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Resumen

El objetivo de este trabajo es aplicar el método de Sparse Identification of Non-
Linear Dynamics (SINDy) a la ecuacién del replicador para identificar equilibrios
de Nash a partir de las trayectorias. En el capitulo 1 hacemos una introduccién a
los juegos en forma estratégica, presentando la nociéon de Equilibrio de Nash y re-

cordando la demostracion de su existencia.

En el capitulo 3 definimos la ecuacion del replicador y mostramos demostraciones
detalladas de algunos resultados clasicos de la Teoria de Juegos Evolutiva; luego, en
el cuarto capitulo caracterizamos algunos juegos en dos dimensiones y vemos algunos
ejemplos. En el quinto capitulo introducimos el método SINDy vy, finalmente, en el

sexto capitulo detallamos su aplicacion en el contexto de Teoria de Juegos Evolutiva.

Todos los ejemplos, modelos y graficos presentes en el trabajo pueden encontrarse
en el repositorio GitHub. Los algoritmos y métodos estan descritos de forma tal que
el trabajo se pueda entender sin tener que acudir al repositorio a lo largo de la

lectura, de todas formas esté disponible para la recreacién de los experimentos.


https://github.com/lucasGalliCasado/TesisPython.git

Capitulo 1

Introduccion

El método Sparse Identification of Non-linear Dynamics (SINDy) es una técnica
de machine learning utilizada para reconstruir ecuaciones diferenciales ordinarias
(E.D.O.) a partir de datos temporales discretos provenientes de un nimero finito
de trayectorias del sistema. La primera apariciéon de SINDy es en el afio 2015 en
un paper de PNAS ([6]), donde, ademés de introducir el método, se aplica a varios
ejemplos, entre ellos el sistema de Lorentz.

Posteriormente, en 2019 se publica el trabajo “On the Convergence of the SINDy
Algorithm” ([8]), que presenta un analisis teérico mas profundo tanto del método
como del algoritmo utilizado para implementarlo. En particular, el trabajo esta-
blece condiciones suficientes y equivalentes bajo las cuales el algoritmo recupera la
dindmica original en un tnico paso.

Tras estos dos papers, en 2020 llegaria un libreria de python disenada especifi-
camente para la implementacién de SINDy, PySINDy (ver [7]). Esta misma es la
pieza final del marco tedrico y practico en el cual aplicaremos SINDy, ya que seréd
la herramienta que utilizaremos para su implementacion a lo largo del trabajo.

Lo que buscamos analizar en este trabajo es la habilidad de SINDy para obtener
dindmicas asociadas a ecuaciones del replicador, un tipo de dinamica que surge de
estudiar juegos de forma normal bimatriciales, en particular, juegos simétricos, en

un contexto poblacional. Este estilo de problema pertenece a la “Teoria de Juegos
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Evolutiva”, donde el problema que se busca resolver es el de modelar la evolucion
de frecuencias de finitas estrategias en una poblacién, y de ser posible encontrar un
punto de equilibrio para estas mismas.

La formulacién moderna de los juegos normales fue introducida por von Neumann
y Morgenstern en “Theory of Games and Economic Behavior”, en donde se amplia
y se generaliza el trabajo de von Neumann sobre juegos de suma cero entre dos
personas. El comienzo de Teoria de Juegos Evolutiva surge en el afio 1973 en el
paper de John Maynard Smith, “The Logic of Animal Conflict”, en donde se busca
modelar la evolucién de la frecuencias de estrategias en una poblacién de animales
de la especie (luego llamado “Juego de Halcones y Palomas”). Con el paso de los
anos el campo fue formalizandose partir de lo cual comenzaron a surgir varios libros
consolidando los hallazgos del mismo, el que utilizaremos a lo largo este trabajo es
de Hofbauer y Sigmund (ver [3]), del ano 1998.

En este trabajo nos proponemos, principalmente, estudiar como evoluciona en el
tiempo la diferencia entre la dinamica original y la aproximada mediante el método
SINDy. Ademas, en el caso particular del replicador clasico, realizaremos un anélisis
tedrico mas profundo empleando herramientas que seran desarrolladas a lo largo del

texto.



Capitulo 2

Introduccién a los juegos en forma

Normal

En este primer capitulo daremos una breve introduccion a la teoria de juegos, en
particular a juegos de forma estratégica (también llamados juegos en forma normal).

En su expresién més simple, un juego de forma normal es una competencia entre
dos agentes, Jugador I y Jugador II; consiste en un enfrentamiento entre ambos
competidores en el cual ninguno conocera de antemano la estrategia de su oponente.
El Jugador I tiene n € N estrategias para elegir, mientras que el Jugador II tiene
m € N estrategias posibles. Cuando un jugador selecciona una de estas estrategias,
diremos que utiliza una estrategia pura.

