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Resumen

El objetivo de este trabajo es aplicar el método de Sparse Identification of Non-

Linear Dynamics (SINDy) a la ecuación del replicador para identificar equilibrios

de Nash a partir de las trayectorias. En el capítulo 1 hacemos una introducción a

los juegos en forma estratégica, presentando la noción de Equilibrio de Nash y re-

cordando la demostración de su existencia.

En el capítulo 3 definimos la ecuación del replicador y mostramos demostraciones

detalladas de algunos resultados clásicos de la Teoría de Juegos Evolutiva; luego, en

el cuarto capítulo caracterizamos algunos juegos en dos dimensiones y vemos algunos

ejemplos. En el quinto capítulo introducimos el método SINDy y, finalmente, en el

sexto capítulo detallamos su aplicación en el contexto de Teoría de Juegos Evolutiva.

Todos los ejemplos, modelos y gráficos presentes en el trabajo pueden encontrarse

en el repositorio GitHub. Los algoritmos y métodos están descritos de forma tal que

el trabajo se pueda entender sin tener que acudir al repositorio a lo largo de la

lectura, de todas formas está disponible para la recreación de los experimentos.
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Capítulo 1

Introducción

El método Sparse Identification of Non-linear Dynamics (SINDy) es una técnica

de machine learning utilizada para reconstruir ecuaciones diferenciales ordinarias

(E.D.O.) a partir de datos temporales discretos provenientes de un número finito

de trayectorias del sistema. La primera aparición de SINDy es en el año 2015 en

un paper de PNAS ([6]), donde, además de introducir el método, se aplica a varios

ejemplos, entre ellos el sistema de Lorentz.

Posteriormente, en 2019 se publica el trabajo “On the Convergence of the SINDy

Algorithm” ([8]), que presenta un análisis teórico más profundo tanto del método

como del algoritmo utilizado para implementarlo. En particular, el trabajo esta-

blece condiciones suficientes y equivalentes bajo las cuales el algoritmo recupera la

dinámica original en un único paso.

Tras estos dos papers, en 2020 llegaría un librería de python diseñada específi-

camente para la implementación de SINDy, PySINDy (ver [7]). Esta misma es la

pieza final del marco teórico y práctico en el cual aplicaremos SINDy, ya que será

la herramienta que utilizaremos para su implementación a lo largo del trabajo.

Lo que buscamos analizar en este trabajo es la habilidad de SINDy para obtener

dinámicas asociadas a ecuaciones del replicador, un tipo de dinámica que surge de

estudiar juegos de forma normal bimatriciales, en particular, juegos simétricos, en

un contexto poblacional. Este estilo de problema pertenece a la “Teoría de Juegos
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Capítulo 1. Introducción 6

Evolutiva”, donde el problema que se busca resolver es el de modelar la evolución

de frecuencias de finitas estrategias en una población, y de ser posible encontrar un

punto de equilibrio para estas mismas.

La formulación moderna de los juegos normales fue introducida por von Neumann

y Morgenstern en “Theory of Games and Economic Behavior”, en donde se amplia

y se generaliza el trabajo de von Neumann sobre juegos de suma cero entre dos

personas. El comienzo de Teoría de Juegos Evolutiva surge en el año 1973 en el

paper de John Maynard Smith, “The Logic of Animal Conflict”, en donde se busca

modelar la evolución de la frecuencias de estrategias en una población de animales

de la especie (luego llamado “Juego de Halcones y Palomas”). Con el paso de los

años el campo fue formalizándose partir de lo cual comenzaron a surgir varios libros

consolidando los hallazgos del mismo, el que utilizaremos a lo largo este trabajo es

de Hofbauer y Sigmund (ver [3]), del año 1998.

En este trabajo nos proponemos, principalmente, estudiar cómo evoluciona en el

tiempo la diferencia entre la dinámica original y la aproximada mediante el método

SINDy. Además, en el caso particular del replicador clásico, realizaremos un análisis

teórico más profundo empleando herramientas que serán desarrolladas a lo largo del

texto.



Capítulo 2

Introducción a los juegos en forma

Normal

En este primer capítulo daremos una breve introducción a la teoría de juegos, en

particular a juegos de forma estratégica (también llamados juegos en forma normal).

En su expresión más simple, un juego de forma normal es una competencia entre

dos agentes, Jugador I y Jugador II; consiste en un enfrentamiento entre ambos

competidores en el cual ninguno conocerá de antemano la estrategia de su oponente.

El Jugador I tiene n ∈ N estrategias para elegir, mientras que el Jugador II tiene

m ∈ N estrategias posibles. Cuando un jugador selecciona una de estas estrategias,

diremos que utiliza una estrategia pura.

La forma estratégica o forma normal de un juego entre dos personas esta dada por

una tripla (X ,Y , (u1, u2)), donde el conjunto no vacío X contiene a las estrategias

puras que puede elegir el Jugador I y el conjunto no vacío Y contiene a las estrategias

puras que puede elegir el Jugador II. Tenemos también las funciónes u1, u2 : X×Y →

R que nos dirán el payoff o pago de cada jugador para cualquier par de estrategias

puras. Llamamos |X | = n y |Y| = m, a su vez identificamos las estrategias con los

vectores canónicos de Rn y Rm, X = {e1, .., en} y Y = {f1, .., fm}.

Una ronda de un juego entre ambos jugadores transcurre de la siguiente forma;

el Jugador I elige ei ∈ X mientras que el Jugador II elige fj ∈ Y , ninguno está al
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Capítulo 2. Introducción a los juegos en forma Normal 8

tanto de la elección del otro. Luego, se hacen conocer sus estrategias, el Jugador I

recibe el monto u1(ei, fj) y el Jugador II recibe el monto u2(ei, fj) (o lo paga en caso

de que sea negativo). Un juego normal entre dos jugadores se dice de suma cero si

la ganancia del Jugador I es la pérdida del Jugador II y viceversa, más formalmente,

u1(ei, fj) = −u2(ei, fj) ∀ei ∈ X , fj ∈ Y .

Una forma natural de condensar esta información es en dos matrices A,BT ∈

Rn×m. Las llamaremos matrices de pagos y definimos sus entradas de la siguiente

forma:

(A)ij = u1(ei, fj) y (B)ji = u2(ei, fj) , ∀(i, j) ∈ [n]× [m].

En el caso en el que X = Y y A = BT , diremos que el juego es simétrico.

Un ejemplo clásico de la teoría de juegos es el dilema del prisionero; en este

juego los jugadores han cometido juntos un delito, supongamos que se han vestido

de payasos para realizar un acto de fuego en la calle (actividad ilícita en la Ciudad

Autónoma de Buenos Aires). Cada jugador se encuentra en una celda y al ser interro-

gado debe decidir si traicionará a o no a su cómplice. En este caso, X = Y = {e1, e2}

donde e1 representa cooperar y e2 representa traicionar. Los payoffs son los siguien-

tes: si ninguno de los dos traiciona al otro, cada uno pasará 1 mes en la cárcel, si uno

traiciona y el otro no, el traidor saldrá libre, mientras que el traicionado pasará 10

meses en la cárcel. Si ambos traicionan al otro, ambos pasarán 6 meses en la cárcel.

La matriz del Jugador I es la siguiente:−1 −10

0 −6

.

Como podemos observar, este juego es simétrico, pero no es de suma cero. Un

juego que sí nos proporciona un ejemplo de suma cero es el juego clásico de Piedra,

papel, o tijera; tenemos tres estrategias y asumimos que cada ronda le otorga o le

quita un punto al jugador según gane o pierda. En este caso, X = Y = {e1, e2, e3}

donde diremos que e1 es piedra, e2 es tijera y e3 es papel. La matrices de payoff de

los Jugadores I y II nos quedan
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A =


0 1 −1

−1 0 1

1 −1 0

 B =


0 −1 1

1 0 −1

−1 1 0

 . (2.0.1)

2.1. Estrategias mixtas

En el comienzo del capítulo aclaramos que cuando un jugador elige una única

estrategia, se dice que utiliza una estrategia pura, naturalmente, la aclaración nos

incita a pensar que pueden utilizarse estrategias “impuras” , las cuales deben involu-

crar más de una estrategia pura. Involucramos múltiples estrategias puras definiendo

una distribución de probabilidades sobre el conjunto de las mismas, donde el valor

que le asignamos a cada estrategia pura será la probabilidad de utilizarla al jugar

una ronda.

De esta forma, un juego de estrategia mixta entre dos personas se caracteriza

con la tripla (X ,Y , (u1, u2)) al igual que antes, sin embargo los jugadores no nece-

sariamente elegirán estrategias puras, sino que el Jugador I (resp. II) elegirá una

distribución de probabilidad sobre X (resp. Y).

Nuevamente llamamos |X | = n y |Y| = m. En este caso el Jugador I, en lugar

de elegir una estrategia ei ∈ X , elegirá una distribución

x ∈ Sn = {x ∈ Rn :
n∑

i=1
xi = 1},

donde (x)i = xi representa la probabilidad de elegir la i-ésima estrategia del conjunto

X . De forma análoga, el Jugador II elegirá una distribución y ∈ Sm.

Si el Jugador I (resp. Jugador II) utiliza con probabilidad 1 una estrategia ei ∈ X

(resp. fj ∈ Y) diremos que utiliza una estrategia pura, en este contexto usaremos ei

como el vector canónico de Rn, el cual representa la distribución donde se elige la

i-ésima estrategia de X con probabilidad 1.

Bajo estas convenciones, si el primer jugador utiliza la estrategia x ∈ Sn y el

segundo la estrategia y ∈ Sm, definimos el payoff esperado del Jugador i como

xAy =
∑
i,j

aijxiyj,
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y el payoff esperado para el Jugador II como

xBT y =
∑
i,j

bijxiyj.

Para un y ∈ Sm fijo nos interesa saber cuáles son las mejores estrategias que

puede usar el Jugador I al enfrentarse a un oponente que juega con esta estrategia,

para ello definimos el conjunto de las mejores respuestas (best replies) como

BR(y) = {x ∈ Sn : zTAy ≤ xTAy, ∀z ∈ Sn}.

Definimos BR(x) de forma análoga. Dado que la función z → zTAy es continua

y Sn es compacto, sabemos que el conjunto BR(y) nunca será vacío. Definimos el

soporte de x como las coordenadas no nulas del mismo, es decir

sop(x) = {1 ≤ i ≤ n : xi ̸= 0}.

Proposición 2.1.1. El conjunto BR(y) es convexo y si x ∈ BR(y), entonces i ∈

sop(x) implica que ei ∈ BR(y).

Demostración. Es claro que si x1,x2 ∈ BR(y), entonces

xT
1 Ay = xT

2 Ay.

Luego, α.xT
1 Ay+(1−α).xT

2 Ay = xT
1 Ay ∈ BR(y), por lo que el conjunto resulta

convexo. Para lo segundo, tomamos x ∈ BR(y) y lo expresamos como

x =
n∑

i=1
xiei.

Sea 1 ≤ k ≤ n tal que xk > 0. Supongamos que

eT
kAy < xTAy.

Entonces

xTAy =
n∑

i=1
xi(Ay)i <

n∑
i=1

xi(xTAy) = xTAy,

lo cual es absurdo. Luego,

eT
kAy = xTAy.
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Diremos que dos estrategias x y y forman un Equilibrio de Nash (N.E.) si

cada una es mejor respuesta de la otra, es decir, si x ∈ BR(y) y y ∈ BR(x). Un

par de estrategias N.E. es un escenario en donde ningún jugador está incentivado a

desviarse de su estrategia actual, es equivalente a cumplir

xTBỹ ≤ xBy ,∀ỹ ∈ Sm

x̃TAy ≤ xTAy , ∀x̃ ∈ Sn.

En un juego simétrico existen siempre equilibrios de Nash simétricos, que son

pares de estrategias NE de la forma (x,x) (hay al lo menos uno, esto lo veremos en

breve) los cuales serán de nuestro interés cuando pasemos al contexto de la Teoría

de Juegos Evolutiva. Ser NE simétrico es equivalente a cumplir

zTAx ≤ xTAx ∀z ∈ Sn.

2.2. Juegos con más de dos jugadores

Hasta ahora nos hemos restringido al caso de juegos entre dos jugadores, princi-

palmente porque es el contexto y la notación que mantendremos lo largo del trabajo,

sin embargo, estas definiciones pueden extenderse a juegos de k ∈ N jugadores. Cada

jugador 1 ≤ j ≤ k tendrá un conjunto de nj > 0 estrategias puras, por lo que el

simplex Snj
será su conjunto de distribuciones sobre las estrategias puras.

Un elemento x ∈ Snj
representa una estrategia mixta del j−ésimo jugadores

y podemos escribirlo como x = ∑nj

α=1 xαe
j
α donde ej

α ∈ Snj
es el α-ésimo vector

canónico del simplex Snj
y representa la estrategia en la que el jugador j utiliza la

α-ésima estrategia con probabilidad uno. Definimos Σ = Sn1 × · · · × Snk
como el

espacio de estados de estrategias mixtas, y notamos a un elemento del espacio de

estado como la tira de vectores x = (x1, ...xk) ∈ Σ (en el contexto general x será una

tira de vectores, mientras que en el caso de dos jugadores será un vector escalar).

Cada jugador tiene una función de pago uj : Σ → R de forma tal que si las

estrategias utilizadas son x = (x1, ...xk) ∈ Σ, entonces el pago recibido (o pagado,
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en caso de ser negativo) por el j−ésimo jugador es uj(x). Escribimos la estrategia

mixta del i-esimo jugador, xi ∈ Sni
, como

xi =
ni∑

αi=1
(xi)αi

.ei
αi
, ∀1 ≤ i ≤ k,

donde ei
1, . . . , e

i
ni
∈ Sni

representan los vectores canónicos del i-ésimo simplex. Luego,

dado una tira de vectores (x1, ...xk) ∈ Σ, las funciones de pago de todo jugador

1 ≤ j ≤ k deben cumplir

uj(x1, .., xk) =
n1∑

α1=1

n2∑
α2=1
· · ·

nk∑
αk=1

(
k∏

i=1
(xi)αi

)
uj(e1

α1 , e
2
α2 , . . . , e

k
αk

). (2.2.1)

Dado un vector (x1, . . . , xk) ∈ Σ introducimos la notación

(x, x−j) = (x1, . . . , xj−1, x, xj+1, . . . , xnk
) ∈ Σ,

así, (xj, x−j) = (x1, . . . , xk) para todo 1 ≤ j ≤ k. Usando esta notación, podemos

generalizar el equilibrio de Nash como un punto (x1, ...xk) ∈ Sn1 × . . .×Snk
tal que:

uj(xj, x−j) ≥ uj(x′
j, x−j) ∀x′

j ∈ Snj
, ∀1 ≤ j ≤ k. (2.2.2)

Además, generalizamos la noción de juego simétrico (y NE simétrico) en el con-

texto de juego de k ∈ N jugadores. Un juego simétrico de k jugadores es un juego en

el que debe valer que S = S1 = ... = Sk y además para cualquier jugador 1 ≤ j ≤ k

y cualquier permutación π : {1, ..., k} → {1, ..., k} necesariamente vale que

uj(x1, ..., xk) = uπ(j)(xπ(1), ..., xπ(k)) (2.2.3)

En el caso inicial de dos jugadores, aplicando σ(1) = 2 nos quedaAij = u1(ei, ej) =

u2(ej, ei) = Bji = (B)T
ij. Decimos que una estrategia x ∈ Σ es un equilibrio de Nash

simétrico si x cumple las condiciones de 2.2.2 y además x ∈ {x ∈ Sn : xi = xj ∀1 ≤

i, j ≤ n}.

2.3. Estabilidad evolutiva

En lo que resta del capítulo, en las definiciones que daremos y los teoremas que

veamos, trabajaremos en el caso de un juego simétrico entre dos jugado-

res sin hacer uso de la definición general del juego de forma normal. Mencionamos la
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generalización con el fin de dar una introducción mas completa, y para que cuando

enunciemos el teorema de existencia de un equilibrio de Nash mas adelante, poda-

mos dar un enunciado y una demostración mas fiel al trabajo original de Nash. Salvo

que se aclare explícitamente, no estaremos trabajando en el contexto de un juego de

forma normal general de k jugadores.

Como podemos ver a partir de las definiciones anteriores, un equilibrio de Nash

representa una situación donde ningún jugador tiene un incentivo para variar su es-

trategia; sin embargo, en un mismo juego puede haber múltiples equilibrios de Nash.

Naturalmente, esto nos lleva a preguntarnos qué condiciones nos podrán garantizar

la existencia de un solo equilibrio de Nash, o bien, en caso de que haya varios, qué

criterio puede usarse para introducir una jerarquía entre ellos. Para responder estas

preguntas, en el caso del juego simétrico, podemos introducir el concepto de Es-

tabilidad Evolutiva. Una estrategia x̂ ∈ Sn se dice estrategia evolutivamente

estable (ESS) si para todo x ∈ Sn con x ̸= x̂ existe un ϵ(x) > 0 tal que:

xTA[ϵ.x + (1− ϵ).x̂] < x̂TA[ϵ.x + (1− ϵ).x̂] , ∀ 0 < ϵ ≤ ϵ(x). (2.3.1)

La condición puede re-escribirse de la forma:

(1− ϵ)(x̂TAx̂− xTAx̂) + ϵ(x̂TAx− xTAx) > 0 , ∀ 0 < ϵ ≤ ϵ(x), (2.3.2)

y usando 2.3.2 podemos ver que x sea un estrategia evolutivamente estable (ESS)

es equivalente a que cumpla las condiciones:

i.) Condición de equilibrio:

xTAx̂ ≤ x̂TAx̂ para todo x ∈ Sn.

ii.) Condición de estabilidad:

Si x ̸= x̂ y xTAx̂ = x̂TAx̂, entonces xTAx < x̂TAx.

La primera condición es simplemente ser N.E., la segunda condición nos asegura

que si existiese una alternativa x a x̂ con igualdad de pagos, entonces x̂ sería mejor
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respuesta contra ella x que sí misma. Estas condiciones, considerablemente más

fuertes que solo N.E., sugieren una unicidad que el equilibrio de Nash por sí solo no

nos puede garantizar. Efectivamente, este será el caso siempre que la estrategia ESS

se encuentre en el interior del simplex.

