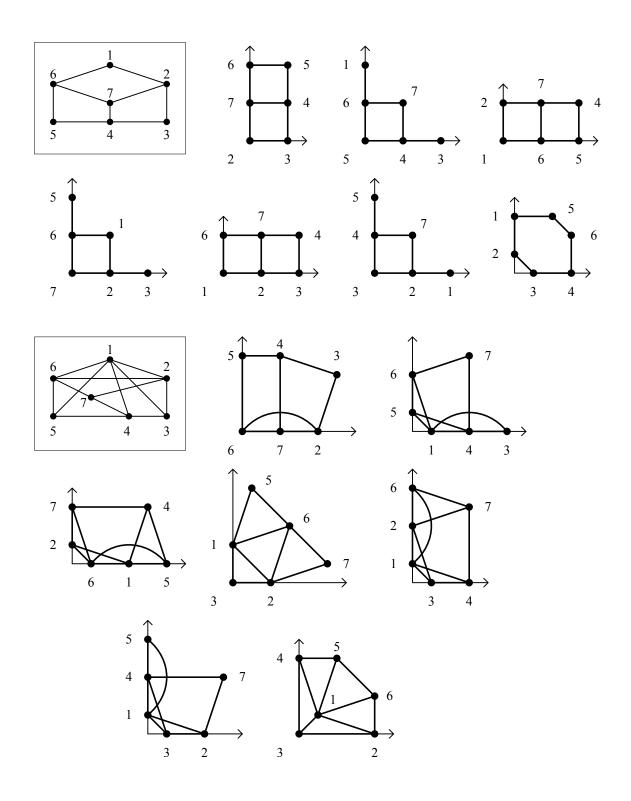


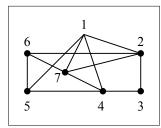


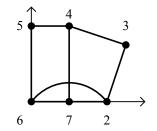


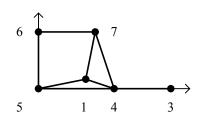


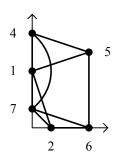


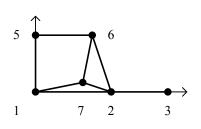


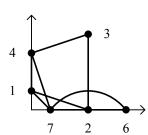


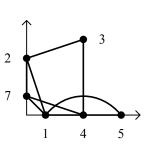


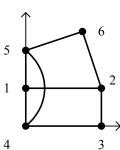


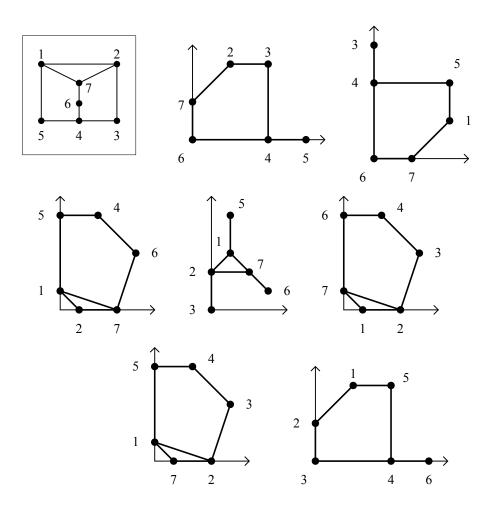


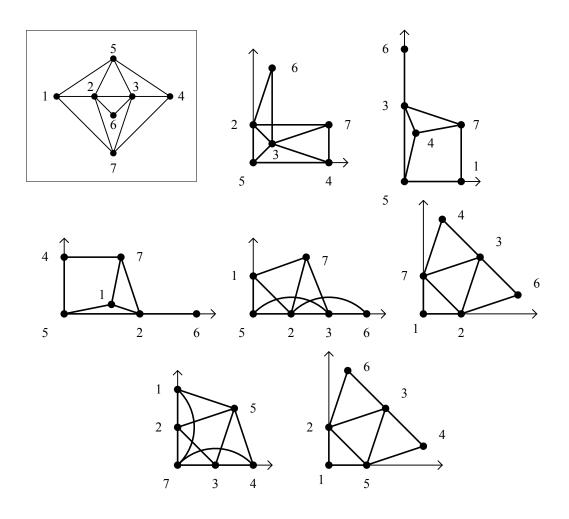








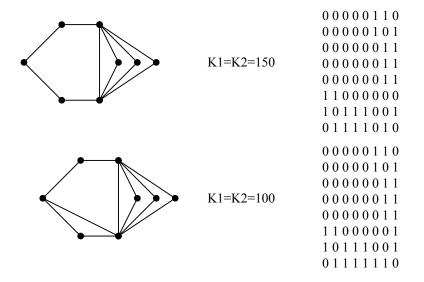


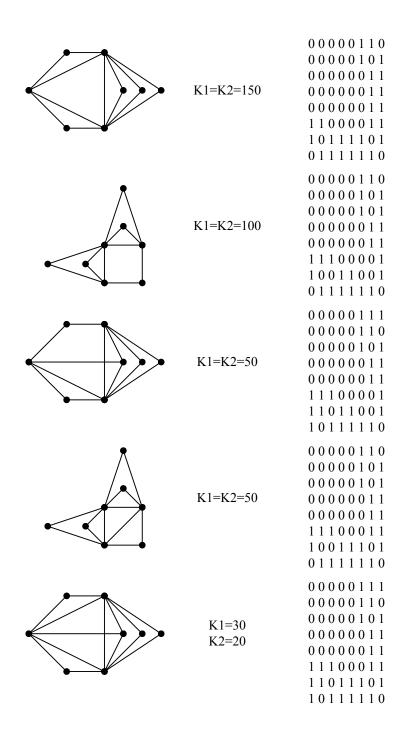