Ahora veremos algunos resultados que nos permiten enunciar una definición equi-

valente para una estrategia ESS que usaremos más adelante en el capítulo 3 cuando

introduzcamos juegos en un contexto poblacional. La siguiente propiedad es un re-

sultado necesario solamente para la demostración de la caracterización de ESS que

presentaremos en el 2.3.2.

Proposición 2.3.1. [4] Sea x̂ ∈ Sn un punto ESS. Dado x ∈ Sn\{x̂} definimos

ϵ(x) como el mínimo entre 1 y menor real positivo para el cual vale 2.3.1. Entonces

se puede elegir ϵ(x) de forma tal que sea continua en Sn − {x̂}, en particular:

ϵ(x) =


(x̂− x)Ax̂

(x̂− x)A(x̂− x) , si xTAx ≥ x̂TAx

1 , si xTAx < x̂TAx.
(2.3.3)

Demostración. Por 2.3.1 podemos ver que para cualquier 0 < ϵ < ϵ(x) debe valer

xTA[ϵ.x + (1− ϵ).x̂] < x̂TA[ϵ.x + (1− ϵ).x̂].

Reorganizando podemos ver que

[xTAx− xTAx̂− x̂TAx + x̂TAx̂]ϵ < x̂TAx̂− xTAx̂,

[(x− x̂)A(x− x̂)]ϵ < (x̂− x)Ax̂.

Si suponemos que xTAx − x̂TAx > 0, usando que x̂TAx̂ − xTAx̂ ≥ 0 por la

condición de equilibrio, podemos ver que en el coeficiente de ϵ es positivo, por lo

que en este caso nos queda que

ϵ < (x̂−x)Ax̂
(x−x̂)A(x−x̂) = (x̂−x)Ax̂

(x̂−x)Ax̂−(x̂−x)Ax < 1.

Si miramos el caso xTAx = x̂TAx, la condición de estabilidad evolutiva nos queda

(x̂TAx̂− xTAx̂)ϵ < (x̂TAx̂− xTAx̂),
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por lo que es inmediato que ϵ < 1.

Analizamos el último caso, xTAx < x̂TAx, vemos que en este caso 2.3.1 se

cumple para ϵ = 1, además, si 0 < ϵ < 1 vemos que

xTA[ϵ.x + (1− ϵ).x̂] = ϵ.xTAx + (1− ϵ).xTAx̂ ≤

ϵ.x̂TAx + (1− ϵ).x̂TAx̂ = ϵ.x̂TA[x + (1− ϵ).x̂],

por lo que la condición ESS vale para cualquier 0 < ϵ ≤ 1, ergo en este caso ϵ(x) = 1

nos proporciona una barrera apropiada para 2.3.1.

Con esto, hemos demostrado que para cualquier x̂ que sea ESS y para cualquier

x ∈ Sn\{x̂}, tomando ϵ(x) = min{1, (x̂−x)Ax̂
(x̂−x)A(x̂−x)} tenemos que

xTA[ϵ.x + (1− ϵ).x̂] < x̂TA[ϵ.x + (1− ϵ).x̂], ∀0 < ϵ ≤ ϵ(x̂).

La continuidad sobre Sn\{x̂} es inmediata.

Teorema 2.3.2. [4] Una estrategia x̂ ∈ Sn es ESS si y solo si

x̂TAx > xTAx

para cualquier x̂ ̸= x en un entorno de x̂ en Sn.

Demostración. Supongamos que x̂ ∈ Sn es ESS. Veamos que cualquier x ∈ Sn

cercana a x̂ puede expresarse de la forma

ϵ.x + (1− ϵ)x̂.

Definimos

Ci = {x ∈ Sn : xi = 0},

C =
⋃

i∈sop(x̂)
Ci,

donde

sop(x̂) = {1 ≤ i ≤ n : xi > 0}.
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Coloquialmente, C es el conjunto de todos las caras del simplex que no contienen

a x̂. Cada uno de los conjuntos Ci es un compacto y cerrado, pues son caras de un

poliedro acotado (el simplex). Luego, usando la continuidad de ϵ(x) que probamos

en 2.3.1 podemos definir

ϵ̃ = mı́n
x∈C

ϵ(x) > 0.

En particular, nos interesa ver que

Sn = {(1− ϵ).x̂ + ϵ.x : 0 ≤ ϵ < 1,x ∈ C}. (2.3.4)

Si logramos demostrar esto, la condición que buscamos demostrar se cumplirá

para cualquier y ∈ B(x̂, ϵ) ∩ Sn, pues (suponiendo que vale 2.3.4) existe x ∈ C tal

que

y = (1− ϵ)x̂ + ϵx con ϵ < ϵ̃.

Luego, por como hemos definido ϵ̃ vale que

xTA[ϵ.x + (1− ϵ)x̂] < x̂TA[ϵ.x + (1− ϵ)x̂].

Multiplicamos ambos lados por ϵ:

ϵxTA [ϵx + (1− ϵ)x̂] < ϵ x̂TA [ϵx + (1− ϵ)x̂] .

Sumamos (1− ϵ) x̂TA [ϵx + (1− ϵ)x̂] a ambos lados:[
ϵxT + (1− ϵ)x̂T

]
A [ϵx + (1− ϵ)x̂] < x̂TA [ϵx + (1− ϵ)x̂] .

Como tenemos que y = ϵx + (1− ϵ)x̂, se concluye que:

yTAy < x̂TAy.

Veamos que vale 2.3.4. Miramos L(t) = x̂(1 − t) + yt. Como Sn es cerrado,

compacto y convexo podemos tomar el máximo valor de tM > 0 tal que L(tM) ∈ Sn

(lo que hacemos es ir desde x̂ hacia y hasta toparnos con una cara o vértice del

polítopo Sn). En particular, debe existir un i ∈ sop(x̂) tal que L(tM)i = 0, de lo

contrario se contradice la maximalidad de tM . Luego L(tM) ∈ Ci ⊂ C, tomando

x = L(tM), por como está definido L(t) tenemos que y ∈ {x̂(1− ϵ) + ϵx, 0 < ϵ < 1}.
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Corolario 2.3.3. Si x̂ ∈ int(Sn) es ESS, entonces no hay otra estrategia ESS, en

particular tampoco hay otra estrategia que sea equilibrio de Nash.

Demostración. Como ser ESS implica NE por la condición de equilibrio, basta con

ver que si x̂ ∈ Sn es ESS entonces no puede haber un NE. Supongamos que x̂ ∈

int(Sn) es ESS y que x ∈ Sn es NE. Por definición de NE debe valer que x̂TAx ≤

xTAx, ya que x̂ está en el interior del simplex. Sea 0 < ϵ ≤ 1, entonces

[x̂T ϵ+ (1− ϵ)xT ]Ax = ϵx̂TAx + (1− ϵ)xTAx ≤ ϵxTAx + (1− ϵ)xTAx = xTAx,

lo cual está en contradicción directa con 2.3.2.

2.4. Existencia de equilibrios de Nash

A continuación, haremos un breve retorno al juego de forma normal de k ∈ N

jugadores para escribir el teorema de John Nash que nos demuestra la existencia de

un equilibrio de Nash para cualquier juego normal de finitos jugadores.

Teorema 2.4.1. Teorema del punto fijo de Brouwer Sea D ⊂ Rn un conjunto

convexo, compacto y no vacío. Si f : D → D es una función continua, entonces

existe al menos un punto x ∈ D tal que

f(x) = x.

Teorema 2.4.2. [2] Sea un juego de finitas estrategias puras y 2 o más jugadores.

Entonces existe al menos un equilibrio de Nash.

Demostración. Haremos la demostración para el caso de dos jugadores, cada uno

con matrices de pago A ∈ Rm×n y B ∈ Rn×m. Sea K = Sm × Sn. Buscamos definir

una aplicación T : K → K que a un par de estrategias mixtas (x, y) le asigne un

nuevo par (x̃, ỹ) tal que x̃ sea una mejor respuesta a y que x, y que ỹ sea mejor

respuesta a x que y.
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Si mostramos que T es continua, al ser K un compacto convexo podremos usar el

Teorema de Punto Fijo de Brouwer y nos garantizamos la existencia de estrategias

mixtas (x, y) ∈ K tal que,

T (x, y) = (x, y).

Vamos a construir el operador T , dadas (x, y) definimos

ci = max{eT
i Ay − xTAy, 0} y dj = max{xTBT ej − xTBTy, 0},

y los puntos x̃ ∈ Sn, ỹ ∈ Sm como

x̃i = xi + ci

1 +∑m
k=1 ck

, ∀1 ≤ i ≤ m y ỹj = yj + dj

1 +∑n
k=1 dk

, 1 ≤ j ≤ m,

En ambos casos la pertenecia al simplex se obtiene fácilmente sumando sobre

sus coordenadas
m∑

i=1
x̃i =

m∑
i=1

xi + ci

1 +∑m
k=1 ck

= 1.

Definimos T (x, y) = (x̃, ỹ). Respecto a la continuidad de T : ci y dj resultan

continuas por ser el máximo entre cero y una suma de productos lineales de x e

y. Luego cada coordenada de T es un cociente de funciones continuas en el que la

función del denominador es siempre mayor o igual a uno. Entonces, por Brouwer,

debe existir (x∗, y∗) ∈ K tal que T (x∗, y∗) = (x∗, y∗). Veamos que este punto fijo

debe ser un equilibrio de Nash.

Al ser (x∗, y∗) un punto fijo, tenemos que x̃∗ = x∗ y ỹ∗ = y∗. Usando la definición

de x̃∗:

x∗
i = x∗

i + ci

1 +∑m
k=1 ck

=⇒ ci = x∗
i

m∑
k=1

ck ∀1 ≤ i ≤ m.

Definimos C := ∑m
k=1 ck. Luego la condición de punto fijo para el Jugador 1 es

ci = x∗
iC para todo 1 ≤ i ≤ m. Veamos que x∗ ∈ BR(y∗)

Supongamos que existe k ∈ [m] tal que eT
kAy

∗ > x∗Ay∗. Se sigue que ck > 0,

como además ck = x∗
kC tenemos que xk > 0 y C > 0. Entonces k ∈ sop(x∗).

Como nuestra suposición nos garantiza que C > 0, x∗
k > 0, esto implica que

ci > 0, con lo cual eT
i Ay

∗ > (x∗)TAy∗. Entonces:

(x∗)TAy∗ =
m∑

i=1
x∗

i (eT
i Ay

∗) =
∑

i∈sop(x∗)
x∗

i (eT
i Ay

∗) > (x∗)TAy∗,
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lo cual es absurdo. Luego eT
kAy

∗ ≤ x∗Ay∗ para todo 1 ≤ i ≤ m, por lo que x∗ ∈

BR(y∗). Análogamente, y∗ ∈ BR(x∗), entonces nuestro punto fijo es NE.

Adicionalmente, el trabajo de Nash nos dice que en el caso de un juego simétrico

siempre podremos encontrar al menos un equilibrio simétrico en el juego.

Corolario 2.4.3. Sea un juego simétrico de finitas estrategias puras y 2 o más

jugadores. Entonces, existe al menos un equilibrio de Nash simétrico.

Demostración. Definimos el conjunto de las estrategias simétricas

Σ = {(x, y) ∈ Sn × Sn : x = y}. (2.4.1)

Tomamos T como en 2.4.2. El conjunto Σ es compacto,convexo y no vacío, por lo

que si demostramos que T (x, y) ∈ Σ tendremos que T : Σ → Σ es una función

continua sobre un conjunto que cumple las condiciones de 2.4.1. Luego, tendremos

un (x,x) ∈ Sn punto fijo de T , el cual, por lo que probamos en 2.4.2, debe ser un

equilibrio de Nash.

Veamos que T : Σ → Σ. Al estar en un juego simétrico, tenemos que BT = A,

por lo que si (x, y) = (x, x) ∈ Sn valen

ci = máx{eT
i Ay − xTAy, 0} = máx{eT

i Ax− xTAx, 0},

dj = máx{xTBT ej − xTBTy, 0} = máx{eT
j Ax− xTAx, 0}.

Se sigue que cj = dj, para todo 1 ≤ j ≤ n. Luego, si llamamos T (x, y) = (x̃, ỹ), por

como hemos definido T tenemos que

x̃i = xi + ci

1 +∑m
k=1 ck

= yj + dj

1 +∑n
k=1 dk

= ỹj, 1 ≤ j ≤ m.

Hemos visto que x̃ = ỹ, por lo que T (x, y) ∈ Σ, entonces, debe existir un equilibrio

simétrico.
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2.5. Algunos juegos clásicos

Halcones y Palomas

Un ejemplo clásico de la teoría de juegos evolutiva es el juego de Halcones y

Palomas (Hawk-Dove Game), fue propuesto por los biólogos John Maynard Smith

y George Price en un intento de explicar las peleas de ritual en competencias entre

animales de una misma especie. En su modelo asumen una población con dos feno-

tipos (es decir, con dos posibles estrategias). La primera estrategia e1 es escalar el

conflicto hasta que la muerte o lesión termine el conflicto, la segunda estrategia, e2,

consiste en huir si el oponente resulta difícil.

Llamaremos Halcón (resp. Paloma) al jugador que usa la estrategia pura e1

(resp. e2). Ganar el conflicto otorga un payoff esperado G, y perder resulta en una

penalidad C > G. Si asumimos que al encontrarse dos halcones ambos tienen igual

probabilidad de ganar el conflicto, entonces la esperanza de su payoff es G
2 −

C
2 . De

la misma forma, suponemos que si se encuentran dos palomas, la victoria de una u

otra es igual de probable. Para el jugador 1 tenemos la siguiente matriz de payoff:

G−C
2 G

0 G
2

 . (2.5.1)

La matriz del Jugador II es simplemente la transpuesta de la matriz del Jugador I.

Piedra, Papel o Tijera

Para ver un ejemplo en tres dimensiones, podemos remitirnos al juego de piedra,

papel o tijera con matriz de payoff como en (1.1). Podemos observar que en este

ejemplo la ganancia de un jugador es exactamente la pérdida del otro, estamos en el

caso de un juego de suma cero. Una cualidad interesante del juego de piedra, papel

o tijera es que exhibe un comportamiento cíclico, es decir, la primera estrategia es

dominada por la segunda, la segunda es dominada por la tercera y la tercera es

dominada por la primera. Naturalmente surge la duda: ¿podríamos tener un juego
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cíclico que no sea de suma cero? La respuesta es que sí, y a esta clase de juego se los

denomina juego de piedra, papel o tijera (PPT). La matriz de payoff para el caso

genérico es la siguiente:

A =


0 −a2 b3

b1 0 −a3

−a1 b2 0

 , (2.5.2)

con ai, bi > 0. Acá ai es el costo de jugar contra la estrategia pura ei cuando el

jugadorI usa la estrategia que esta domina, similarmente, bi es la ganancia de jugar

contra la estrategia pura ei cuando el Jugador I usa la estrategia que domina a ei.



Capítulo 3

Preliminares de E.D.O.

3.1. Definiciones y resultados generales

Sea ẋ = f(x) una E.D.O. autónoma en una región de Rn y sea x(t) una

solución definida para todo t ≥ 0 con condición inicial x(0) = x. Llamamos órbita

de x al recorrido de una trayectoria de x(t) a lo largo del tiempo tras comenzar

en x(0) = x. Usaremos x(t) para referirnos de la ecuación diferencial que cumple

ẋ = f(x) y x(0) = x.

Decimos que x es un punto de equilibrio si {x(t) = x,∀t ≥ 0}, se caracteriza

por cumplir f(x) = 0. Si uno comienza en un punto de equilibrio, permanecerá allí

por siempre. Si x(T ) = x para algún T > 0, pero x(t) ̸= x para t ∈ (0, T ) entonces

decimos que x es un punto periódico con periodo T .

Un punto de equilibrio x de una E.D.O. se dice estable si para cualquier entorno

U de x existe un entorno V de x tal que si la órbita comienza en V permanece en

U a lo largo de toda la trayectoria. Si las órbitas que comienzan en V , además de

permanecer en U , convergen a x cuando t→∞ decimos que el punto de equilibrio

es asintóticamente estable. Si el conjunto para el cual las órbitas convergen al

punto de equilibrio es toda la región sobre la cual está definido el problema, diremos

que el punto es globalmente estable.

El ω-límite de x es el conjunto de los puntos de acumulación de {x(t)}t≥0, lo

22
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notamos:

ω(x) = {y ∈ Rn : x(tk)→ y con tk
k→+∞−−−−→ +∞}.

Observamos que siempre que x(t) permanezca dentro de un conjunto compacto a

partir de un instante de tiempo dado, existirá al menos un punto de acumulación.

A partir de la definición se sigue que podemos representarlo como la siguiente inter-

sección de conjuntos cerrados:

ω(x) = ∩t≥0{x(s) : s ≥ t}. (3.1.1)

A partir de 3.1.1 obtenemos que ω(x) es conexo y cerrado, donde la conexidad

se obtiene por estar intersecando conjuntos conexos decrecientes. Adicionalmente,

podemos ver que cualquier punto z sobre la órbita de x tiene el mismo ω−limite.

Para ver esto miramos la trayectoria que comienza en z = x(T ) para algún tiempo

T , luego la trayectoria de z en un tiempo t es z(t) = x(T + t). Si y ∈ ω(x) entonces

∃{tk} ⊂ R tal que x(tk) k→+∞−−−−→ y y tk k→+∞−−−−→ +∞,

por lo que z(tk − T ) = x(tk) también converge a y. Entonces, necesariamente y ∈

ω(z). El conjunto ω(x) es invariante, es decir si y ∈ ω(x) entonces y(t) ∈ ω(x)

para todo t ≥ 0. Esto vale ya que si x(tk) → y entonces x(tk + t′) → y(t′) para

cualquier t′ ≥ 0.

Teorema 3.1.1. (Teorema de Lyapunov - débil)

[3] Sea ẋ = f(x) una E.D.O. definida en un subconjunto G ⊂ Rn sobre el cual es

invariante. Sea V : G→ R continuamente diferenciable. Si para alguna solución x(t)

la derivada temporal V̇ de la función t → V (x(t)) satisface la inequación V̇ ≥ 0,

entonces ω(x) ∩G ⊂ {x ∈ G : V̇ (x) = 0}.