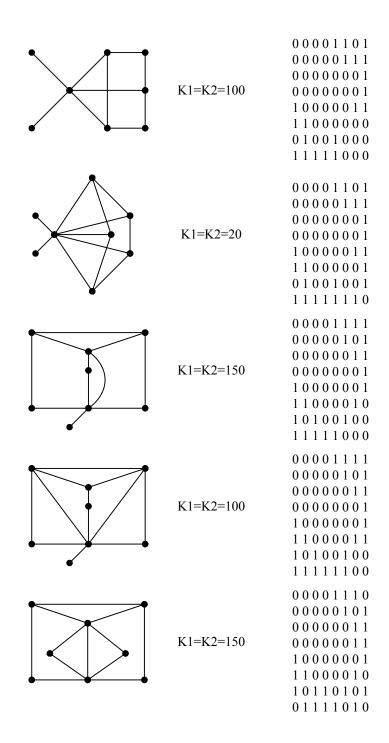


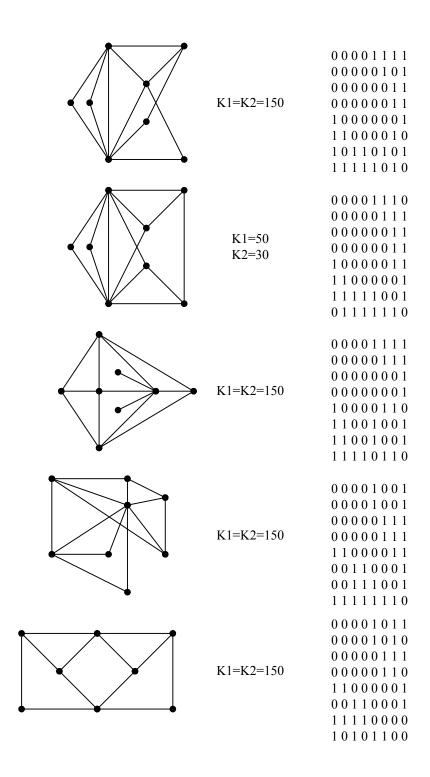
Grafos de 8 nodos

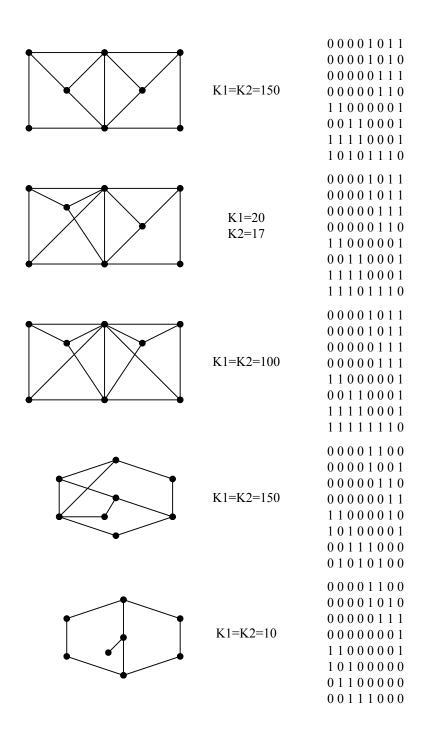
En el capítulo **Los Grafos** se dieron todos los grafos de hasta 7 nodos sin dibujo válido minimales. En esta sección se presentarán los únicos posibles grafos de 8 nodos sin dibujo válido minimales detectados a través del problema de PLE presentado en este trabajo. Junto a cada grafo se hallan el valor de las cotas utilizadas para el tamaño del dibujo y su matriz de adyacencia.



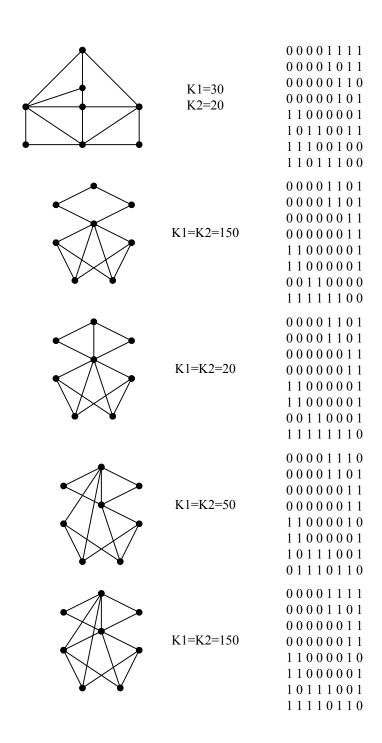


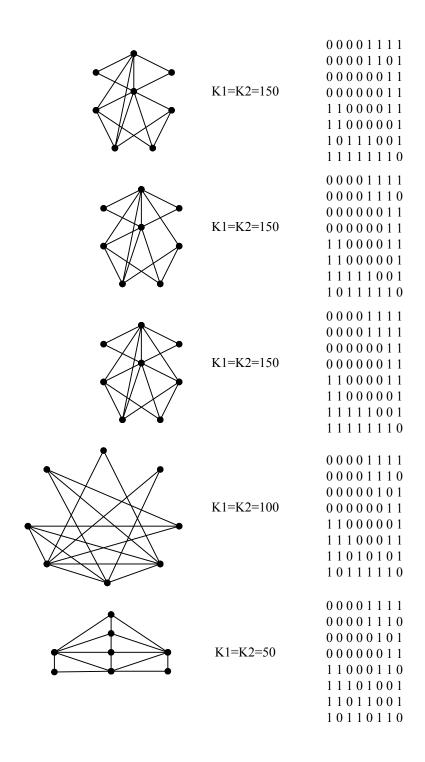


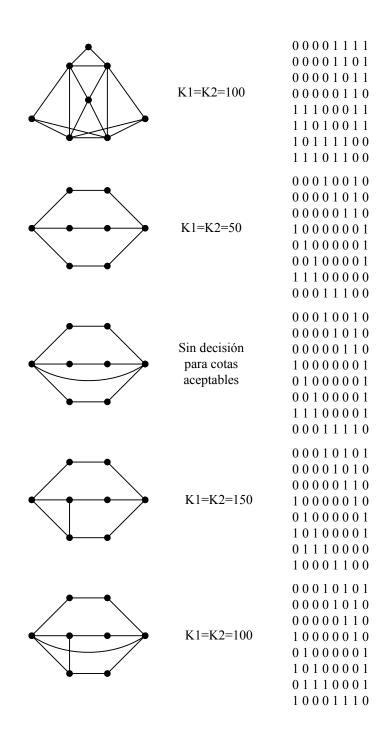


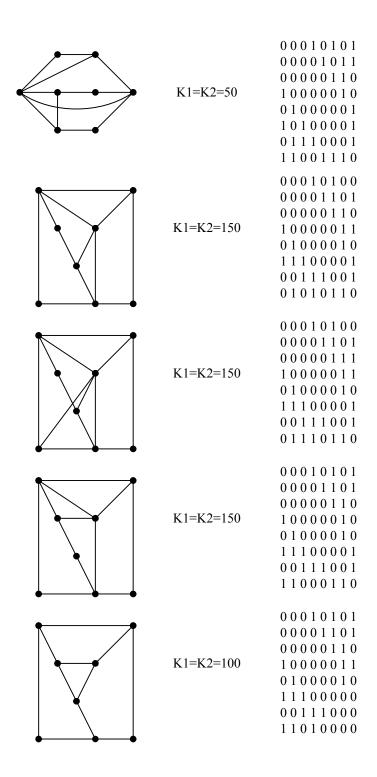


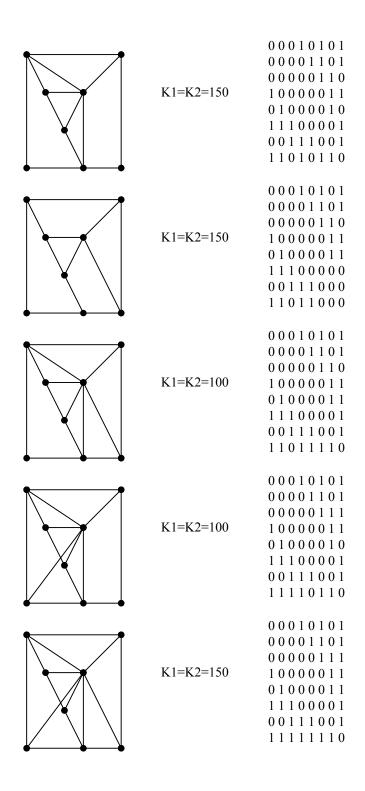


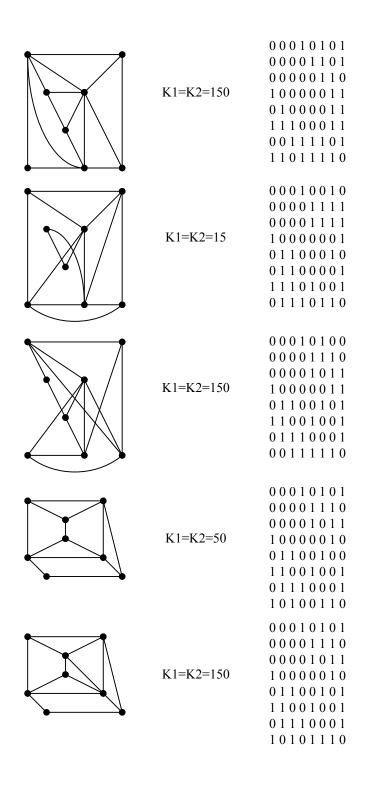


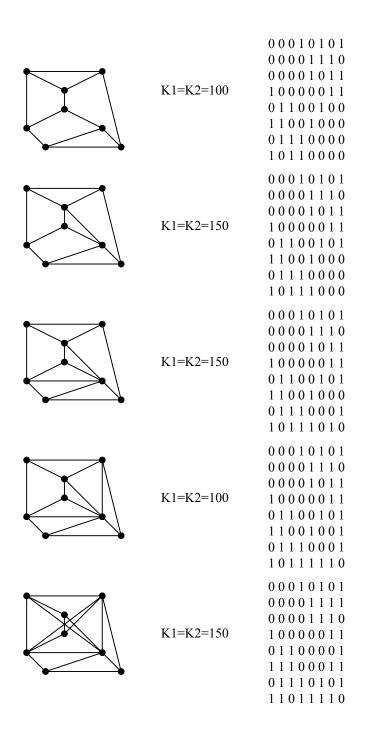


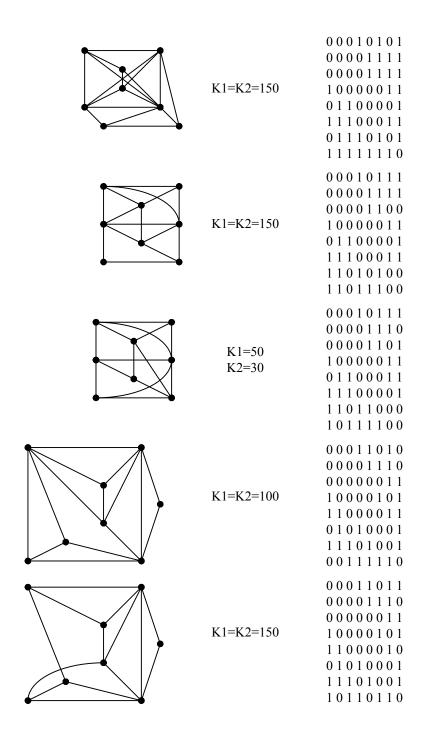


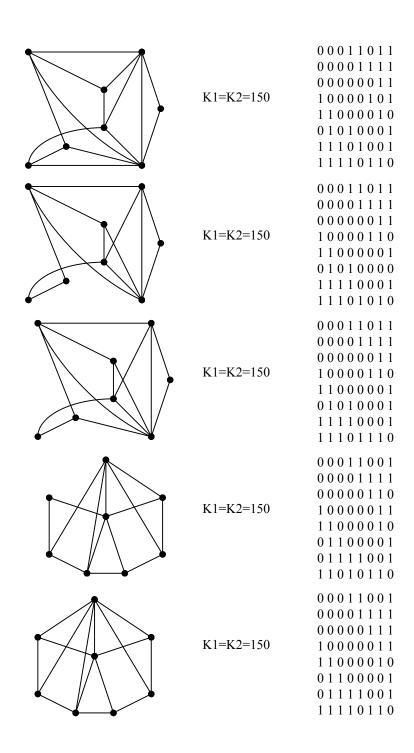