Demostración. Sea y ∈ ω(x) ∩ G, entonces ∃{tk} ⊂ R≥0 tal que tk → +∞ y

x(tk) → y. Como V̇ ≥ 0 sobre la órbita de x entonces V̇ (y) ≥ 0 por continuidad.

Supongamos que V̇ (y) > 0

Como el valor de V nunca decrece sobre una órbita, tenemos que

V (y(t)) > V (y)
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por lo que existen ϵ, δ > 0 tal que

V (y(t)) > V (y) + ϵ > V (y), para t > δ (3.1.2)

La función V (x(t)) es creciente y V (x(tk)) converge a V (y) por la continuidad de

V, por lo que

V (x(t)) ≤ V (y) (3.1.3)

para cualquier t ∈ R. Como x(tk)→ y se sigue que x(tk + t)→ y(t) para todo t > 0

lo cual implica que

V (x(tk + t))→ V(y(t)) (3.1.4)

entonces por 3.1.2, para un k suficientemente grande, vale que V (x(tk +t)) > V (y)+

ϵ, lo cual contradice 3.1.3.

A continuación demostramos un teorema clásico de E.D.O. autónomas que usa-

remos más adelante.

Teorema 3.1.2 (Teorema de Lyapunov para estabilidad asintótica). Sea ẋ = f(x)

un sistema dinámico autónomo y sea x̂ un punto de equilibrio (i.e., f(x̂) = 0). Sea G

un entorno abierto de x̂ y supongamos que existe una función V : G→ R, continua

y derivable en int(G), que cumple:

1. V (x) = 0, y V (x) > 0 para todo x ∈ G \ x̂.

2. La derivada de V a lo largo de las soluciones satisface V̇ (x) ≤ 0 para todo

x ∈ G.

Entonces x̂ es estable. Además, si V̇ (x) < 0 para todo x ∈ G \ x̂, entonces x̂ es

asintóticamente estable.

Demostración. Sea ẋ = f(x) un sistema autónomo y x̂ un punto de equilibrio. Sea

G un entorno abierto de x̂ y supongamos que existe

V : G→ R,
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continua en G y derivable en int(G), tal que

V (x̂) = 0, V (x) > 0 para todo x ∈ G \ {x̂},

y además V̇ (x) ≤ 0 para todo x ∈ G.

Veamos primero la estabilidad. Tomemos ε > 0 tal que la bola cerrada B(x̂, ε)

esté contenida en G. Como la función V es estríctamente positiva sobre ∂B(x̂, ϵ)

tenemos

m := mı́n
x∈∂B(x̂,ϵ)

V (x) > 0.

Luego, definimos el subconjunto de nivel

Lc := {x ∈ G : V (x) ≤ c}.

Si x ∈ Lc entonces, como V es no creciente , necesariamente V (x(t))) para todo

t ≥ 0, por lo que el conjunto Lc resulta invariante. Veamos que además cualquier

trayectoria que comienza en Lc permanece en B(x̂, ϵ).

Sea x ∈ Lc, supongamos que existe un t > 0 tal que x(t) ∈ ∂B(x̂, ϵ), entonces

V (x(t)) ≥ c, lo cual contradice la invariancia de Lc. Luego, toda trayectoria que

comienza en Lc permanece en B(x̂, ϵ). Por la continuidad de V en int(G) existe

δ > 0 tal que

∥x− x̂∥ ≤ δ =⇒ |V (x)− V (x̂)| ≤ m =⇒ V (x) ≤ m,

por lo que B(x̂, δ) ⊂ Lc. Hemos visto que dado un entorno U = B(x̂, ϵ) ⊂ G, existe

un entorno V = B(x̂, δ) tal que toda trayectoria que comienza en V permanece en

U , por lo que x̂ resulta estable.

Veamos que si V̇ (x) < 0 para todo x ∈ G \ {x̂} entonces tenemos estabilidad

asintótica. Tomemos x0 suficientemente cercano a x̂ de modo que la solución x(t)

permanezca en un subconjunto compacto de G para t ≥ 0 (esto puede garantizarse

eligiendo x0 dentro de una bola suficientemente pequeña contenida en G, y usando la

estabilidad ya probada). Como t 7→ V (x(t)) es decreciente y acotada inferiormente

por 0, existe

ℓ := ĺım
t→+∞

V (x(t)) ≥ 0.
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Sea ω(x0) el conjunto ω-límite de la solución x(t). Sabemos que ω(x0) es com-

pacto, no vacío (pues x(t) se mantiene en un compacto de G) e invariante por la

dinámica, además, por la continuidad de V y por la monotonía de V (x(t)), V es

constante y igual a ℓ sobre ω(x0). Sea y ∈ ω(x0). Como ω(x0) es invariante, si

y ∈ ω(x) tenemos que ĺımt→+∞ x(t+ t̃) = y(t̃) ∈ ω(x0), junto con la continuidad de

V tenemos que

ℓ = ĺım
k→+∞

V (x(t+ t̃)) = y(t̃).

Esto nos dice que la trayectoria que pasa por y permanece en ω(x0) y por tanto

t 7→ V (y(t)) es constante (igual a ℓ). Pero entonces su derivada en cualquier punto

de ω(x0) debe ser cero:

V̇ (y) = 0 para todo y ∈ ω(x0).

Por la hipótesis de negatividad estricta de V̇ en G \ {x̂}, la única posibilidad es que

ω(x0) ⊂ {x̂}.

Dado que ω(x0) no es vacío, se sigue ω(x0) = {x̂}. En particular, x(t)→ x̂ cuando

t→ +∞. Esto prueba la estabilidad asintótica de x̂.

Decimos que una función V que satisface el teorema es una función de Lyapunov

y definimos que un punto x es Lyapunov estable si para cualquier ϵ > 0 existe

δ > 0 tal que si ||x(0)− x|| < δ entonces ||x(t)− x|| < ϵ.

Decimos que una función V : G → R es una constante de movimiento si es

constante a lo largo de cualquier trayectoria, es decir, dada una trayectoria x(t),

existirá una constante c ∈ R tal que la órbita está contenida en {(x, y) ∈ G :

V (x, y) = c}. Una vez hallada una constante de movimiento, el siguiente teorema

nos provee información acerca de su comportamiento.

Teorema 3.1.3. Teorema de Poincaré-Bendixson Sea ẋ = f(x) una E.D.O.

definida sobre un abierto G ⊂ R2. Sea ω(x) un conjunto no vacio y compacto

de ω−limites. Si ω(x) no contiene un punto de equilibrio, entonces es una órbita

periódica.



Capítulo 4

Dinámica poblacional y la

ecuación del replicador

4.1. Ecuación del Replicador y Equilibrios de

Nash

Hasta el momento todos los juegos que miramos transcurren entre una cantidad

finita de jugadores, en situaciones donde cada uno elije una distribución sobre sus

estrategias puras y juega una ronda con ello. En este capítulo, veremos cómo se uti-

lizan los juegos normales para modelar frecuencias de estrategias en una población,

y luego, como usar ecuaciones diferenciales ordinarias para modelar la evolución de

las estas frecuencias a lo largo del tiempo.

Consideremos el caso de un juego simétrico (X , u), el escenario que nos plan-

teamos es el siguiente: los miembros de una población eligen una estrategia pura y

comienzan a jugar el juego simétrico definido por X y u entre ellos. Para describir las

elecciones de cada miembro de la población usaremos una distribución de estrategias

(frecuencias) y supondremos que los miembros interactúan (juegan una ronda) al

azar.

Nuevamente llamamos |X | = n, por lo que la información relevante acerca de los

pagos puede condensarse en la matriz de payoff A ∈ Rn×n. Diremos que una fracción

27
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xi de una población utiliza la estrategia pura ei ∈ X . Para cada estrategia, tendre-

mos una fracción de la población que la utiliza, caracterizamos esta distribución de

estrategias con un vector x = (x1, ..., xn) ∈ Sn, donde la i-ésima coordenada repre-

senta la proporción de nuestra población que utiliza la estrategia ei ∈ X . Luego, el

payoff esperado para el sector de la población que utilice la estrategia ei es

(Ax)i = ∑
j aijxj, ∀ 1 ≤ i ≤ n,

donde aij := u(ei, ej) es el payoff que espera recibir un jugador que utiliza la

estrategia ei cuando se enfrenta a otro que juega con la estrategia ej. Para ver el

payoff esperado de de una interacción al azar entre miembros cualesquiera de la

población, nos basta con sumar los payoffs de cada estrategia ei ∈ X pesada por su

frecuencia en la población (ver 2.2.1):

xTAx = ∑
i xi(Ax)i,

Está de más aclarar que la notación x ∈ Sn para las frecuencias de cada estrategia

es la misma que usamos para las estrategias mixtas en el capítulo uno. Sin embargo,

lo que representa será fácilmente discernible según el contexto.

Asumimos que las poblaciones pueden evolucionar a lo largo del tiempo, pues,

en base al rendimiento de cada estrategia, su frecuencia aumentará o disminuirá.

En base a esto, introducimos la dependencia temporal x(t), y notamos ẋi(t) a la

velocidad con la que cambia la frecuencia de la i-ésima estrategia, xi. El modelo

más simple para modelar el cambio de la i-ésima frecuencia es la ecuación del

replicador clásica:

ẋi = xi[(Ax)i − xAx], ∀1 ≤ i ≤ n. (4.1.1)

Como se observa, esta ecuación relaciona la variación de la i-ésima estrategia con la

diferencia entre su payoff y el payoff promedio de toda la población, responde a la

intuición de que las estrategias más exitosas aumentarán su frecuencia y las menos

exitosas la disminuirán.

Podemos ver que
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∑
i ẋi = ∑

i xi[(Ax)i − xAx] = ∑
i[xi(Ax)i]− xAx = 0

para cualquier x ∈ Sn, por lo que la ecuación 4.1.1 resulta invariante sobre el simplex

estándar Sn, es decir, si nuestro punto inicial se encuentra en Sn, todo el recorrido

también estará en el conjunto. Además, como xi(t0) = 0 implica que xi(t) = 0, ∀t ≥

t0, la ecuación también resulta invariante sobre Sn(J) = {x ∈ Sn : xi = 0 ∀j ∈ J}

para cualquier J ⊂ {1, ..., n}.

Para cualquier x ∈ Sn sujeto a la ecuación del replicador tenemos la siguiente

regla del cociente para cualquier j ∈ [n] tal que xj > 0:

d

dt
ln(xi) =

( ẋi

xj

)
=
(xi

xj

)
((Ax)i − (Ax)j). (4.1.2)

Además observamos que los puntos de equilibrio de 4.1.1 en int(Sn) deberán

cumplir

(Ax)1 = ... = (Ax)n = xAx.

Proposición 4.1.1.

1. Sea A ∈ Rn×n la matriz de payoff de un juego simétrico: sumar una constante

c ∈ R todas las entradas de cualquier columna de A no afecta la ecuación del

replicador asociada a la matriz en Sn.

2. Si P = ∏
i x

αi
i entonces

Ṗ = P
∑

i

αi

[
(Ax)i − xTAx

]
.

Demostración. Demostramos (i). Sea C ∈ Rn×n una matriz tal que Colj(C) es

un vector de tamaño n cuyas coordenadas son todas de valor cj ∈ R. Definimos

A′ := A+C y demostramos que su ecuación del replicador asociada es igual a la de

A.

El payoff promedio al usar la estrategia x resulta

xTA′x = xT (A+ C)x = xTAx + xTCx = xTAx +
∑

i

cixi.
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El payoff esperado para la i-ésima estrategia nos da

(A′x)i = [(A+ C)x]i = (Ax)i +
∑

j

cjxj.

Luego tenemos que

xi

[
(A′x)i − xTA′x

]
= xi

[
(Ax)i − xTAx

]
.

En los siguientes capítulos nos referiremos al soporte de un punto x ∈ Rn, en

estos casos estaremos haciendo referencia al conjunto sop(x) = {i ∈ [n] : xi ̸= 0}.

Los puntos de equilibrio (rest points) de la ecuación del replicador son aquellos

x ∈ Sn para los cuales todos los valores de payoff (Ax)i son iguales para todo

1 ≤ i ≤ n que cumpla xi > 0. En particular, para un x ∈ Sn que es punto de

equilibrio, podemos ver fácilmente que si i ∈ sop(x) debe valer (Ax)i = xtAx,

xi[(Ax)i − xTAx] = 0 ∧ xi > 0 =⇒ (Ax)i = xTAx.

Además mirando 4.1.1, resulta inmediato ver que todos los vértices ei ∈ Sn son

puntos de equilibrio.

De aquí en adelante usaremos las nociones de estabilidad y asintóticamente esta-

ble en referencia a la ecuación del replicador 4.1.1. Diremos que x̂ es globalmente

estable si es estable y x(t)→ x cuando t→ +∞ para cualquier x ∈ Sn que tenga

el mismo soporte que x̂.

En el contexto de la dinámica poblacional, decimos que x̂ ∈ Sn es equilibrio de

Nash (N.E.) si:

xTAx̂ ≤ xAx̂, ∀x ∈ Sn, (4.1.3)

para cualquier y ∈ Sn y diremos que x ∈ Sn es un estrategia evolutivamente

estable (ESS) si cumple

xTAx < x̂Ax, (4.1.4)

para cualquier x ̸= x̂ en un entorno de x̂.
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Teorema 4.1.2 (Teorema folk de la teoría de juegos evolutiva). [4] Para la

dinámica de replicador clásica 4.1.1 valen los siguientes resultados (llamamos A a la

matriz de pagos):

1. Si un punto x ∈ Sn es N.E., entonces es un punto de equilibrio.

2. Si x̂ es un punto de equilibrio y el líimite de una órbita x(t) en intSn, entonces

es N.E.

3. Si x es un punto de equilibrio estable, entonces es N.E.

Demostración. 1.) Al ser x N.E., tomando y = ei en 4.1.3 tenemos que

(Ax)i ≤ xTAx, ∀ 1 ≤ i ≤ n.

Para ver que x es punto de equilibrio, nos basta con ver la desigualdad inversa para

i ∈ sop(x), pues tomando

J := { i ∈ [n] : xi = 0 } = [n]\sop(x),

está claro que, para todo i ∈ J , la ecuación del replicador

ẋi = xi

[
(Ax)i − xTAx

]
,

es nula. Para los i ∈ sop(x), por 2.1.1 tenemos que ei ∈ BR(x), por lo que

(Ax)k ≤ (Ax)i, ∀1 ≤ k ≤ n,

entonces tenemos que

xTAx =
n∑

k=1
xk(Ax)k =

∑
k∈sop(x)

xk(Ax)k ≤
∑

k∈sop(x)
xk(Ax)i = (Ax)i.

Por lo tanto,

xTAx ≤ (Ax)i ∀i ∈ sop(x),

y finalmente obtenemos

ẋi = xi

[
(Ax)i − xTAx

]
= 0 ∀1 ≤ i ≤ n.
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2.) Sea x(t) una trayectoria en el interior de Sn tal que x̂ ∈ ω(x). Sabemos que

existe una sucesión {tk}k∈N tal que tk → +∞ y x(tk) → x̂. Supongamos que x̂ no

es N.E., entonces existe y ∈ Sn tal que

x̂TAx̂ < yTAx̂,

entonces debe existir al menos una estrategia pura 1 ≤ i ≤ n tal que

x̂TAx̂ < (Ax̂)i.

Veamos esto rápidamente: supongamos que no existe tal i, entonces

yTAx̂ =
n∑

k=1
yk(Ax̂)k ≤

n∑
k=1

yk(x̂Ax̂) = x̂Ax̂,

lo cual contradice nuestra suposición inicial. Luego tenemos que

(Ax̂)i − x̂TAx̂ > (Ax̂)i − yTAx̂ > 0.

Como x(t) t→+∞−−−−→ x̂ podemos tomar un ϵ > 0 y un t0 > 0 tal que

ẋi(t)
xi(t)

= (Ax(t))i − x(t)TAx(t) > ϵ, ∀t ≥ t0,

en donde el cociente está bien definido pues x(t) ∈ int(Sn). Luego, tenemos

˙ln(xi(t)) > ϵ, ∀k ≥ K.

Entonces

xi(t) > et.c ∀k ≥ K, con c > 0,

lo cual es absurdo pues 0 < xi(t) < 1 para todo k ∈ N.

3) Supongamos que x no es N.E., entonces existe y ∈ Sn tal que

xTAx < yTAx.

Por lo visto en 2.), existe 1 ≤ i ≤ n tal que

xTAx < eT
i Ax,
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se sigue que

∃ ϵ > 0 tal que (Ax)i − xTAx > ϵ.

También sabemos que i /∈ sop(x), pues de lo contrario habría una contradicción

inmediata al ser x punto de equilibrio.

Por la continuidad de la función

f(z) := (Az)i − zTAz,

existe un entorno U de x tal que, si z ∈ U , entonces f(z) > ϵ. A su vez, por la

estabilidad de x, existe un entorno V de x tal que, si x(0) ∈ V , entonces

x(t) ∈ U, ∀t ≥ 0.

Luego, tomando z ∈ V tal que i ∈ sop(z) tenemos que

żi

zi

= (Az)i − zTAz = f(z) > ϵ.

Usando que
d

dt
ln(xi) = ẋi

xi

,

podemos ver de forma anáal ítem anterior que esto implica

zi(t) > eϵt.c, con c > 0,

lo cual contradice la estabilidad.

Teorema 4.1.3. [4] Sea A la matriz de pagos de un juego simétrico y sea x̂ ∈

Sn un estado evolutivamente estable (ESS). Entonces x̂ es un punto de equilibrio

asintóticamente estable de la dinámica replicadora 4.1.1 restringida a la cara minimal

del simplex que contiene a x̂, es decir,

Cx̂ = {x ∈ Sn : sop(x) ⊂ sop(x̂)}.