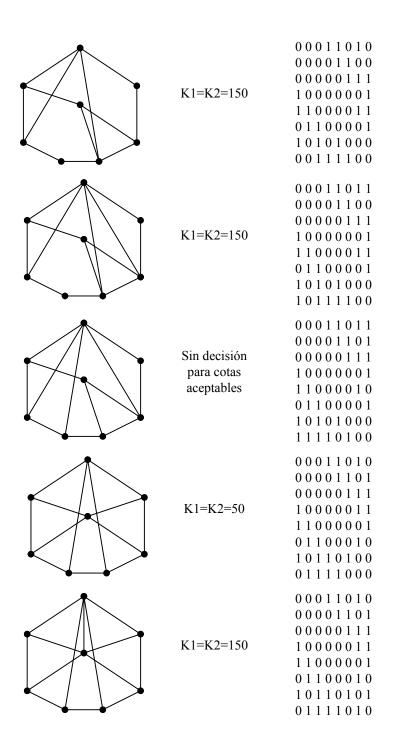


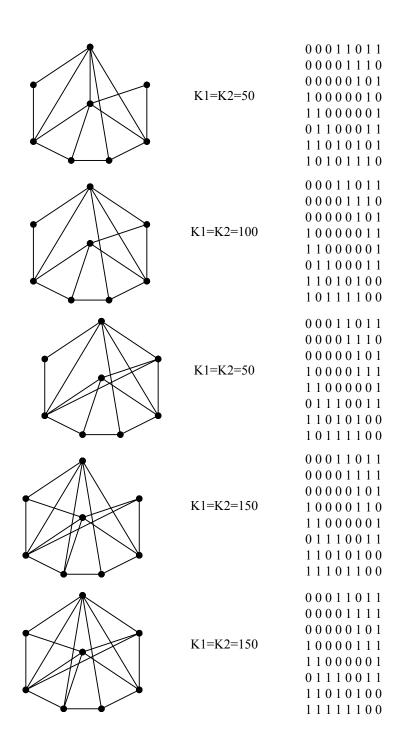


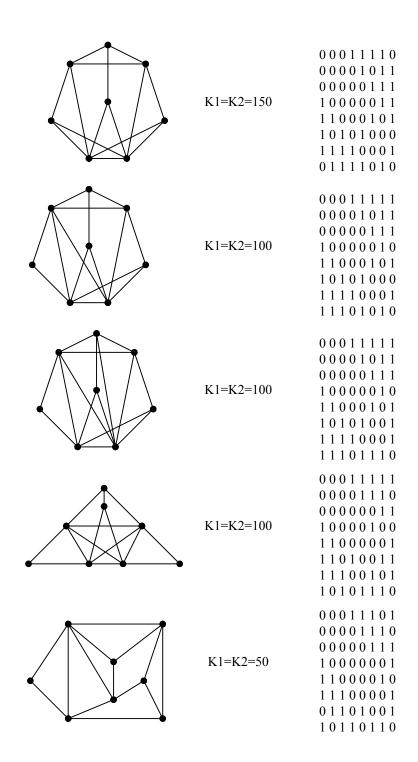


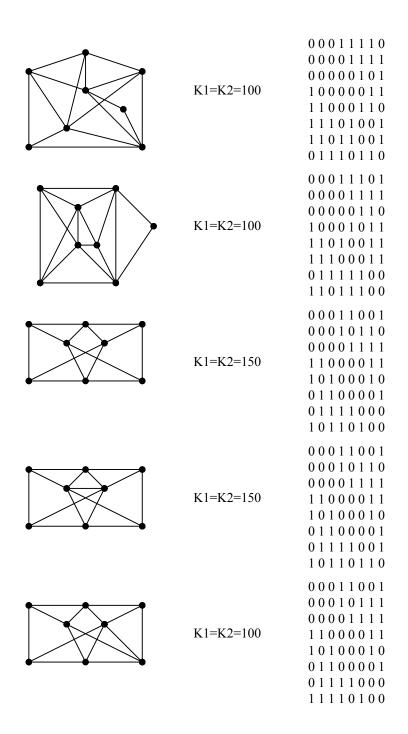


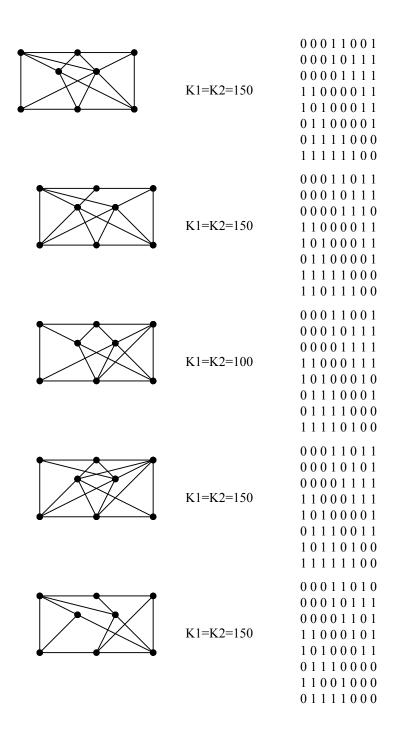


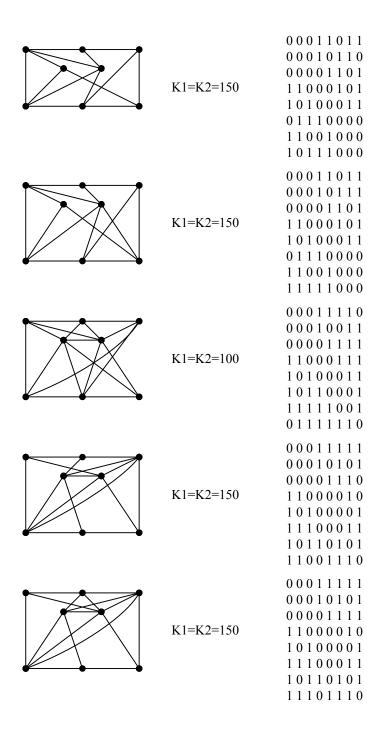


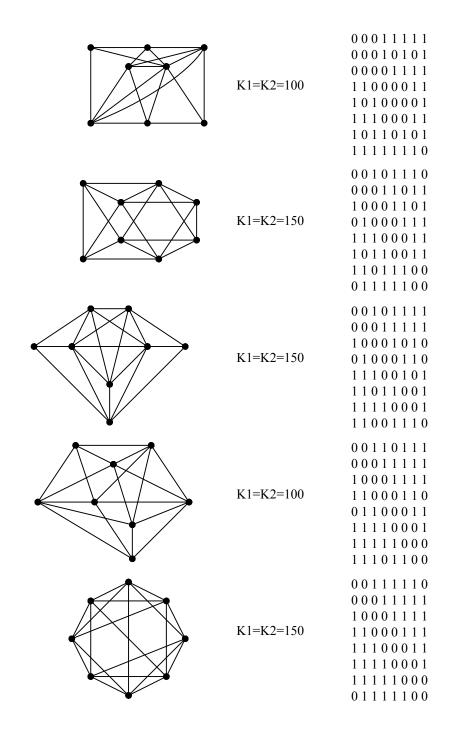






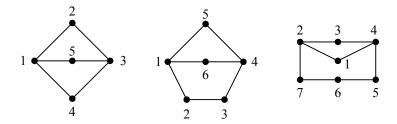




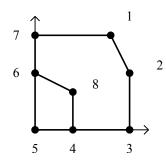


Dos tipos de grafos sin dibujo válido que no se generalizan

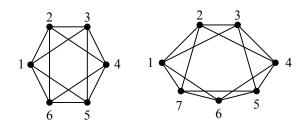
a) Se vio que los grafos de la siguiente figura no tienen dibujo válido.



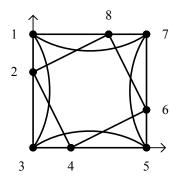
Esto no se generaliza a mayor cantidad de nodos como se ve en el siguiente dibujo.



b) Se vio que los grafos de la siguiente figura no tienen dibujo válido.



Esto no se generaliza a mayor cantidad de nodos como se ve en el siguiente dibujo.



Relación con boxicity

Dada una familia finita de conjuntos no vacíos, el *grafo intersección* de esta familia se obtiene representando cada conjunto por un vértice y conectando dos vértices por un arista si y sólo si los correspondientes conjuntos se intersecan.