En particular, si x̂ ∈ int(Sn), entonces x̂ es asintóticamente estable en todo

int(Sn).1
1En algunas fuentes, este teorema se encuentra entre los resultados del Teorema Folk
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Demostración. Tomando las convenciones 0. ln(0) = 0. ln(∞) = 0 definimos

V (x) :=
n∑

i=1
x̂i ln x̂i

xi

, x ∈ Sn,

Veamos que V cumple las condiciones de 3.1.2 en la cara sobre la que se encuentra

x̂. Es inmediato que V (x̂) = 0. Si x ∈ int(Cx̂), entonces necesariamente sop(x) =

sop(x̂), adicionalmente, al estar en el caso del replicador clásico 4.1.1, usando la

regla del cociente tenemos que
d

dt
V (x) = d

dt

( n∑
i∈sop(x)

x̂i[ln(x̂i)− ln(xi)]
)

= −
n∑

i∈sop(x)
x̂i
d

dt
[ln(xi)]

= −
∑

i∈sop(x)
x̂i

[
(Ax)i − xTAx

]

= −
∑

i∈sop(x̂)
x̂i

[
(Ax)i − xTAx

]

= −
∑

i∈sop(x̂)
x̂i(Ax)i +

∑
i∈sop(x̂)

x̂i(xTAx)

= −x̂TAx + xTAx.

Al ser x̂ evolutivamente estable, por 2.3.2 tenemos que existe un entorno de x̂,

G ⊂ Sn, tal que

x̂TAx > xTAx, ∀x ∈ G\{x̂}, (4.1.5)

por lo que d
dt
V (x) < 0 para cualquier x ∈ G\{x̂} que esté en el interior de la cara

Cx̂. Definimos G′ := G ∩ int(Sn), hasta ahora hemos visto que V (x̂) = 0 y que
d
dt
V (x) < 0 para todo x ∈ G′\{x}. Veamos que V (x) > 0 para cualquier x ∈ G′.

Reescribimos V (x) = −∑i∈sop(x̂) x̂i ln
(

xi

x̂i

)
. Aplicando la desigualdad de Jensen

a la función cóncava ln(z), tenemos que

∑
i∈sop(x̂)

x̂i ln
(
xi

x̂i

)
≤ ln

 ∑
i∈sop(x̂)

x̂i
xi

x̂i

 .
Desarrollando el término dentro del logaritmo del lado derecho:

∑
i∈sop(x̂)

x̂i
xi

x̂i

=
∑

i∈sop(x̂)
xi.
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Dado que estamos restringidos a la cara minimal Cx̂, sabemos que sop(x) ⊂ sop(x̂),

y como x ∈ Sn, se cumple que ∑i∈sop(x̂) xi = 1. Por lo tanto:

∑
i∈sop(x̂)

x̂i ln
(
xi

x̂i

)
≤ ln(1) = 0.

Multiplicando por −1 obtenemos

V (x) = −
∑

i∈sop(x̂)
x̂i ln

(
xi

x̂i

)
≥ 0.

Debido a la concavidad estricta del logaritmo, la igualdad a cero se alcanza si y solo

si la razón xi

x̂i
= xj

x̂j
para cualquier i, j ∈ sop(x̂), es decir, en el caso x = x̂. Por lo

tanto, tenemos que V (x̂) = 0 y, para todo x ∈ G′ \ {x̂}, se cumple que

V (x) > 0 y d

dt
V (x) < 0.

Finalmente, se concluye por 3.1.2

4.2. Promedios Temporales

Dada una órbita x(t) de la ecuación del replicador, definimos el promedio tem-

poral de la siguiente manera:

zi(T ) = 1
T

∫ T

0
xi(t)dt. (4.2.1)

A continuación veremos algunos resultados importantes que lo relacionan con los

puntos de equilibrio de 4.1.1.

Teorema 4.2.1. [4] Si existe una órbita x(t) que permanece separada una cierta

distancia de la frontera a lo largo de todo su recorrido, entonces existe un punto de

equilibrio en int(Sn).

Demostración. Como x(t) permanece separada de la frontera, existe a > 0 tal que

xi(t) > a para todo t ≥ 0, ∀1 ≤ i ≤ n. Entonces tenemos que

˙ln(xi) = ẋi

xi

= (Ax(t))i − x(t)Ax(t), ∀1 ≤ i ≤ n, ∀t ≥ 0,
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por lo que integrando entre 0 y T de ambos lados y dividiendo por T obtenemos

ln(xi(T ))− ln(xi(0))
T

= 1
T

∫ T

0
[(Ax)i − xTAx].dt =

n∑
j=1

aijzj(T )− 1
T

∫ T

0
xTAx.dt.

Como a ≤ xi(T ) < 1, el lado izquierdo converge a cero a medida que T → +∞, por

lo que nos queda
n∑

j=1
aijzj(T ) = ĺım

T →+∞

1
T

∫ T

0
xTAx.dt.

Adicionalmente, tenemos que

zi(T ) = 1
T

∫ T

0
xi(t)dt ≥ a > 0, ∀1 ≤ i ≤ n.

Como Sn es compacto, existe un punto de acumulación de {(z1(T ), ..., zn(T ))}T ≥0

en el simplex. De esta forma, existen {Tk}k≥1 ⊂ [0,+∞) y z ∈ Sn tal que Tk → +∞

y

zi = ĺım
k→+∞

1
Tk

∫ Tk

0
xi(t)dt,

(Az)i =
n∑

j=1
aijzj = ĺım

k→+∞

1
Tk

∫ Tk

0
x(tk)TAx(tk).dt,

zi ≥ a, ∀1 ≤ i ≤ n.

Entonces, z ∈ int(Sn) y cumple que

(Az)1 = ... = (Az)n (4.2.2)

por lo que z debe ser punto de equilibrio interior de la ecuación del replicador.

Teorema 4.2.2. [4] Si la ecuación 4.1.1 admite un único punto de equilibrio z ∈ Sn

y la trayectoria de x(t) es tal que su ω−limite esta en int(Sn), entonces su promedio

temporal converge al punto de equilibrio, es decir

ĺım
T →+∞

1
T

∫ T

0
xi(t)dt = zi , ∀1 ≤ i ≤ n. (4.2.3)
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Demostración. Sea {z(Tn)}n≥1 una subsucesión de 4.2.1 definida coordenada a coor-

denada para el recorrido de x(t), es decir

zi(Tn) = 1
Tn

∫ Tn

0
xi(t)dt , ∀1 ≤ i ≤ n.

Como {z(Tn)}n≥0 ⊂ Sn, existe una subsucesión {z(Tnk
)}k≥0 ⊂ Sn que converge

a un x̂ ∈ Sn. Como vimos en 4.2.1, al ser x̂ limite de promedios temporales tenemos

x̂Ax̂ = (Ax̂)i, ∀i ∈ sop(x̂),

por lo que x̂ es un punto de equilibrio de la ecuación del replicador. Luego, x̂ = z.

Hemos demostrado que para cualquier subsucesión de {z(t)}t≥0 existe una subsub-

sucesión que converge a z, lo cual demuestra el resultado.

Teorema 4.2.3. [4] Si no hay ningún punto de equilibrio en int(Sn) entonces toda

órbita debe converger al borde de Sn.

Demostración. Supongamos que hay una órbita x(t) que no converge al borde del

simplex. Entonces, existe una sucesión {tk}k≥1 y un ϵ > 0 tal que

d(x(tk), ∂Sn) ≥ ϵ ∀k ∈ N.

Luego, existe una trayectoria que permanece separada al menos ϵ de la frontera del

simplex a lo largo de todo su recorrido. Entonces por 4.2.1 debe existir una N.E. en

el interior del simplex, absurdo.

4.3. Juegos con pagos no lineales

Hasta ahora hemos trabajado con juegos en donde el payoff de la i-ésima estra-

tegia está dado por la función (Ax)i, sin embargo existen muchos casos en donde

el pago (también llamado fitness en algunos casos) de la i-ésima estrategia está da-

do por una función no lineal ai(x) : Sn → R. Aquí, una población que tiene una
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distribución de frecuencias x ∈ Sn tendrá un payoff esperado de

a(x) =
n∑

i=1
xi.ai(x) = x.a(x),

donde tomamos

a(x) = (a1(x), ..., an(x)).

Esto nos permite escribir una ecuación del replicador generalizada de la forma:

ẋi = xi(ai(x)− a(x)), ∀1 ≤ i ≤ n, (4.3.1)

la cual, en el caso en que ai(x) = (Ax)i para i = 1, .., n se reduce a 4.1.1.

Al igual que antes, suponemos estar trabajando en el simplex estandar Sn. Si

nuestro punto inicial se encuentra en este conjunto, la trayectoria resultante de 4.3.1

permanece en el mismo. Tomando S = ∑n
i=1 xi se satisface:

Ṡ =
∑

xi [ai(x)− a(x)] = a(x)
[∑

xi
ai(x)
a(x) − S

]
= a(x)(1− S),

por lo que S = 1 resulta invariante. En el caso del replicador clásico 4.1.1 vimos que

sumarle constantes a cada columna de nuestra matriz A no afecta la ecuación del

replicador, en el caso no lineal, tenemos un propiedad análoga.

Proposición 4.3.1. La suma de una función ψ(x) a todas las ai(x) no afecta la

dinámica del replicador 4.3.1.

Demostración. Definimos gi(x) = ai(x) + ψ(x). Luego g(x) = ∑
xigi(x) = a(x) +

ψ(x), luego tenemos que gi(x)− g(x) = ai(x)− a(x)

La teoría de la estabilidad evolutiva también puede extenderse al caso genérico.

Decimos que x̂ ∈ Sn es localmente evolutivamente estable si x̂.a(x) > x.a(x) para

cualquier x ̸= x̂ en un entorno de x̂. Adicionalmente, tenemos un análogo a las

condiciones de equilibrio y establidad vistas en el primer capítulo.

Proposición 4.3.2. Un estado x̂ ∈ Sn es localmente evolutivamente estable si y

solo si se cumplen las siguientes condiciones:
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1. x̂ · f(x̂) ≥ x · f(x̂).

2. Si en (1) se cumple la igualdad y x está lo suficientemente cerca de x̂, entonces

x̂ · f(x̂) > x · f(x).

4.4. Dinámicas de Imitación

Las dinámicas de imitación plantean una dinámica en la que, de forma ocasional

y al azar, los jugadores “observan” la estrategia de otro jugador, y en base a un

criterio establecido, adoptan o no la estrategia de su rival con cierta probabilidad. La

probabilidad con la que un jugador adoptará o no la estrategia de su rival dependerá

de la diferencia entre los pagos de cada estrategia y su frecuencia actual. Definido

de forma más rigurosa, la dinámica de imitación es una trayectoria que evoluciona

según el siguiente sistema

ẋi = xi

n∑
j=1

[fij(x)− fji(x)] xj, ∀1 ≤ i ≤ n (4.4.1)

en donde fij es la frecuencia con la que el jugador que utiliza la estrategia j adopta

la estrategia i. Asumimos que la función fij depende de los pagos de i y j, y que

además existe f(u, v) tal que:

fij(x) = f(ai(x), aj(x)).

Llamamos a f(u, v) la “regla de imitación” (que será la misma para todos los juga-

dores). Un ejemplo simple de una regla de imitación es imitar la mejor estrategia,

en cual caso tenemos

f(u, v) =


0 si u < v,

1 si u > v.

En general se suele agregar la suposición de que la regla de imitación es de la forma

f(u, v) = ϕ(u − v) donde ϕ : R → R≥0 es una función creciente (en este trabajo

también lo supondremos), esto nos permite escribir las probabilidades de transición

de la forma

fij(x) = ϕ(ai(x)− aj(x)). (4.4.2)



Capítulo 4. Dinámica poblacional y la ecuación del replicador 40

En el que caso de una regla de imitación genérica como en (4.4.2) podemos definir

ψ(u) := ϕ(u)− ϕ(−u),

y podemos reescribir 4.4.1 como

ẋi = xi

∑
j

ψ(ai(x)− aj(x))xj. (4.4.3)



Capítulo 5

Ejemplos y Caracterizaciones de

Juegos Normales

5.1. Dinámica de replicador clásico

unidimensional

En el primer capítulo, nombramos el juego de halcones y palomas como un

ejemplo clásico en n = 2, y miramos su matriz de payoff en 2.5.1. En esta sección

nos interesa analizar qué sucede cuando miramos la ecuación del replicador asociada

a este juego: usando 4.1.1, podemos restarle G−C
2 a los elementos de la primera

columna y G
2 a los elementos de la segunda columna, obteniendo una matriz con

una ecuación del replicador idéntica (sobre Sn)

 0 G
2

C−G
2 0

 . (5.1.1)

Más allá de nuestro análisis del juego de halcones y palomas, es fácil ver que

este razonamiento puede extenderse a cualquier juego unidimensional. Tomando la

matriz de payoff A ∈ R2×2, basta con restarle a11 a los elementos de la primera

41
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columna y a22 a los elementos de la segunda columna para obtener una matriz de la

forma 0 a

b 0

 , (5.1.2)

la cual, por 4.1.1, comparte la misma ecuación del replicador con la matriz de payoff

original A. Además, como la evolución de la ecuación transcurre en S2, nos basta con

conocer x1 para caracterizar el estado del juego, pues necesariamente x2 = 1 − x1.

Para facilitar la notación, en el contexto del juegos de dos dimensiones llamamos x

a x1 y 1 − x a x2. A de esto, podemos dar la siguiente escritura genérica para la

ecuación del replicador de un juego de dimensión dos,

ẋ = x [(Ax)1 − x · Ax] = x [(Ax)1 − (x(Ax)1 + (1− x)(Ax)2)],

simplificando nos queda,

ẋ = x(1− x) [(Ax)1 − (Ax)2] = x(1− x) [a− (a+ b)x] . (5.1.3)

El lado derecho de nuestra ecuación diferencial es un producto de tres factores:

el primero se anula en 0, el segundo en 1; el tercer factor tiene una raíz x̂ = a
a+b

en

(0, 1) si y solo si ab > 0. Así, obtenemos tres casos posibles:

1. No hay punto de reposo en el interior del espacio de estados. Esto ocurre si y

sólo si ab ≤ 0 . En este caso, ẋ tiene siempre el mismo signo en (0, 1). Esto puede

verse fácilmente reescribiendo 5.1.3 como ẋ = x(1−x)[a(1−x)−bx]. Si a ≥ 0 y b ≤ 0

con al menos una desigualdad estricta, entonces ẋ > 0. Esto significa que x(t)→ 1

cuando t → +∞ para cualquier valor inicial, x ya que la trayectoria resultante es

una secuencia estrictamente creciente en un compacto con máximo 1.

Por el contrario, si a ≤ 0 y b ≥ 0 con al menos una desigualdad estricta, el signo

de ẋ será negativo, por lo que x(t) → 0 y e2 domina. En cada caso, la estrategia

dominante converge hacia la fijación.

2. Existe un punto de equilibrio, es decir, ab > 0, y tanto a como b son negativos.

Sabemos que ẋ = x(1−x)[a(1−x)−bx] tiene una única raíz en (0, 1) que se ubica en

x̂ = a
a+b

, si tomamos un número x̂ < x < 1 entonces 0 = a(1−x̂)−bx̂ < a(1−x)−bx,
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y por ende ẋ > 0. Esto nos dice que la trayectoria para cualquier dato inicial

x = (x, 1 − x) con x̂ < x < 1 necesariamente cumple que x(t) → 1 a medida que

t→ +∞, es decir, se aleja del punto de equilibrio.

Análogamente, se puede comprobar que para cualquier 0 < x < x̂ la trayectoria

con dato inicial x = (x, 1− x) cumple x(t)→ 0 a medida que t→ +∞.

3. Existe un punto de equilibrio, es decir, ab > 0, y tanto a como b son positivos.

Similarmente al caso anterior, sabemos que x̂ = a
a+b

es la única raíz en el intervalo

(0, 1) para ẋ = x(1 − x)[a(1 − x) − bx]. En este caso, para cualquier x̂ < x < 1

tendremos que ẋ < 0, es decir, x(t)→ x̂ a medida que t→ +∞, análogamente para

cualquier 0 < x < x̂ tendremos que ẋ > 0, por lo que la trayectoria también deberá

converger a x̂.

Habiendo visto la clasificación de juegos de dos dimensiones, es fácil ver que

pasa en el juego 2.5.1. Como mencionamos en el primer capítulo, siempre asumimos

que C (el costo de pelearse) es mayor a G (la recompensa de ganar la pelea) y

que ambos son mayores a cero, por lo que es un juego donde existe un punto de

equilibrio G
C

. Además, para cualquier punto inicial x en el interior de S2 tenemos

que x(t)→ (G
C
, C−G

C
) a medida que t→ +∞.

5.2. Dinámicas de replicador generalizadas

En el caso no lineal no hay una clasificación tan simple, sin embargo sigue siendo

posible reducir el problema a la resolución de una E.D.O en R. Tenemos dos funciones

de payoff, a1 y a2, por lo que a(x) = x1a1(x)+x2a2(x) y tenemos el siguiente sistema

de ecuaciones: 
ẋ1 = x1

[
f1(x)− f(x)

]
,

ẋ2 = x2
[
f2(x)− f(x)

]
.

Nuevamente tomamos x1 = x y x2 = 1 − x, remplazando estos valores en la

primera ecuación del sistema obtenemos:

ẋ = x(1− x)[a1(x, 1− x)− a2(x, 1− x)]. (5.2.1)
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Ejemplo: Regla de imitación de Fermi La regla de imitación de Fermi se refiere

a una dinámica de imitación en la que tenemos una regla de imitación sigmoidal de

intensidad β > 0, es decir

ϕ(x) = 1
1 + e−βx

.

Si llamamos ai(x) al payoff esperado para la i-ésima estrategia en una población

con frecuencias x ∈ Sn nuestra regla de imitación (como en 4.4.2) será

fij(x) = ϕ(ai(x)− aj(x)) = 1
1 + e−β(ai(x)−aj(x)) . (5.2.2)

donde β actúa como un coeficiente de intensidad de cambio. Miramos en mayor

detalle el caso en el en que ai(x) = (Ax)i para alguna matriz de payoff A ∈ Rn×n,

en particular, observaremos el caso n = 2 con β = 1 y deducimos su equilibrio de

Nash. En este caso tenemos

ẋ1 = x1.x2

[ 1
1 + e−((Ax)1−(Ax)2) −

1
1 + e(Ax)1−(Ax)2

]
,

ẋ2 = x1.x2

[ 1
1 + e−((Ax)2−(Ax)1) −

1
1 + e(Ax)2−(Ax)1

]
.