Los grafos intersección han recibido mucha atención en el estudio de la teoría algorítmica de grafos y sus aplicaciones ([3], [6]).

Un grafo de intervalos es el grafo intersección de intervalos en una recta. Un grafo de intervalos propios es un grafo que admite un modelo de intervalos en el cual ningún intervalo está contenido en otro. En [5] se demuestra que un grafo completo signado es amigo-enemigo en la recta si y sólo si su parte positiva es un grafo de intervalos propios.

Muchas generalizaciones del concepto de grafo de intervalos fueron definidas en la literatura, entre ellas la definición del parámetro conocido como boxicity [2].

Para un grafo G, la boxicity se define como la mínima dimensión d tal que G es el grafo intersección de cajas con aristas paralelas a los ejes Cartesianos en el espacio d-dimensional. En particular, un grafo tiene boxicity 2 si y sólo si es el grafo intersección de rectángulos con lados paralelos a los ejes Cartesianos. Los grafos con boxicity uno son exactamente los grafos de intervalos.

Mostraremos a continuación que los grafos amigo-enemigo en el plano son una subclase propia de la clase de grafos con boxicity 2.

Proposición. Si un grafo tiene dibujo válido en $(\mathbb{R}^N, \| \cdot \|)$ entonces es un grafo intersección de conjuntos de la forma $\{\vec{x} \in \mathbb{R}^N : \|\vec{x} - \vec{a}\| \leq K\}$ con $\vec{a} \in \mathbb{R}^N$ y $K \in \mathbb{R}$.

Demostración. Sean el grafo G = (V, E) y las posiciones $p_i = (x_i, y_i)$ para i = 1, ..., n de los nodos del grafo G en un dibujo válido. O sea que se cumple para cada i fijo que

 $||p_i - p_j|| < ||p_i - p_k||$ para cada par $(i, j) \in E$ y para cada par $(i, k) \notin E$. Para i = 1, ..., n se definen

$$M_i = \max_{i:(i,j)\in E} \{\|p_i - p_j\|\}$$

У

$$R_i = {\{\vec{x} \in \mathbb{R}^N : ||\vec{x} - p_i|| \le M_i/2}}$$

a) Si $(i, j) \in E$ entonces $\frac{1}{2}(p_i + p_j) \in R_i \cap R_j$, por lo que $R_i \cap R_j \neq \emptyset$:

i)
$$\|\frac{1}{2}(p_i + p_j) - p_i\| = \frac{1}{2}\|p_j - p_i\| \le \frac{1}{2}M_i \Rightarrow \frac{1}{2}(p_i + p_j) \in R_i$$
.

ii)
$$\|\frac{1}{2}(p_i + p_j) - p_j\| = \frac{1}{2}\|p_i - p_j\| \le \frac{1}{2}M_j \Rightarrow \frac{1}{2}(p_i + p_j) \in R_j$$
.

b) Si $R_i \cap R_j \neq \emptyset$ entonces $(i, j) \in E$:

Sea
$$\vec{x} \in R_i \cap R_j$$
, entonces $||\vec{x} - p_i|| \le M_i/2$ y $||\vec{x} - p_j|| \le M_j/2$.

Por lo tanto

$$||p_i - p_j|| \le ||p_i - \vec{x}|| + ||\vec{x} - p_j|| \le \frac{1}{2}M_i + \frac{1}{2}M_j \le \max\{M_i, M_j\}.$$

En el caso que $||p_i - p_j|| \le M_i$ (el otro caso es análogo), por definición se tiene que

$$||p_i - p_j|| \le M_i = \max_{k:(i,k) \in E} \{||p_i - p_k||\} = ||p_i - p_{k_0}||$$

 $con (i, k_0) \in E.$

Como se tiene un dibujo válido, si $||p_i - p_j|| \le ||p_i - p_{k_0}|| \cos(i, k_0) \in E$, también debe ser $(i, j) \in E$.

П

De a) y b) se tiene que

$$(i,j) \in E \Leftrightarrow R_i \cap R_j \neq \emptyset$$

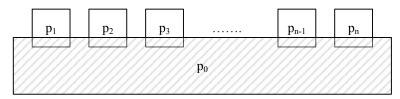
que es lo que se quería demostrar.

Corolario. Si un grafo tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$ entonces es un grafo de intersección de cuadrados.

Demostración. Es directa de la proposición anterior ya que los conjuntos $\{\vec{x} \in \mathbb{R}^N : \|\vec{x} - \vec{a}\|_{\infty} \leq K\}$ son cuadrados en \mathbb{R}^2 .