Tomaremos A como en 5.1.2, con a, b ∈ R−{0}. Realizamos el remplazo x2 = x,

x1 = 1− x

De esta forma (Ax)1 = a.(1 − x) y (Ax)2 = bx. Al igual que en el replicador

clásico tomamos x = x1 y x2 = 1− x para obtener una sola ecuación

ẋ = x(1− x)
[ 1
1 + e−ax−b(1−x) −

1
1 + eax−b(1−x)

]
. (5.2.3)

Luego, para encontrar el equilibrio de Nash interior(en caso de que exista) nos

basta con resolver
1

1 + e−ax+b(1−x) −
1

1 + eax−b(1−x) = 0,

despejando podemos ver que que si existe un equilibrio de Nash interior es de la forma

x = b
a+b

(decimos esto coloquialmente, el verdadero es ( a
b+b
, b

a+b
)). La condición de

existencia es que b
a+b
∈ (0, 1), equivalentemente debe valer que, o bien a, b > 0, o

bien a, b < 0.



Capítulo 5. Ejemplos y Caracterizaciones de Juegos Normales 45

Figura 5.1: Evolución de una dinámica de imitación de Fermi en n = 2 con a = 5 y
b = 3

Ejemplo: Imitar al mejor En este caso nos mantenemos en el mismo tipo de

dinámica que en el ejemplo anterior; ai(x) = (Ax)i ∀1 ≤ i ≤ n para alguna matriz

A ∈ Rn×n. Sin embargo, cambiamos nuestra regla de imitación, en este caso tomamos

ϕ(x) = 1(0,+∞)(x) por lo que obtenemos

fij(x) = ϕ(ai(x)− aj(x))


0 si ai(x) ≤ aj(x),

1 si ai(x) > aj(x).
(5.2.4)

en la dinámica de imitación en cuestión cuando un jugador compara su estrategia

actual con la de otro sector de la población, si esta es mejor que la suya, la adopta

con probabilidad uno. Siempre se imita al mejor. En este caso, sustituyendo en 4.4.1,

la expresión general de cada derivada nos queda

ẋi = xi

n∑
j=1

xj

[
1(0,+∞)

(
ai(x)− aj(x)

)
− 1(0,+∞)

(
aj(x)− ai(x)

)]
, (5.2.5)

para todo 1 ≤ i ≤ n.

Cuando incorporamos, miramos la dinámica en el caso de los payoffs del repli-

cador clásico, es decir, ai(x) = (Ax)i, obtenemos

ẋi = xi

n∑
j=1

xj

[
1(0,+∞)

(
(Ax)i − (Ax)j

)
− 1(0,+∞)

(
(Ax)j − (Ax)i

)]
, (5.2.6)
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para todo 1 ≤ i ≤ n.

En ambas instancias podemos, observar que si x ∈ Sn es equilibrio de Nash de

la ecuación del replicador clásica, entonces también es equilibro de Nash de esta

dinámica de imitación. Para finalizar el ejemplo miramos las trayectorias de un

ejemplo puntual en n = 3, tomamos la matriz

A =


3 0 5

5 1 0

0 4 2

 , (5.2.7)

de forma tal que ai(x) = (Ax)i para todo 1 ≤ i ≤ n. A continuación mostramos

algunas trayectorias en el hiperplano que contiene a S3.

Figura 5.2: Evolución de una dinámica de imitación con matriz de pagos 5.2.7 y
dinámica 5.2.6



Capítulo 6

SINDy: Identificación Esparsa de

Sistemas Dinámicos no Lineales

6.1. Introducción a SINDy

La Identificación Dispersa de Sistemas Dinámicos No Lineales es un método

de machine learning basado en la regresión que se usa para descubrir ecuaciones

diferenciales ordinarias autónomas (que no dependen explícitamente de t) a partir

de datos empíricos de su evolución a lo largo del tiempo (ver [6]). Supongamos que

tenemos un conjunto de mediciones x(t) ∈ Rn de algún sistema dinámico en distintos

momentos. SINDy busca una f : Rn → Rn de forma tal que la evolución de x(t)

pueda ser representada a través de una ecuación diferencial ordinaria autónoma:

ẋ(t) = f(x(t)),

El vector x(t) = (x1(t), .., xn(t)) representa el estado del sistema físico en el

tiempo t y la función f(x) restringe cómo evoluciona el sistema en el tiempo. La

suposición principal detrás de SINDy es que dado un conjunto de funciones apropia-

das Θ(x) = {θ1(x), .., θl(x)}, podremos obtener una aproximación de f(x) que sea

una combinación lineal de Θ(x) con relativamente pocos terminos no nulos. En estos

casos, decimos que la función f(x) es esparsa en el espacio de funciones apropiado.

47



Capítulo 6. SINDy: Identificación Esparsa de Sistemas Dinámicos no
Lineales 48

Para aplicar SINDy en la práctica, se necesita un conjunto de datos de medi-

ciones recogidos en los instantes t1, t2, . . . , tm, y las derivadas temporales de estas

mediciones (ya sean dato o aproximaciones numéricas). Estos datos se agrupan en

las matrices X y Ẋ, respectivamente:

X =



x1(t1) x2(t1) · · · xn(t1)

x1(t2) x2(t2) · · · xn(t2)
... ... . . . ...

x1(tm) x2(tm) · · · xn(tm)


, Ẋ =



ẋ1(t1) ẋ2(t1) · · · ẋn(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn(t2)
... ... . . . ...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)


∈ Rm×n,

A continuación, se forma una matriz Θ(X), cuyas columnas consisten de las

funciones que elegimos como Θ(x) aplicadas sobre los datos de las trayectorias:

Θ(X) =


| | |

θ1(X) θ2(X) . . . θℓ(X)

| | |

 ∈ Rm×p. (6.1.1)

Por ejemplo, si Θ(x) = {θ1(x), θ2(x), . . . , θℓ(x)} son monomios de grado 2 en Rn

tendríamos

Θ(X) =


x1(t1)2 x1(t1)x2(t1) . . . xn(t1)2

| | |

x1(tm)2 x1(t)x2(tm) . . . xn(tm)2

 .
Nuestra incógnita en este caso es un conjunto de vectores de coeficientes dispersos

(agrupados en una matriz)

Ξ =


| | |

ξ1 ξ2 . . . ξn

| | |

 ∈ Rp×n.

El vector ξi proporciona los coeficientes para una combinación lineal de funciones

base θ1(x), θ2(x), . . . , θℓ(x) que representan la i-ésima función componente de f ,

fi(x). De forma tal que

fi(x) =
(
θ1(x), θ2(x), . . . , θℓ(x)

)
ξi.
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Con cada uno de los objetos X, Ẋ, Θ(X) y Ξ definidos, podemos escribir el

problema de aproximación subyacente de SINDy:

Ẋ = Θ(X)Ξ. (6.1.2)

Típicamente en la práctica no contamos con los datos de la matriz Ẋ, por lo que

debemos utilizar una aproximación numérica. Adicionalmente, los datos que contie-

ne X pueden estar contaminados con ruido, por lo que la ecuación que buscamos

resolver en la práctica es de la forma:

Ẋ = Θ(X)Ξ + ηZ, (6.1.3)

donde Z es una matriz con entradas gaussianas independientes e idénticamente

distribuidas con media cero, y η es la magnitud del ruido. Así, buscamos una solución

dispersa para un sistema sobre determinado con ruido. El método LASSO clásico

funciona bien con este tipo de datos, proporcionando una regresión dispersa, sin

embargo, puede resultar computacionalmente costoso para conjuntos de datos muy

grandes.

Una alternativa es implementar el algoritmo de mínimos cuadrados secuenciales

con umbral. Lo introducimos coloquialmente y lo formalizamos mas adelante en el

Algoritmo 1. En este algoritmo, se comienza con una solución de mínimos cuadrados

para 6.1.2 y luego se eliminan (mediante un umbral) todos los coeficientes que sean

menores que un cierto valor de corte λ. Una vez que se identifican los índices de

los coeficientes distintos de cero que quedan, se obtiene otra solución de mínimos

cuadrados para Ξ restringida a esos índices.

Estos nuevos coeficientes se vuelven a umbralar utilizando λ, y el procedimiento

se repite hasta que los coeficientes distintos de cero convergen. Este algoritmo es

computacionalmente eficiente y converge rápidamente a una solución dispersa en

pocas iteraciones. El algoritmo también se beneficia de su simplicidad, ya que solo

requiere un único parámetro λ para determinar el grado de dispersión en Ξ.
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6.2. Algoritmo SINDy

En esta sección definiremos formalmente el algoritmo de SINDy y exponemos

algunos resultados de [8], particularmente los que se refieren a la convergencia del

problema original de SINDy planteado en [6]. Desarrollamos en mas detalle el al-

goritmo STLSQ (Sequencially Thresholded Least Squares) que usa PySINDy en su

implementación y además mostramos la relación entre el resultado producido por el

algoritmo y la solución(es) de 6.1.2. Para comenzar, definimos el valor que tomare-

mos como la norma cero de un vector a

∥x∥0 := card(supp(x)) =
∑

j

|xj|0 donde |xj|0 =


0 if xj = 0,

1 if xj ̸= 0,

la cual nos será útil a la hora de definir la función minimizar. Dado un conjunto

S ⊂ [n] definimos xS ∈ Rn de forma tal que

(xS)j =


xj if j ∈ S,

0 if j /∈ S,

y notamos a la pseudoinversa Moore-Perose de una matriz A ∈ Rm×n con m ≥ n

como A†. El problema propuesto en [6] para el caso de una dimensión se reduce al

sistema matricial

Ax = b,

con A ∈ Rm×n, x ∈ Rn y b ∈ Rm . Buscamos resolver este problema de forma tal

que la solución tenga la menor cantidad posible de coordenadas no nulas, es decir,

buscamos promover esparcidad. Para lograr esto, se introduce un umbral fijo λ > 0

como hiperparámetro del método. Al utilizarlo como un término de penalidad l0 el

problema final que buscamos resolver nos queda:

mı́n
x
||Ax− b||22 + λ2||x||0, (6.2.1)

en el cual podemos podemos asumir sin pérdida de generalidad que ||A||2 = 1 ya

que ||c.x||0 = ||x||0 para cualquier c ∈ R− {0}. Para resolver este problema, SINDy

utiliza el siguiente algoritmo iterativo:
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x0 = A†b, (6.2.2)

Sk =
{
j ∈ [n] : |xk

j | ≥ λ
}
, k ≥ 0, (6.2.3)

xk+1 = arg mı́n
x∈Rn : supp(x)⊆Sk

∥Ax− b∥2, k ≥ 0. (6.2.4)

en lo que resta del capítulo, mostraremos algunos de los resultados de [8] que nos

garantizan la convergencia en finitos pasos de la iteración 6.2.2 y la relación entre

los resultados que produce la iteración y los mínimos locales y globales de la función

no convexa:

F (x) := ||Ax− b||22 + λ2||x||0 , x ∈ Rn, ||A||2 = 1. (6.2.5)

A partir de 6.2.2, utilizamos el siguiente algoritmo:

Algorithm 1 Algoritmo SINDy (STLSQ) para Ax = b

Entrada: m ≥ n, A ∈ Rm×n con rango(A) = n, b ∈ Rm, umbral λ > 0
Salida: Solución dispersa aproximada x

1: k ← 0
2: Inicializar x0 ← A†b y S−1 ← ∅
3: S0 ← { j ∈ [n] : |(x0)j| ≥ λ } ▷ elegir λ > 0 tal que S0 ̸= ∅
4: while Sk ̸= Sk−1 do
5: xk+1 ← arg mı́n

x∈Rn : supp(x)⊆Sk

∥Ax− b∥2

6: Sk+1 ← { j ∈ [n] : |(xk+1)j| ≥ λ }
7: k ← k + 1
8: end while
9: return xk

En principio el algoritmo anterior sólo puede utilizarse en problemas de la forma

Ax = b, y la gran mayoría de los resultados teóricos que veremos también trabajan en

este contexto, sin embargo, definiendo un algoritmo SINDy apropiado para E.D.O.s

de mayores dimensiones la extensión de los resultados es inmediata. Extendemos el

Algoritmo 1 en problemas de las forma

A.X = B, (6.2.6)

donde A ∈ Rm×n, X ∈ Rn×p y B ∈ Rm×n. Para aprovecharnos de los resultados en

una dimensión resolveremos p problemas lineales de la forma

A.Colj(X) = Colj(B), ∀1 ≤ j ≤ n, (6.2.7)
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de forma tal que la ejecución del algoritmo SINDy en n > 1 sea simplemente un

ejecución de p instancias paralelas del Algoritmo 1. De esta forma generalizamos

el algoritmo (y mas adelante resultados teóricos) al caso de SINDy aplicado a una

E.D.O. en Rn.

6.3. Convergencia de SINDy a mínimos locales

Teorema 6.3.1. El algoritmo iterativo 6.2.2 converge en a lo sumo n pasos.

Demostración: Sea {xk}k≥0 la sucesión generada al iterar 6.2.2. Por definición,

sop(xk+1) ⊂ Sk, entonces:

Sk+1 ⊂ sop(xk+1) ⊂ Sk.

Si existe k ∈ N tal que Sk = Sk+1 entonces tenemos que

xk+2 = arg mı́n
x∈Rn : supp(x)⊆Sk+1

∥Ax− b∥2,

= arg mı́n
x∈Rn : supp(x)⊆Sk

∥Ax− b∥2

= xk+1,

por lo que xm = xk+1 ∀m ≥ k. Como card(S0) ≤ n necesariamente k ≤ n, por lo

que el algoritmo converge en n pasos. Si no existe tal k ∈ N entonces Sk+1 ⊊ Sk

para cualquier Sk ̸= ∅. Entonces Sn = ∅, por lo que el método debe converger a la

solución trivial en n pasos □

Proposición 6.3.2. Definiendo xk+1 como en 6.2.2 vale que :

(AT (Axk+1 − b))Sk
= 0.

Demostración: Por definición del algoritmo,

xk+1 = arg min
x∈Rn, supp(x)⊆Sk

∥Ax− b∥2
2.

Sea el residual

r := Axk+1 − b.
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Tomemos cualquier vector de perturbación h ∈ Rn cuyo soporte esté contenido

en Sk (es decir, hj = 0 para j /∈ Sk). Consideremos la función en una variable

ϕ(t) := ∥A(xk+1 + th)− b∥2
2 = ∥r + tAh∥2

2.

Como xk+1 es un minimizante entre los vectores con soporte en Sk, t = 0 es un

minimizante de ϕ. Por lo tanto, ϕ′(0) = 0. Calculamos la derivada en t = 0:

ϕ′(t) = 2⟨Ah, r + tAh⟩ ⇒ 0 = ϕ′(0) = 2⟨Ah, r⟩. (6.3.1)

Así, ⟨Ah, r⟩ = 0 para todo h soportado en Sk. Reescribimos ⟨Ah, r⟩ como ⟨h,AT r⟩.

Como lo anterior vale para todo h con sop(h) ⊆ Sk, obtenemos

⟨h, (AT r)Sk
⟩ = 0 para todo tal h.

El único vector en R|Sk| ortogonal a todos los vectores es el vector nulo, por lo que

(AT r)Sk
= 0,

lo cual es precisamente lo que buscabamos probar. □

Teorema 6.3.3. La sucesión generada al iterar 6.2.2 es estríctamente decreciente o

estacionaria para la función F (x) (como en 6.2.5).

Demostración: Definimos la variable auxiliar yk := xk
Sk
, k ∈ N, de esta forma

cumple la siguiente relación:

supp(xk+1) ⊂ Sk = supp(yk) ⊂ supp(xk).

Luego, por 6.2.2 tenemos que

||Axk+1 − b||2 ≤ ||Ayk − b||2 y ||xk+1||0 ≤ ||yk||0

Adicionalmente, por 6.3.2, al ser xk+1 la solución de cuadrados mínimos sobre Sk

tenemos que (AT (Axk+1 − b))Sk
= 0, por lo que tenemos que

(xk+1)Sk
= ((AtA)−1Ab)Sk

= A†
Sk
b.
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Para ver el decrecimiento de la función F (x) definimos la siguiente función au-

xiliar

G(x, y) := ∥Ax− b∥2
2 − ∥A(x− y)∥2

2 + ∥x− y∥2
2 + λ2∥x∥0, x ∈ Rn, (6.3.2)

como nos encontramos en el caso en el que ||A||22 = 1 tenemos que

−∥A(x− y)∥2
2 + ∥x− y∥2

2 ≥ −||A||22∥x− y∥2
2 + ∥x− y∥2

2 = 0,

de lo que se sigue que G(x, y) ≥ F (x) para cualquier par x, y ∈ Rn.

Definimos la matriz B := I − AtA, como la matriz AtA es de rango n, los

autovalores de B son de la forma 1− γi con 0 < γi ≤ 1 autovalor de AtA, luego los

autovalores de B necesariamente están en el intervalo [0,1]. Luego, tenemos que:

F (xk+1) = ∥Axk+1 − b∥2
2 + λ2∥xk+1∥0

≤ ∥Axk+1 − b∥2
2 + λ2∥xk+1∥0 + ∥xk − yk∥2

B

≤ ∥Ayk − b∥2
2 + λ2∥yk∥0 + ∥xk − yk∥2

B

≤ ∥Ayk − b∥2
2 + λ2∥yk∥0 + (xk − yk)T (I− ATA)(xk − yk)

= ∥Ayk − b∥2
2 + λ2∥yk∥0 + ∥xk − yk∥2

2 + ∥A(xk − yk)∥2
2

= G(yk, xk).

Es decir, F (xk+1) ≤ G(yk, xk).

Ahora demostraremos que G(yk, xk) ≤ G(xk, xk). Usando la definición de nuestra

variable auxiliar tenemos que:

xk − yk = xk − xk
Sk

=: xk

S
k ,

donde Sk = {1, . . . , n}\Sk. Restando las evaluaciones de nuestra función auxiliar

vemos que:

G(yk, xk)−G(xk, xk)

= ∥Ayk − b∥2
2 − ∥A(yk − xk)∥2

2 + ∥yk − xk∥2
2 + λ2∥yk∥0 − ∥Axk − b∥2

2 − λ2∥xk∥0

= −2⟨b, Ayk⟩+ 2⟨Ayk, Axk⟩ − 2∥Axk∥2
2 + 2⟨b, Axk⟩+ ∥xk − yk∥2

2 + λ2
(
∥yk∥0 − ∥xk∥0

)
= −2⟨yk − xk, AT(b− Axk)⟩+ ∥xk − yk∥2

2 + λ2
(
∥yk∥0 − ∥xk∥0

)
= −2

〈
xk

Sk , AT(Axk − b)
〉

+
∥∥∥xk

S
k

∥∥∥2

2
+ λ2

(
∥yk∥0 − ∥xk∥0

)
.
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Por definición de nuestras variables auxiliares tenemos que

supp(xk

S
k) = supp(xk

S
k∩supp(xk)

) ⊂ supp(xk) ⊂ Sk−1,

y por la Proposición 6.3.2 tenemos que (At(Axk − b))Sk−1 = 0. Juntando ambas

propiedades queda claro que
〈
xk

Sk , AT(Axk − b)
〉

= 0. Adicionalmente,
∥∥∥xk

S
k

∥∥∥2

2
≤

λ2card(supp(xk) ∩ Sk), luego aplicando la definición de ||.||0 nos queda la cota:

G(yk, xk)−G(xk, xk) ≤ λ2card(supp(xk) ∩ Sk) (6.3.3)

+λ2
(
card(Sk)− card(supp(xk))

)
.

Analizamos primero el caso supp(xk)∩Sk = ∅. Esto nos dice que xk = yk = xk
Sk ,

por lo que Sk = supp(xk). En conjunto con (6.4) tenemos que

xk+1 = arg mı́n
x∈Rn:supp(x)⊆supp(xk)

∥Ax− b∥2.

Supongamos que xk+1 ̸= xk, entonces tenemos que

∥Axk+1 − b∥2 < ∥Axk − b∥2.

pero supp(xk+1) ⊂ supp(xk) = Sk ⊂ Sk−1, por lo que usando (6.4) llegamos a

una contradicción. Entonces xk+1 = xk. Si estamos en el caso supp(xk) ∩ Sk ̸= ∅,

observamos que

card(supp(xk))− card(Sk) = card(supp(xk) ∩ Sk),

por lo que obtenemos a partir de 6.3.3, obtenemos que G(yk, xk) − G(xk, xk) < 0.

Se sigue que xk+1 < xk. □

Finalmente, demostramos que el resultado del algoritmo de SINDy para un pro-

blema de una dimension converge a un mínimo local. Previo a esto recordamos la

definición

∥x∥0 =
∑

j

|xj|0 donde |xj|0 =


0 if xj = 0,

1 if xj ̸= 0.
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Teorema 6.3.4. Sea {xk}k≥0 la sucesión generada por el esquema iterativo definido

en 6.2.2. Entonces {xk}k≥0 converge a un punto fijo del esquema. Además, dicho

punto fijo es un minimizante local de la función objetivo (ver 6.2.5):

F (x) = ∥Ax− b∥2
2 + λ2∥x∥0.

Demostración. Por 6.3.1 sabemos que el esquema termina en un número finito de

pasos. Es decir, existe M ∈ N tal que

xM+1 = xM , SM+1 = SM .

En particular, esto implica de manera inmediata que
∞∑

k=1
∥xk+1 − xk∥2

2 <∞,

pues sólo hay a lo sumo M términos no nulos en la suma. Sea x∗ = xM el estado

estacionario. Por definición del esquema 6.2.2, x∗ satisface

x∗ = arg mı́n
x∈Rn

supp(x)⊆S∗

∥Ax− b∥2,

S∗ = { j : |x∗
j | ≥ λ }.

(6.3.4)

pues x∗ es un punto fijo de la iteración.

Veamos que el punto x∗ es efectivamente un mínimo local de F (x). Usando la

Propiedad 6.3.2 tenemos que

(At(Ax∗ − b))S∗ = 0, (6.3.5)

además, x∗
j ̸= 0 si y sólo si |x∗

j | ≥ λ por 6.3.4, pues de lo contrario variaría S∗, lo

cual contradice que x∗ sea punto fijo.

Para ver que x∗ efectivamente es un mínimo local de F (x) nos basta con probar

la existencia de un ϵ > 0 tal que

F (x∗ + z) ≥ F (x∗) para cualquier z ∈ Rn con ||z||∞ < ϵ.

Sean

U := {j ∈ [n] : x∗
j = 0}, y U = supp(x∗) = {j ∈ [n] : |x∗

j | ≥ λ} = S∗.
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Fijando z ∈ Rn y tomando G(·, ·) como en 6.3.2, tenemos que

G(x∗ + z, x∗)−G(x∗, x∗) = 2⟨Az,Ax∗ − b⟩+ λ2
(
∥x∗ + z∥0 − ∥x∗∥0

)
+ ∥z∥2

2.

Si notamos aj como la j-ésima columna de A obtenemos la siguiente simplificación:

2⟨Az,Ax∗ − b⟩+ λ2 (∥x∗ + z∥0 − ∥x∗∥0)

=
∑
j∈U

(
2aT

j (Ax∗ − b)zj + λ2|zj|0
)

+
∑
j∈Ū

(
2aT

j (Ax∗ − b)zj + λ2(|x∗
j + zj|0 − |x∗

j |0)
)

=
∑
j∈U

(
2aT

j (Ax∗ − b)zj + λ2|zj|0
)

+
∑
j∈Ū

λ2(|x∗
j + zj|0 − |x∗

j |0). (6.3.6)

Supongamos que existe ϵ > 0 tal que 6.3.6 es mayor a 0 para cualquier z ∈ Rn tal

que ∥x∗ − z∥∞ < ϵ: Entonces G(x∗ + z, x∗)−G(x∗, x∗) ≥ ∥z∥2
2 y tenemos que

F (x∗ + z) =G(x∗ + z, x∗) + ∥Az∥2
2 − ∥z∥2

2

≥G(x∗ + z, x∗)− ∥z∥2
2

≥G(x∗, x∗)

=F (x∗).

Luego para finalizar nos basta con encontrar tal ϵ > 0 tal que si ∥x∗ − z∥∞ < ϵ,

entonces

∑
j∈U

(
2aT

j (Ax∗ − b)zj + λ2|zj|0
)

+
∑
j∈Ū

λ2(|x∗
j + zj|0 − |x∗

j |0) > 0.

Si j ∈ U entonces |x∗
j | ≥ λ. Si |zj| < λ para todo 1 ≤ j ≤ n, y |x∗

j +zj|0−|x∗
j |0 = 0,

luego, si |zj| < λ para todo j ∈ U usando 6.3.6 tenemos que

2⟨Az,Ax∗ − b⟩+ λ2
(
∥x∗ + z∥0 − ∥x∗∥0

)
= 2aT

j (Ax∗ − b)zj + λ2|zj|0.

Miremos el caso j ∈ U . Si para cualquier j ∈ U vale que zj = 0 entonces

2aT
j (Ax∗ − b)zj + λ2|zj|0 = 0.
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Si |zj| > 0 y λ2 > 2|at
j(Ax∗ − b)zj|, entonces

2aT
j (Ax∗ − b)zj + λ2|zj|0 = 2aT

j (Ax∗ − b)zj + λ2 ≥ 0.

Luego, para j ∈ [n] nos basta con pedir |zj| ≤ mı́n
{
λ, λ2

2 |aT
j (Ax∗−b)|

}
. Finalmente

pedimos

0 < ϵ ≤ mı́n
{

mı́n
j∈[n]

λ2

2 |aT
j (Ax∗ − b)| , λ

}
.

y se cumple que si ∥z∥∞ < ϵ, por 6.3.6 vale que

G(x∗ + z, x∗)−G(x∗, x∗) ≥ ∥z∥2
2.

Para finalizar, mostramos dos teoremas mas, uno de ellos un resultado adicional

presente en [8] que no demostraremos, y un segundo que es un resultado final que

resume todo lo que hemos visto en el capítulo.

Teorema 6.3.5. Un minímo global de la función 6.2.5 es un punto fijo del esquema

iterativo generado por 6.2.2

Teorema 6.3.6. Supongamos que m ≥ n. Sea A ∈ Rm×n con ∥A∥2 = 1, b ∈ Rm, y

λ > 0. Sea {xk}k≥0 la sucesión generada por 6.2.2. Definimos la función objetivo F

por 6.2.5. Entonces se cumple que:

1.) la sucesión converge a un punto fijo del esquema iterativo definido por 6.2.2

en a lo sumo n pasos.

2.) Un punto fijo del esquema es un minimizante local de F (6.2.5);

3.) un minimizante global de F es un punto fijo del esquema iterativo SINDy.

4.) La función objetivo F disminuye estrictamente en la sucesión {xk}k≥0 a menos

que las iteraciones sean estacionarias.
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6.4. Relación entre la respuesta de SINDy y la

verdadera solución

En la sección anterior exploramos la relación entre el algoritmo SINDy y los

mínimos de la función (6.2.5). Para finalizar este capítulo daremos algunos resultados

que relacionan la solución que da la iteración de SINDy con las soluciones verdaderas

del sistema lineal Ax = b.

Teorema 6.4.1. Sea x∗ ∈ Rn un vector tal que Ax∗ = b, con A de rango completo.

Definimos S := sop(x∗). Una condición suficiente y necesaria para lograr recuperar

a x∗ es un solo paso utilizando el esquema iterativo 6.2.2 es

mı́n
j∈S
|(A†b)j| ≥ λ > máx

j∈S
|(A†b)j|. (6.4.1)

Demostración. Como vimos en 6.2.2, x0 = A†b y S0 = {j ∈ [n] : |x0
j | ≥ λ}. Como

x0
j = (A†b)j ∀1 ≤ j ≤ n entonces, si vale 6.4.1, tenemos que S = S0. Por como

hemos definido S y S0 se sigue que

S = S0 ⇐⇒ S = {j ∈ [n] : (A†b)j ≥ λ} ⇐⇒ mı́n
j∈S
|(A†b)j| ≥ λ > máx

j∈S
|(A†b)j|

Supongamos que x∗ puede recuperarse mediante el esquema iterativo 6.2.2 en un

solo paso, es decir, que x1 = x∗. De acuerdo con el criterio de parada del Algoritmo

1, se tiene que S0 = S1. Luego tenemos que

S1 = {j ∈ [n] : |(x1)j| ≥ λ} = {j ∈ [n] : (x∗)j ≥ λ} = S

Por tanto, S0 = S, por lo cual vale 6.4.1. Recíprocamente, supongamos que 6.4.1 es

válida, lo cuál hemos que equivale a S0 = S. La hipótesis Ax∗ = b implica que

∥Ax∗ − b∥2 = mı́n
x∈Rn:supp(x)⊆S

∥Ax− b∥2,
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ya que supp(x∗) ⊆ S y la norma es cero. Como A es inyectiva(por ser de rango

completa), la solución es única, y por tanto, usando la definición de x1 tenemos que

x∗ = arg mı́n
x∈Rn:supp(x)⊆S

∥Ax− b∥2 = arg mı́n
x∈Rn:supp(x)⊆S0

∥Ax− b∥2 = x1.

Es decir, x∗ puede recuperarse mediante el esquema iterativo en un solo paso.

El resultado que hemos demostrado se extiende fácilamente a Rn utilizando el

planteo que vimos en 6.2.7. Dejamos a continuación el resultado generalizado al

problema matricial. Vale aclarar, que en el algoritmo SINDy generalizado para mayor

dimensión consideramos a un paso como la iteración individual de SINDy en cada

uno de los problemas de 6.2.7.

Teorema 6.4.2. Sea A ∈ Rm×n (m ≥ n) de rango completo (rg(A) = n), sea

X∗ ∈ Rn×p una matriz tal que AX∗ = B con B ∈ Rm×p. Para cada i ∈ {1, . . . , p},

definimos el conjunto soporte de la i-ésima columna de X∗ por

Si := sop
(
Coli(X∗)) = { j ∈ [n] : X∗

j,i ̸= 0 }. (6.4.2)

Sea λ > 0 el umbral usado en el Algoritmo 1(generalizado columna a columna).

Entonces, una condición necesaria y suficiente para que X∗ se recupere en un único

paso por el esquema iterativo (generalizado a sistemas matriciales) es

mı́n
1≤i≤p

mı́n
j∈Si

∣∣∣(A†B)j,i

∣∣∣ ≥ λ > máx
1≤i≤p

máx
j∈Si

∣∣∣(A†B)j,i

∣∣∣, (6.4.3)

donde Si = [n] \ Si y A† = (ATA)−1AT es la pseudo-inversa (bien definida por la

hipótesis de rango completo).



Capítulo 7

Dinámicas de Replicador a través

de SINDy

En este capítulo nos centramos en la aplicación de SINDy a la ecuación 4.1.1,

para esto utilizaremos la librería de Python PySINDY (ver [6]), la cuál ejecuta el al-

goritmo tal como lo hemos descrito en el capítulo anterior en el Algoritmo 1. Nuestro

objetivo es obtener la ecuación del replicador, o una aproximación de ella, a partir

de datos empíricos de trayectorias de nuestro sistema usando SINDy en combinación

con una familia apropiada de funciones Θ. A lo largo del capítulo tendremos que

armar bases de datos de trayectorias de distintas dinámicas de replicadores, para

este fin utilizamos un método Runge-Kutta RK-45, el paso y el intervalo utilizado

se aclararán en cada instancia.

7.1. Aproximando la ecuación del replicador con

SINDy

Partimos de la suposición de que los datos discretos con los que estaremos tra-

bajando provienen de de una dinámica de replicador genérica. A raíz de esto, su-

pondremos que la ecuación que buscamos aproximar es de la forma 4.3.1, es decir,

ẋi = xi(ai(x)− a(x)), 1 ≤ i ≤ n,

61
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motivo por el cual trabajamos bajo la suposición de que, para cualquier ẋi = fi(x)

con 1 ≤ i ≤ n, si xi = 0 entonces fi(x) = 0. Esta suposición nos ayuda a reducir

el conjunto de funciones Θ que elegimos para aproximar las fi. Para las familias

polinomiales nos permite utilizar como Θ a la base de Pp(Rn)\P0(Rn) formada por

polinomios mónicos de un término, es decir,

Θ(x) = {xα : 0 < |α| ≤ p}. (7.1.1)

Dado un grado p ∈ N, definimos la matriz de Vandermonde multivariada para

un conjunto de puntos {x1, . . . ,xm} ⊂ Rn como

V [x1, . . . ,xm] =


xα(1)

1 ... xα(Np)
1

| ... |

xα(1)
m ... xα(Np)

m

 , (7.1.2)

donde α(1), . . . , α(Np) es una numeración del conjunto de los multi-indices de grado

menor igual a p para puntos de Rn,

Ip = {α ∈ (Z≥0)n :
n∑

i=1
|αi| ≤ p}, de cardinal Np := #(Ip) =

(
n+ p

p

)
.

En particular, suponiendo que α(1) = 0, dado un conjunto de puntos {xi}1≤i≤m ⊂

Rn, tenemos que

Θ(X) = (V [x1, . . . ,xm])−1 =


xα(2)

1 ... xα(Np)
1

| ... |

xα(2)
m ... xα(Np)

m

 (7.1.3)

al plantear el sistema de ecuaciones de SINDy utilizando la familia de funciones

7.1.1.

A lo largo del capítulo, siempre que implementemos SINDy en una ecuación del

replicador en Rn, no será sobre el sistema de n ecuaciones que evolucionan en Sn

(como en 4.1.1), sino que previo a buscar una aproximación con SINDy remplazamos

xn = 1−
n−1∑
i=1

xi (7.1.4)
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de forma explícita en las ecuaciones. Es decir, aplicamos SINDy en el sistema de n−1

ecuaciones resultantes que evolucionan en Rn−1. Esto se debe al hecho al hecho de

que el remplazo explícito 7.1.4 nos da un sistema de ecuaciones único en Rn−1 para la

evolución del sistema (aún que el recorrido que nos interesa es en Rn
≥0), mientras que

en el caso del sistema en Rn restringido a Sn tenemos múltiples formas de escribir

una misma evolución sobre el simplex. Para dar un ejemplo de esto usamos el juegos

de Halcones y Palomas que introdujimos en 2.5.1. Dadas dos matricesG−C
2 G

0 G
2

 y

 0 G
2

C−G
2 0

 ,
al remplazarlas en el replicador clásico 4.1.1, nos brindan dinámicas idénticas sobre

S2. Esto se debe a la Propiedad 4.1.1, ya que restando una constante en cada columna

podemos obtener una matriz partiendo de la otra. Sin embargo, si remplazamos la

primera matriz en el replicador clásico obtenemos
ẋ1 = x1

[
G− C

2 x1 +Gx2 −
(
x1

(
G− C

2 x1 +Gx2

)
+ x2

(
G

2 x2

))]
,

ẋ2 = x2

[
G

2 x2 −
(
x1

(
G− C

2 x1 +Gx2

)
+ x2

(
G

2 x2

))]
,

mientras que para la segunda matriz obtenemos la dinámica
ẋ1 = x1

[
G

2 x2 −
(
x1

(
G

2 x2

)
+ x2

(
C −G

2 x1

))]
,

ẋ2 = x2

[
C −G

2 x1 −
(
x1

(
G

2 x2

)
+ x2

(
C −G

2 x1

))]
.

Siempre que comenzamos en un punto x ∈ S2 la evolución de ambas dinámicas es la

misma, sin embargo, a la hora de aplicar SINDy, el problema que genera está claro,

no tenemos una única expresión algebraica para describir la dinámica. Para este

caso del replicador clásico, si Φ(x) ∈ RNp es un vector con evaluaciones de todos los

monomios de grado menor o igual a p (con p ≥ 3) de x ∈ Rn, no existe un único

vector ξi tal que

ẋi = ξT
i .Φ(x)
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para ningún 1 ≤ i ≤ n. La solución que proponemos a lo largo del capítulo es

implementar SINDy en el sistema

ẋi = xi

[
ai(1−

n−1∑
k=1

xk,x−n)− a(1−
n−1∑
k=1

xk,x−n)
]
, 1 ≤ i ≤ n− 1, (7.1.5)

el cual tiene una única expresión en Rn−1. Una vez hecha la aproximación, si llama-

mos xi(t) con 1 ≤ i ≤ n − 1 a las trayectorias de la dinámica aproximadora, para

ver la evolución de nuestra aproximcación en Sn nos basta con mirar

x =
(
x1(t), . . . , xn−1(t), 1−

n−1∑
i=1

xi(t)
)
.