Observación. Todos los grafos estrella se pueden representar a través de intersección de rectángulos y más específicamente se pueden representar como un grafo intersección de rectángulos donde ningún rectángulo está contenido en otro.

En efecto, si se considera el grafo S_n de n+1 nodos con el nodo central p_0 y el resto de los nodos que son sólo adyacentes a p_0 , se puede considerar la siguiente representación.



Sin embargo, para cada N existe un grafo estrella que no tiene dibujo válido en $(\mathbb{R}^N, \|\cdot\|_{\infty})$, esto diría que la equivalencia en la recta con la clase de los intervalos propios no se generaliza a más dimensión.

Proposición.

- 1. La clase formada por los grafos con dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$ está propiamente incluida en la clase de los grafos de grafos intersección de cuadrados.
- 2. La clase formada por los grafos con dibujo válido en $(\mathbb{R}^2, \|\cdot\|_1)$ está propiamente incluida en la clase de los grafos de grafos intersección de cuadrados.
- 3. Las clases formadas por los grafos con dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$ y en $(\mathbb{R}^2, \|\cdot\|_1)$ están propiamente incluidas en la clase de los grafos con boxicity a lo sumo 2.

Demostración. 1. Es inmediato del corolario y observación anteriores.

- 2. Es inmediato de 1., ya que un grafo tiene dibujo válido en $(\mathbb{R}^2, \|\cdot\|_{\infty})$ si y sólo si lo tiene en $(\mathbb{R}^2, \|\cdot\|_1)$.
- 3. Vale por la inclusión de la clase de los grafos intersección de cuadrados con la clase de los grafos con boxicity a lo sumo 2.

Conclusiones y trabajo futuro

Dentro de este trabajo se ha analizado el tema de los grafos amigo-enemigo en el plano desde distintos puntos de vista. Los resultados a remarcar son que:

- 1. Se pudo reducir el problema de decisión de existencia de dibujo válido en el plano a un problema de programación lineal entera.
- 2. Se obtuvo una lista concreta de los únicos grafos de a lo sumo 7 nodos sin dibujo válido en el plano y minimales.
- 3. Se mostró que existen grafos sin dibujo válido (para norma infinito) para todo \mathbb{R}^N .
- 4. Se mostró la inclusión de la clase de los grafos con dibujo válido en el plano dentro de la clase de los grafos con boxicity a lo sumo 2.

Pero esto no es todo, amigos...

El tiempo de resolución para un mismo grafo con distinta numeración de nodos fue variable aún para grafos pequeños por lo que se puede plantear cuánto más se puede mejorar, no sólo el algoritmo en sí, sino el sistema a resolver dependiendo de la estructura de la matriz elegida para representar al grafo.

Observando los grafos de 8 nodos que acorde al programa no tienen dibujo válido en el plano, se puede observar que hay grafos que sólo difieren en una arista. Esto dice que la relación entre esos nodos no influye en la existencia de un dibujo válido, entonces, ¿habrá un concepto de minimalidad que tenga esto en cuenta?.

Por último, muchos problemas siguen siendo NP-completos en grafos de boxicty 2, por ejemplo coloreo, conjunto independiente, recubrimiento por cliques, pero son lineales en grafos de intervalos, con lo cual vale la pena estudiar su complejidad en grafos amigo-enemigo en el plano siendo una clase "intermedia".

Bibliography

- [1] F.S. Roberts. Indifference graphs. In F. Harary, editor, *Proof Techniques in Graph Theory*, pages 139–146. Academic Press, 1969.
- [2] F.S. Roberts. On the boxicity and cubicity of a graph. In W.T. Tutte, editor, *Recent Progress in Combinatorics*, pages 301–310. Academic Press, 1969.
- [3] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
- [4] A. M. Kermarrec, C. Thraves, Signed graph embedding: when everybody can sit closer to friends than enemies, arXiv:1405.5023v1 (2014).
- [5] M. Cygan, M. Pilipczuk, M. Pilipczuk, J. O. Wojtaszczyk, Sitting closer to friends than enemies, Revisited, Theory of Computing Systems 56 (2015) 394–405.
- [6] T. McKee and F. McMorris, Topics in Intersection Graph Theory (SIAM Monographs on Discrete Mathematics and Applications, 1999).
- [7] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (John Wiley & Sons, 1988).
- [8] H.N. de Ridder et al., Information System on Graph Classes and their Inclusions (ISGCI), http://www.graphclasses.org