En nuestro caso utilizamos xn para escribir la restricción del simplex de forma explí-

cita, esta elección es arbitraria ya que nos es indistinto en que variable xi, 1 ≤ i ≤ n,

usamos para el remplazo explícita de la condición 7.1.4.

A continuación, definimos las matrices necesarias para escribir el problema de

aproximación de una dinámica de replicador con SINDy. Tal como dijimos al inicio,

planteamos SINDy con la familia de monomios de grado menor o igual a p ∈ N,

7.1.1. Notamos

πn : Rn → Rn−1

a la proyección canónica sobre las primer n − 1 coordenadas de un vector. Si

{x(tj)}1≤j≤m ⊂ Sn es una base de datos a partir de trayectorias de una ecuación del

replicador, entonces para aproximar una ecuación de la forma 7.1.5 tomamos la base

de datos {πn(x(tj))}1≤j≤n ⊂ Rn−1. Hacemos el mismo proceso con las derivadas y

tomamos, {πn(ẋ(tj))}1≤j≤m. De esta forma, para aplicar SINDy con la familia 7.1.1

tenemos

Θ(X) = (V [πn(x(t1)), . . . , πn(x(tm))])−1 ∈ Rm×(Np−1) ( V como en 7.1.3) , (7.1.6)

y una matriz de derivadas

Ẋ =



ẋ1(t1) ẋ2(t1) · · · ẋn−1(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn−1(t2)
... ... . . . ...

ẋ1(tm) ẋ2(tm) · · · ẋn−1(tm)


∈ Rm×(n−1).
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Ya definidos los elementos necesrarios, nuestra incógnita será una matriz Ξ ∈

R(Np−1)×(n−1) tal que

Θ(X)Ξ ≈ Ẋ. (7.1.7)

7.2. Ejemplo: SINDy en el replicador clásico

Ejemplo 1

Para comenzar, miramos el caso de un juego matricial simétrico de dos jugadores,

cada uno con dos estrategias posibles. Utilizamos la siguiente matriz de payoff 0 7

10 0

 ,
cuya ecuación del replicador, tal como vimos en 5.1.3, puede reducirse a

ẋ = x(1− x) (7− 17x) . (7.2.1)

Para aproximar esta ecuación del replicador utilizando SINDy, creamos un base

de datos con m ∈ N trayectorias distintas, cada una con un punto inicial elegido de

forma aleatoria. A continuación mostramos dos aproximaciones.

Para la primera aproximación, hemos elegido m = 3 puntos iniciales aleatorios

con distribución uniforme sobre el simplex, para cada uno de ellos hemos aproxima-

do su trayectoria hasta un tiempo final tf = 0, 01 con un paso dt = 0, 001 (usando el

método RK-45 tal como aclaramos al inicio del capítulo). Esta será la base de datos

de trayectorias que utilizaremos para ajustar el método SINDy.1. Utilizamos la fami-

lia de funciones Θ(x) = {x, x2, ..., x6} y definimos el hiperparámetro de umbralado

como λ = 0, 3.

Una vez creada la base de datos y elegidos el hiperparámetro λ > 0 y la familia de

funciones Θ, podremos escribir nuestro problema de aproximación de una dinámica
1Para observar la base de datos utilizada y el ajuste via SINDy véase el archivo

ej1_replicador_clasico.ipynb.
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como en 7.1.7. Resolvemos este sistema usando el Algoritmo 1, implementado a

través de PySINDy (ver [7]), a partir de lo cual obtenemos siguiente dinámica:

˙̂x = 7,0000x̂− 24,0008x̂2 + 17,0072x̂3 = x̂(0,9994− x̂)(7,0045− 17,007x̂). (7.2.2)

Como puede observarse tras una primera inspección, es muy similar a la dinámica del

replicador original, 7.2.1. Previo a un análisis del error, en la Figura 7.1, comparamos

algunas trayectorias de la dinámica del replicador original, 7.2.1, con trayectorias

de nuestra aproximación, 7.2.2 (aproximadas con un método RK-45 con paso dt =

0, 001). Las trayectorias graficadas parten de puntos iniciales que están por fuera de

la base de datos con la que hemos entrenado la dinámica de SINDy, como se puede

observar, en estos casos SINDy logra una trayectoria casi idéntica a la original.

Figura 7.1: Trayectrias originales del replicador clásico 7.2.1 y las aproximadas por
su aproximación con SINDy, 7.2.2

Análisis del error: Ejemplo 1

Dado un punto inicial x0 ∈ Sn y una dinámica del replicador ẋ = f(x),

x(0) = x0,
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junto con una segunda dinámica en Sn que la aproxima,
˙̂x = f̂(x̂),

x̂(0) = x̂0,

definimos el error de x̂ con respecto a x para la trayectoria que comienza en x0 ∈ Sn

a tiempo t ≥ 0 como

e(t; x0) = ∥x̂(t)− x(t)∥∞. (7.2.3)

Definimos el error en el punto x0 ∈ Sn como

e(x0; x̂,x) = sup
t≥0

e(t; x0). (7.2.4)

De esta forma, el error de la dinámica x̂ con respecto a la dinámica del replicador

x es

e(x̂,x) = máx
x0∈Sn

e(x0; x̂,x). (7.2.5)

Esta última es la forma de cuantificar el error que mas información nos ofrece acerca

de la diferencia entre ambas dinámicas, su principal problema es que en principio, no

podemos calcular 7.2.5. Un criterio alternativo para cuantificar el error mas sencillo,

aunque menos informativo, es calcular o aproximar el valor

∥f − f̂∥∞ sobre Sn. (7.2.6)

Con el fin de obtener una aproximación del error 7.2.5 utilizaremos el siguiente

algoritmo
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Algorithm 2 Aproximación numérica del error en norma infinito entre soluciones
de dos E.D.O.
Entrada: Dos funciones f(x) y f̂(x) que definen las E.D.O.
Entrada: Intervalo temporal [0, tf ]
Entrada: Número de puntos temporales k ∈ N
Entrada: Conjunto de condiciones iniciales {x(k)

0 } ⊂ Sn

1: teval ← linspace(0, tf , k)
2: eaprox ← 0
3: Para cada x(k)

0 do
4: x(t)← SolveIVP

(
f, x

(k)
0 , teval

)
5: x̂(t)← SolveIVP

(
f̂ , x

(k)
0 , teval

)
6: Calcular la norma ∞ discreta:

e← máx
t∈teval

∥x(t)− x̂(t)∥∞

7: Si e > eaprox then
8: eaprox ← e
9: end Si

10: end Para
11: return eaprox

Para aproximar el error global (7.2.5) de la dinámica 7.2.2, llamada x̂(t), con

respecto a 7.2.1, llamada x(t), hemos usando al Algoritmo 7.2, tomando como

{x(k)
0 } ⊂ S1 el conjunto de k = 100 puntos equiespaciados en el intervalo (0, 1).2

Obtuvimos la aproximación

e(x̂,x) ≈ 0,0038.

Como en este caso ambas dinámicas son polinomios de grado 3, calcular el error

de las expresiones de las derivadas (7.2.6) puede hacerse analíticamente. Llamamos

f(x) = x(1− x) (7− 17x),

f̂(x) = x(0,9994− x) (7,0045− 17,007 x),

el error entre las derivadas nos queda

∥f − f̂∥∞,[0,1] = 0,0064.

En los ejemplos que siguen, nos centraremos en la aproximación y el análisis de 7.2.5,

si bien debemos aproximarla numéricamente y en un intervalo temporal finito, nos
2La implementación del Algoritmo 7.2 puede verse en el archivo auxiliar utils_1D.py
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da un criterio de cuanto difieren realmente las dinámicas a lo largo de un periodo

considerablemente superior al tiempo de la base de datos.

Ejemplo 2: Datos ruidosos

En este ejemplo continuaremos usando 7.2.1 como dinámica a ser aproximada

vía SINDy. Para nuestra segunda aproximación vamos a trabajar con una base de

datos con condiciones menos favorables. Para lograr esto, tomaremos una base de

datos de trayectorias aproximadas con un paso mas grande en el método RK-45,

disminuyendo su precisión, y agregando un ruido de distribución N (0, ϵ). El proble-

ma que resolveremos con SINDy en este caso es de la forma 6.1.3. Puntualmente,

la base de datos que usamos en este caso está formada por 10 trayectorias cuyos

puntos iniciales se han elegido aleatoriamente de forma unforme sobre el intervalo

[0, 1]. Las trayectorias con aproximadas con un paso dt = 0, 005 (en comparación

a 0, 001 en el caso anterior) y tiempo final tf = 0, 25, luego intervenimos en cada

punto de cada trayectoria agregando ruido de distribución N (0, ϵ), con ϵ = 0,00025.

El umbral λ lo mantenemos en 0, 3.

Tras plantear el sistema de la forma 7.1.7 con esta nueva base de datos y resolverlo

utilizando el Algoritmo 1 implementado a través de PySINDy obtenemos la dinámica

˙̂x = 35,950 x̂− 356,462 x̂2 + 1410,049 x̂3

−2704,127 x̂4 + 2453,778 x̂5 − 836,052 x̂6.
(7.2.7)

En primer lugar podemos ver que la derivada de 7.2.7 no es un polinomio de

grado 3, es decir, no hemos logrado recrear la verdadera forma de la dinámica. En la

Figura 7.2 podemos observar una comparación entre las trayectorias de la ecuación

del replicador 7.2.1 y la segunda aproximación de 7.2.1 que hemos hecho con SINDy,

7.2.7. Comparando estas trayectorias con las de la Figura 7.1 podemos apreciar que

nuestra aproximación de las trayectorias ha empeorado considerablemente al insertar

un ruido normal en las trayectorias y aumentar el paso con el que aproximamos las

trayectorias.



Capítulo 7. Dinámicas de Replicador a través de SINDy 70

Figura 7.2: Trayectrias originales del replicador clásico 7.2.1 y las aproximadas por
su aproximación con SINDy con datos ruidosos, 7.2.7

Análisis del error: Replicador clásico con datos ruidosos

Para analizar el error entre la dinámica obtenida por SINDy con datos ruidosos,

7.2.7, y la dinámica original, 7.2.1, usamos el Algoritmo 7.2. Nuevamente, tomamos

{x(k)
0 } ⊂ S1 como el conjunto de k = 100 puntos equiespaciados en el intervalo (0, 1).

Al igual que en el ejemplo anterior, llamamos x̂ a la dinámica correspondiente a

7.2.7 y notamos f̂(x) a la expresión de su derivada, análogamente, x y f(x) son la

dinámica y derivada de la aproximación 7.2.1 respectivamente. Así, obtenemos la

aproximación3

e(x, x̂) ≈ 0, 182, (7.2.8)

un error considerablemente mayor a la aproximación hecha en 7.2.2. Es razonable

preguntarse si el principal culpable del deterioro del modelo obtenido vía SINDy es

el ruido gaussiano o el aumento del paso de la base de datos. En la misma sección en

la que hemos programado esta aproximación puede verse que si uno utiliza la misma

base de datos, pero sin ruido gaussiano, logra una aproximación con e(x, x̂) ≈ 0,042,

la cual, aun que considerablemente peor que nuestra primera aproximación 7.2.2, nos

indica una alta sensibilidad al ruido por parte de SINDy.
3vease archivo ej1_replicador_clasico.ipynb en el repositorio de Github
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7.3. Ejemplo: SINDy en dinámicas de imitación

En el replicador clásico sabemos que todas las derivadas que estamos observando

son polinomiales, por lo que es esperable que si a SINDy le damos una base de

datos bien confeccionada, logre aproximar la dinámica con relativamente poco error.

Ahora, estamos interesados en ver que pasa en el caso en el que la dinámica de la

cual provienen los datos no es de la forma de un replicador clásico, ya que hay

numerosas dinámicas de modelado mas complejas (véase [5] para ejemplos varios)

que se utilizar para modelar la evolución de estrategias en poblaciones.

Para nuestro análisis, usaremos la dinámica de imitación que introdujimos en

4.4.3, ya que la regla de imitación nos permite incorporar funciones de distintos tipos

fácilmente. De todas formas, aclaramos que el modelo no está pensado solamente

para esta generalización del replicador, sino que simplemente utilizamos la dinámica

de imitación por la variedad de trayectorias que nos provee dentro de un mismo

marco teórico. Miraremos dos casos particulares, el primero será el caso de la regla

de imitación de Fermi, el cuál desarrollamos en el capítulo 5 (ver 5.2.3), y el segundo

será el caso de una regla de imitación Heaviside, que es la dinámica de ”imitar al

mejor”(ver 5.2.5).

Regla de imitación de Fermi con SINDy

En esta instancia aplicaremos SINDy a la ecuación 5.2.3, la cual surge de aplicar

una dinámica de imitación a un juego de replicador clásico en n = 2 con una matriz

de la forma 5.1.2 y una función de imitación sigmoide con β = 1. Para este ejemplo,

usaremos a = 5 y b = 3, de forma tal que la ecuación que aproximaremos con SINDy

es

ẋ = x(1− x)
[ 1
1 + e−5x+3(1−x) −

1
1 + e−3(1−x)+5x

]
. (7.3.1)

Para el entrenamiento con SINDy, utilizamos una base de datos que consta de

7 trayectorias distintas aproximadas con un método de un paso RK-45 con paso

dt = 0,005 con tiempo final tf = 0, 15. Tomamos λ = 0,2 como hiperparámetro de

SINDy, y como hicimos en el ejemplo anterior, tomamos Θ(x) = {x, x2, ..., x6}. Tras
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utilizar la implementación del Algoritmo 1 de PySINDy ([7]) para resolver 7.1.7,

obtenemos la siguiente dinámica para aproximar nuestra dinámica de imitación4

˙̂x = −0,264x̂1 − 7,007x̂2 + 44,159x̂3 − 86,586x̂4 + 71,290x̂5 − 21,586x̂6. (7.3.2)

Como probamos en 5.2.3, la dinámica original tiene un equilibrio de Nash en

el interior del simplex en el punto 0,375 en conjunto con los equilibrios del borde.

Las raíces reales de 7.3.2 son 0, 0.374258 y 1.004291, por lo que logramos obtener

una aproximación muy cercana (inclusive menor al error de truncado del método

con el que aproximamos los datos) del equilibrio de Nash interior de la dinámica

de imitación que estamos modelando. Debajo, en la Figura 7.3 comparamos las

evoluciones de la dinámica 7.3.2 de SINDy con trayectorias de 7.3.1 que no están

en la base de datos con la que hemos ajustado el modelo. Como podemos ver en la

Figura 7.3, el polinomio de grado 6 no solamente tiene raíces reales similares a la

ecuación original, sino que además, con relativamente pocos datos, logra aproximar

muy bien las trayectorias del juego de imitación de Fermi. Las trayectorias con

etiqueta GT (ground truth) son las pertenecen a la dinámica original (tanto en esta

figura como en las siguientes).

Figura 7.3: Comparación entre trayectorias de la dinámica de Fermi original 7.3.1 y
la aproximación de SINDy, 7.3.2

4vease ej2 _dinamica_imitacion.ipynb en el repositorio del proyecto
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Análisis del error: SINDy aplicado a dinámica de Fermi

Para obtener una aproximación del error de 7.3.2 con respecto a 7.3.1, hemos

aproximado 7.2.5 a través del Algoritmo 7.2. Nuevamente, llamamos x̂ a la dinámica

asociada a nuestra aproximación 7.3.2 y x a la dinámica original de la partimos, 7.3.1.

Así, ejecutando el Algoritmo 7.2 con los mismos parametros que en 7.2.8, obtenemos

la aproximación5

e(x, x̂) ≈ 0, 0078.

Regla de imitación con función Heaviside

Para este ejemplo nos mantendremos en el caso de una dinámica de imitación en

n = 2, y nuevamente miraremos el caso en el que ai(x) = (Ax)i con A ∈ R2×2, sin

embargo, ahora tomamos la regla de imitación de “imitar al mejor” que desarrollamos

en 4.4.3. La ecuación nos queda de la forma 5.2.6. En el caso de dimensión dos, con

una matriz de la forma 5.1.2, tenemos la ecuación

ẋ1 = x1x2[1(0,+∞)(ax2 − bx1)− 1(0,+∞)(b.x1 − ax2)].

Tras remplazar x = x2 y x1 = 1− x obtenemos la dinámica

ẋ = x(1− x)
[
1(0,∞)(ax− b(1− x))− 1(0,∞)(b(1− x)− ax)

]
. (7.3.3)

Simplificando, vemos que en 7.3.3, que x ∈ (0, 1) sea un equilibrio de Nash

interior es equivalente a cumplir

1(0,+∞)(−b+ x(a+ b))− 1(0,+∞)(a− x(a+ b)) = 0,

lo cual equivale a que se cumpla −b+ x(a+ b) > 0

b− x(a+ b) > 0,
(7.3.4)

ó  −b+ x(a+ b) ≤ 0

b− x(a+ b) ≤ 0.
(7.3.5)

5vease archivo ej2_imitacion_clasico.ipynb en el repositorio de Github
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La condición 7.3.4 es claramente descartable, por lo que no nos interesa ver cuando

se cumple 7.3.5. Esta condición equivale a

b− x(a+ b) = 0,

por lo que para que un equilibrio de Nash interior en 7.3.3, en caso de existir, será

x̂ = b
a+b

al igual que en el caso del replicador clásico (pues en este caso hemos

calculado el valor de x2).

Nos interesa ver como SINDy responde a esta dinámica de imitación que surge

de la misma matriz que antes, en la que a = 5 y b = 3, y que clase de aproximación

podemos obtener del equilibrio de Nash interior, en este caso (5
8 ,

3
8) (para nuestro

caso 3
8).

Para esto, hemos creado una base de datos con trayectorias a partir de los mismos

puntos iniciales y con el mismo paso en el método de un paso (con el mismo tf ) que

utilizamos en el ejemplo anterior , y con el mismo valor de hiperparámetro λ = 0, 2
6. Mantenemos también la misma familia de funciones Θ(x) = {x, x2, ..., x6}. Al

igual que antes, una vez definida la base de datos, el hiperparámetro y la familia de

funciones Θ resolvemos el sistema 7.1.7 con el Algoritmo 1 implementado a través

de PySINDy ([7]). En este caso, la dinámica resultante del ajuste de SINDy es

˙̂x = 15,94x̂1 − 219,71x̂2 + 1034,13x̂3 − 2188,08x̂4 + 2155,02x̂5 − 806,17x̂6. (7.3.6)

En la Figura 7.4 podemos observar comparaciones entre trayectorias reales de

7.3.3 y las trayectorias de la dinámica proveniente de SINDy generada por 7.3.6. Las

trayectorias de ambas dinámicas han sido aproximadas con el método RK-45 con

paso dt = 0,001. Mirando la figura podemos apreciar una clara diferencia entre las

trayectorias de la dinámica original y las ajustada vía SINDy, sin embargo ninguna

de las trayectorias se sale del simplex.
6El cambio de lambda surge a partir de una búsqueda sobre una grilla en el (0,1) para un λ

mas óptimo, el costo computacional ese leve gracias a la rápida convergencia del algortimo STLSQ
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Análisis del error: Imitación con Heaviside y aproximación polinomial

A continuación analizamos el error de 7.3.6 con respecto a 7.3.3 usando el Algo-

ritmo 7.2 con los mismos parámetros que en 7.2.8. En este caso, obtenemos

e(x, x̂) ≈ 0,108.

Figura 7.4: Comparación entre trayectorias de la dinámica de imitación verdadera,
7.3.3, y su aproximación por SINDy con funciones polinomiales, 7.3.6

Como aclaramos la comienzo del capítulo, trabajamos bajo la suposición de que

las ecuación que buscamos aproximar es de la forma 4.3.1, por lo que en el caso de

7.3.3, al tomar Θ(x) = {x, ...x6}, la aproximación que estamos haciendo es

ẋ = x(1− x)
[
1(0,∞)(ax− b(1− x))− 1(0,∞)(b(1− x)− ax)

]
≈ x[

5∑
i=0

αix
i]. (7.3.7)

Por ende, lo que estamos intentando es aproximar la función

(1− x)
[
1(0,∞)(ax− b(1− x))− 1(0,∞)(b(1− x)− ax)

]
,

con un polinomio de grado 5. Buscamos aplicar SINDy a 7.3.3 con una función de fa-

milias Θ(x) apropiada. Como sabemos, la familia de funciones { 1√
2 , cos(nπx), sen(nπx)}n∈N

es una base ortonormal del espacio L2((−1, 1)) con su clásico producto interno

⟨f, g⟩ =
∫ 1

−1
f(x).g(x).dx.
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Si buscamos aproximar una dinámica de la forma 4.3.1 en n = 2, lo que obtenemos

es una dinámica de la forma 5.2.1, donde a1(x1, x2) y a2(x1, x2) son las funciones de

pagos de cada estragia pura. Luego, bajo suposición de

(1− x).a1(x, 1− x) ∈ L2((−1, 1)) y (1− x).a2(x, 1− x) ∈ L2((−1, 1)), (7.3.8)

tenemos que

(1− x)[a1(x, 1− x)− a2(x, 1− x)] = α0√
2

+
∑
n=1

αn.cos(nπx) + βn.sen(nπx), (7.3.9)

para sucesiones {αn}n≥0, {βn}n≥1 ⊂ R apropiadas. A partir de esto, para aproximar

una dinámica del replicador 4.3.1 en n = 2, cuya dinámica se reduce a

ẋ = x(1− x)[a1(x, 1− x)− a2(x, 1− x)],

bajo la suposición 7.3.8, la familia de funciones

Θ(x) = {xcos(nπx), xsin(nπx), x}1≤n≤N para algún N ∈ N, (7.3.10)

emerge como una alternativa a la familia polinomial que estuvimos usando en los

ejemplos anteriores. En particular, mirando nuevamente la dinámica de imitación

7.3.3, vemos que

(1− x)
[
1(0,∞)(ax− b(1− x))− 1(0,∞)(b(1− x)− ax)

]
∈ L2((−1, 1)),

por lo que utilizar SINDy con Θ(x) como en 7.3.10 parece ser una posible alternativa

para obtener una dinámica similar a 5.2.4.

Veamos que esta idea funciona. Para esto, hemos usamos la misma base de datos

que en el ajuste de 7.3.6, pero hemos remplazado la familia polinomial por 7.3.10

con N = 6, además hemos mantenido el umbral λ = 0,2. En este caso tenemos la

matriz

Θ(X) =


x(t1) x(t1)sen(x(t1)) · · · x(t1)cos(6πx(t1))

... ... . . . ...

x(tm) x(tm)sen(x(tm)) · · · x(tm)cos(6πx(tm))

 ∈ Rm×p, Ξ ∈ Rp,
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a la hora de plantear 7.1.7. Al igual que antes, resolvemos usando el Algoritmo 1

implementado a través de PySINDy 7. La dinámica resultante nos queda

ẋ = −0,433 x cos(πx)− 0,417x cos(2πx) (7.3.11)

En la Figura ?? vemos algunas trayectorias de la dinámica original, 7.3.3 (con la

etiqueta GT la igual que en gráficos anteriores) en conjunto con trayectorias de

7.3.11.

c

Análisis del error: Imitación Heaviside con aproximación trigonométrica

Al igual que en los casos anteriores, aproximamos el error 7.2.5 a través del

Algoritmo 7.2. Usamos los mismos parámetros y la misma notación que en 7.2.8. En

este caso, obtenemos

e(x, x̂) = 0,958,

un error muy pronunciado, ampliamente superior a todos los casos anteriores. Este

error elevado se lo atribuimos al efecto Gibbs: este nos dice que para cualquier

función de L2([−1, 1]), cerca sus discontinuidades, la serie de Fourier presenta fuertes

oscilaciones. En el caso de la dinámica 7.3.3, la discontinuidad de ambas funciones

Heaviside de la expresión sucede en el equilbrio de Nash. Si nuestro razonamiento es

correcto, para trayectorias con x0 en un entorno de 0,375 debemos ver trayectoria

con errores mas altas (donde el error dado un punto inicial lo definimos como 7.2.4)

En la Figura 7.5 comparamos trayectorias de 7.3.3 (etiquetadas GT por ground

truth) con trayectorias de la dinámica 7.3.11, en particular, miramos trayectorias

con puntos iniciales cerca del equilibrio de Nash.
7véase archivo ej2_dinamica_imitacion
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Figura 7.5: Manifestación del efecto Gibbs en la aproximación 7.3.11 de la dinámica
de imitación 7.3.3 cerca de su equilibrio de Nash

En efecto, una inspección inicial de las trayectorias de la Figura 7.5 nos muestra

que su error 7.2.4 es muy elevado. Para puntos cerca del equilibrio de Nash, la

aparición del efecto Gibbs en el término de la derivada de la dinámica deviene en

un error muy pronunciado en el error de la trayectoria.

7.4. Propiedades del replicador clásico en SINDy

Ya hemos visto cómo plantear un problema de aproximación para una ecuación

del replicador genérica mediante el método SINDy con una famlia polinomial(7.1.7)

y en el caso de unidimensional, hemos implementado un caso con una familia trigo-

nométrica (7.3.11). En esta sección, nos interesa analizar el modelo propuesto desde

un punto de vista más teórico, enfocándonos principalmente en el problema de apro-

ximar el replicador clásico (4.1.1) con SINDy a través de la famlia polinomial 7.1.1.

Haremos este análisis a partir de los resultados de Zhang explicados en la última

sección del sexto capítulo.
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Teorema 7.4.1. Sea {x(tj)}1≤j≤m ⊂ Sn un conjunto de datos una trayectoria pro-

veniente de un sistema del replicador clásico (4.1.1). Suponemos p ≥ 3. Definimos

las matrices

Θ(X) ∈ Rm×(Np−1), Ẋ ∈ Rm×(n−1),Ξ ∈ R(Np−1)×(n−1)

como en 7.1.6 y 7.1.7. Aplicamos la iteración de STLSQ 6.2.2 en el sistema de SINDy

Θ(X)Ξ = Ẋ.

Si rg(Θ(X)) = N(p)− 1 =
(

n−1+p
p

)
− 1 y para λ > 0 vale que

mı́n
1≤i≤p

mı́n
j∈Si

|(Θ(X)†Ẋ)ji| ≥ λ > máx
1≤i≤p

máx
j∈Si

|(Θ(X)†Ẋ)ji|, (7.4.1)

donde Si esta definida como en 6.4.2, es decir,

Si := sop
(
Coli((Θ(X)†Ẋ))

)
= { j ∈ [n] : [(Θ(X)†Ẋ]j,i ̸= 0 },

entonces existe una única solución Ξ ∈ R(Np−1)×(n−1) y cumple que

Θ(x)Ξ = ẋ ∀x ∈ Rn−1. (7.4.2)

Adicionalmente, 6.2.2 la recupera la solución tras una sola iteración.

Demostración. Al estar aproximando una sistema de la forma 7.1.5, el cual además

es un replicador clásico (cuya matriz llamaremos A), llamando

an = 1−
n−1∑
k=1

xk,

podemos escribir la dinámica sobre la que estamos aplicando SINDy de la forma

ẋi = pi(x1, . . . , xn−1) = xi

[
(A(an,x−n)− (an,x−n)A(an,x−n)], 1 ≤ i ≤ n− 1.

(7.4.3)

En este caso, pi ∈ P3[x1, . . . , xn−1]\P0[x1, . . . , xn−1]. Al igual que en 7.1.2 y 7.1.3,

llamamos α(1), . . . , α(Np) a la numeración del conjunto de los multi-indices de grado
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menor igual a p para puntos de Rn−1, respetando el orden de las columnas de Θ(X).

Nuevamente, tomamos α(1) = 0 ∈ Rn−1. Llamamos Φ : Rn−1 → RNp−1 a la función

[Φ(x1, . . . , xn−1)]j = (x1, . . . , xn−1)α(j), ∀2 ≤ j ≤ Np.

En particular, por como hemos definido Φ vale que

Φ(πn(x(tj))T = Filaj(Θ(X)), ∀1 ≤ j ≤ m.

Como estamos en el caso del replicador clásico reducido a n − 1 dimensiones

(7.4.3) y tomamos p ≥ 3, sabemos que existen únicos ξ1, . . . , ξn−1 ∈ RNp−1 tal que

ẋi = pi(x1, . . . , xn−1) = Φ(x1, . . . , xn−1)T ξi, ∀1 ≤ i ≤ n− 1, ∀x ∈ Rn−1. (7.4.4)

En particular, tenemos que

ẋi(tj) = pi(πn(x(tj)) = Φ(πn(x(tj))T ξi ∀1 ≤ j ≤ m, ∀1 ≤ i ≤ m. (7.4.5)

Como rg(Θ(X)) = Np − 1, el problema Θ(X)Ξ = Ẋ tiene una única solución

Ξ = [Θ(X)T Θ(X)]−1Θ(X).Ẋ = (Θ(X)†Ẋ,

además, la condición que le exijimos a λ > 0 nos garantiza que se recupera en un

paso por 6.4.2, para finalizar nos basta probar que Ξ cumple 7.4.2.

Supongamos que existe 1 ≤ i ≤ n−1 tal que Coli(Ξ) ̸= ξi. Luego, como la matriz

Θ(X) es de rango completo, y por ende {Φ(πn(x(tj)))}1≤j≤m es base de RNp−1, debe

existir 1 ≤ j ≤ m tal que

Φ(πn(x(tj))T .ξi ̸= Φ(πn(x(tj))T .Coli(Ξ),

pero

Φ(πn(x(tj))T .Colj(Ξ) = Filaj(Θ(X)).Coli(Ξ) = Ẋji = ẋi(tj),

por lo que concluimos que Φ(πn(x(tj))T .ξi ̸= ẋi(tj), lo cual contradice 7.4.5. Luego,

Ξ =


| | |

ξ1 ξ2 . . . ξn

| | |

 ,

por lo que, por 7.4.5, debe cumplir 7.4.2.
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Conclusiones

A lo largo del trabajo estudiamos la aplicación del método Sparse Identification

of Non-Linear Dynamics (SINDy) a dinámicas de Teoría de Juegos Evolutiva con

el objetivo principal de analizar en qué medida es posible reconstruir ecuaciones del

replicador y, a partir de ellas, identificar equilibrios de Nash, utilizando únicamente

datos discretos de trayectorias del sistema. A lo largo de la tesis se desarrolló tanto el

marco teórico necesario de Teoría de Juegos Evolutiva (capítulos 2, 3, 4, 5) como de

las herramientas teoricas y prácticas necesarias para la comprensión e implementa-

ción de SINDy (capítulo 6). Finalmente, se realizaron aproximaciones numéricas del

rendimiento de SINDy en este contexto junto con visualizaciones de las dinámicas

originales con sus aproximaciones (capítulo 7).

En el capítulo 7 hemos implementado de forma detallada el método SINDy so-

bre distintas variantes de la ecuación del replicador. En primer lugar, se analizó el

replicador clásico unidimensional, donde la dinámica es polinómica y su estructura

algebraica encaja de manera natural la familia polinomial utilizada por SINDy. En

este caso (7.2.2) se observó que, siempre que la base de datos tenga un alto grado

de precisión, puede obtenerse una aproximación con un error muy bajo y una alta

capacidad de aproximación de la trayectoria inclusive por fuera de la base de datos.

Adicionalmente, se logró una aproximación cerca del equilibrio de Nash interior de la

dinámica. Por otro lado, en 7.2.7 pudimos ver que ante un pequeño ruido gaussiano

81
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y datos con un paso temporal aumentado, el incremento del error fue muy notable

y aún más, se perdió la forma de polinomio de grado 3 que había logrado preservar

el primer modelo.

Los experimentos muestran que la presencia de ruido puede introducir oscila-

ciones espurias en las derivadas estimadas, lo que a su vez conduce a un modelo

mucho menos estable y de peor ajuste. Esta sensibilidad al ruido es consistente con

lo reportado en la literatura (propia de SINDy) y constituye una limitación conoci-

da del método, especialmente en sistemas donde la dinámica depende de derivadas

que deben estimarse numéricamente. El análisis del error realizado en el capítulo

7 muestra cómo dichas perturbaciones se traducen en errores globales significativa-

mente mayores. Esto sugiere que la calidad de la reconstrucción depende fuertemente

de la precisión con la que se obtengan las trayectorias y de la capacidad de filtrar o

suavizar el ruido antes de aplicar SINDy.

Otra parte importante del trabajo fue la aplicación del método a dinámicas de

imitación, que extienden generalizan al replicador clásico incorporando funciones de

respuesta más complejas (como la regla sigmoide de Fermi o reglas tipo Heaviside).

Utilizamos estos casos para evaluar el rendimiento de SINDy en dinámicas cuyas

derivadas no son parte de la familia de funciones que elegimos como Θ(x), poniendo

así una prueba mas exigente a su capacidad de generalización. A pesar de ello, los

resultados muestran que SINDy puede capturar de manera sorprendentemente pre-

cisa la dinámica efectiva. En particular, en el ejemplo basado en la regla de imitación

de Fermi, SINDy recupera un polinomio de grado seis cuyas raíces reales coinciden,

hasta errores de truncamiento numérico, con los equilibrios del modelo original. Esto

indica que, aunque la representación polinómica es una aproximación, puede ser sufi-

ciente para capturar la geometría esencial de las trayectorias del sistema. El análisis

del error confirma este comportamiento favorable, mostrando diferencias pequeñas

aún para puntos iniciales fuera del conjunto de entrenamiento. En el caso de la diná-

mica de imitación con una regla de imitación proveniente de la función Heaviside la

aproximación lograda con SINDy fue considerablemente peor que la obtenida para

el replicador clásico y la dinámica de Fermi. A partir de esto, podemos conjeturar
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que las dinámicas con derivadas no continuas le traen problemas considerables a

SINDy.

En conjunto a la aplicación de SINDy a varias dinámicas de replicador al final del

capítulo 7 se presentó un análisis teórico del caso de SINDy aplicado al replicador

clásico utilizando herramientas teóricas vistas en el capítulo 6, provenientes de [8].

Utilizando el resultado de Zhang (6.4.2), logramos probar que si nuestra matriz de

datos evaluados es de rango completo, tomando el hiperparámetro de SINDy en un

cierto rango podemos recuperar la dinámica de replicador clásica. Esto nos provee

una base teórica sólida para la aplicación de SINDy a dinámica del replicador clásico

en dimensiones mas grandes sin necesidad de programar varios ejemplos puntuales.

En conjunto, los resultados obtenidos muestran que SINDy constituye una he-

rramienta valiosa para la identificación de modelos dentro de la Teoría de Juegos

Evolutiva, especialmente cuando la dinámica subyacente pertenece (o es cercana)

a la familia del replicador clásico. Su capacidad para encontrar representaciones

dispersas permite no solo reconstruir ecuaciones diferenciales, sino también obtener

información cualitativa relevante, como la posición de equilibrios internos o la es-

tructura de estabilidad de la dinámica. Aunque existen limitaciones entre ellas, la

sensibilidad al ruido, la elección del umbral λ y la dependencia fuerte de la biblioteca

de funciones, el método se muestra robusto en escenarios controlados y flexible para

modelar dinámicas complejas.

Respecto a las lineas de investigación que el trabajo deja abiertas, resultaría

interesante obtener una generalización de las condiciones suficientes del replicador

clásico hacia dinámicas de replicador más generales, lo que permitiría justificar con

mayor solidez la aplicación de SINDy en modelos de mayor dimensión. Asimismo,

sería valioso estudiar la evolución del error de SINDy en dinámicas de imitación y

en otras dinámicas relacionadas, en dimensiones superiores. En síntesis, el presente

trabajo demuestra que SINDy puede utilizarse de manera efectiva para aproximar

dinámicas de replicador y sus generalizaciones, y constituye un aporte tanto compu-

tacional como teórico a la intersección entre el ML y la teoría de juegos.
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