La forma estratégica o forma normal de un juego entre dos personas esta dada por
una tripla (X, Y, (u1,u2)), donde el conjunto no vacio X’ contiene a las estrategias
puras que puede elegir el Jugador I y el conjunto no vacio ) contiene a las estrategias
puras que puede elegir el Jugador II. Tenemos también las funciénes uy, ug : X XY —
R que nos diran el payoff o pago de cada jugador para cualquier par de estrategias
puras. Llamamos |X| = n y |Y| = m, a su vez identificamos las estrategias con los
vectores candénicos de R" y R™, X = {ey,..,e,} vy Y ={f1, ., fm}-

Una ronda de un juego entre ambos jugadores transcurre de la siguiente forma;

el Jugador I elige e; € X mientras que el Jugador II elige f; € YV, ninguno esta al
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tanto de la eleccién del otro. Luego, se hacen conocer sus estrategias, el Jugador I
recibe el monto uy(e;, f;) y el Jugador II recibe el monto us(e;, f;) (o lo paga en caso
de que sea negativo). Un juego normal entre dos jugadores se dice de suma cero si

la ganancia del Jugador I es la pérdida del Jugador II y viceversa, mas formalmente,

uy(e;, fj) = —ua(es, fj) Ve, € X, f; €.

Una forma natural de condensar esta informacién es en dos matrices A, BT €
R™™ Las llamaremos matrices de pagos y definimos sus entradas de la siguiente

forma:
(A)ij = wiles, [3) v (B)ji = uales, f3) , V(i,4) € [n] x [m].

En el caso en el que X =) v A = BT, diremos que el juego es simétrico.

Un ejemplo clasico de la teoria de juegos es el dilema del prisionero; en este
juego los jugadores han cometido juntos un delito, supongamos que se han vestido
de payasos para realizar un acto de fuego en la calle (actividad ilicita en la Ciudad
Auténoma de Buenos Aires). Cada jugador se encuentra en una celda y al ser interro-
gado debe decidir si traicionara a o no a su complice. En este caso, X =Y = {ej, es}
donde e; representa cooperar y es representa traicionar. Los payoffs son los siguien-
tes: si ninguno de los dos traiciona al otro, cada uno pasara 1 mes en la cércel, si uno
traiciona y el otro no, el traidor saldra libre, mientras que el traicionado pasara 10
meses en la carcel. Si ambos traicionan al otro, ambos pasardn 6 meses en la carcel.

La matriz del Jugador I es la siguiente:

-1 -10
0 —6|
Como podemos observar, este juego es simétrico, pero no es de suma cero. Un
juego que si nos proporciona un ejemplo de suma cero es el juego clasico de Piedra,
papel, o tijera; tenemos tres estrategias y asumimos que cada ronda le otorga o le
quita un punto al jugador segin gane o pierda. En este caso, X = ) = {e1,e2,¢e3}
donde diremos que e; es piedra, e es tijera y ez es papel. La matrices de payoff de

los Jugadores I y IT nos quedan
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A=|-1 0 1| B=|1 0 -1}. (2.0.1)

2.1. Estrategias mixtas

En el comienzo del capitulo aclaramos que cuando un jugador elige una tunica
estrategia, se dice que utiliza una estrategia pura, naturalmente, la aclaraciéon nos
incita a pensar que pueden utilizarse estrategias “impuras” , las cuales deben involu-
crar mas de una estrategia pura. Involucramos miiltiples estrategias puras definiendo
una distribucion de probabilidades sobre el conjunto de las mismas, donde el valor
que le asignamos a cada estrategia pura sera la probabilidad de utilizarla al jugar
una ronda.

De esta forma, un juego de estrategia mixta entre dos personas se caracteriza
con la tripla (X, ), (u1,us)) al igual que antes, sin embargo los jugadores no nece-
sariamente elegiran estrategias puras, sino que el Jugador I (resp. II) elegird una
distribucién de probabilidad sobre X’ (resp. )).

Nuevamente llamamos |X| = n y |Y| = m. En este caso el Jugador I, en lugar

de elegir una estrategia e; € X, elegird una distribucién

x€S,={zeR":> x =1},

=1

donde (x); = x; representa la probabilidad de elegir la i-ésima estrategia del conjunto
X. De forma analoga, el Jugador II elegira una distribucion y € S,,.

Si el Jugador I (resp. Jugador IT) utiliza con probabilidad 1 una estrategia e; € X
(resp. f; € ) diremos que utiliza una estrategia pura, en este contexto usaremos e;
como el vector canénico de R"™, el cual representa la distribuciéon donde se elige la
i-ésima estrategia de X con probabilidad 1.

Bajo estas convenciones, si el primer jugador utiliza la estrategia x € S,, y el
segundo la estrategia y € S,,, definimos el payoff esperado del Jugador i como

xAy = Z Qi T:Yj,

/[:7.].
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y el payoff esperado para el Jugador II como

xBTy = Z bijziy;.

2%
Para un y € S, fijo nos interesa saber cudles son las mejores estrategias que
puede usar el Jugador I al enfrentarse a un oponente que juega con esta estrategia,

para ello definimos el conjunto de las mejores respuestas (best replies) como
BR(y)={x€ 5, : 2" Ay <x"Ay,Vz € S,.}.

Definimos BR(x) de forma andloga. Dado que la funcién z — z’ Ay es continua
y Sn es compacto, sabemos que el conjunto BR(y) nunca serd vacio. Definimos el

soporte de x como las coordenadas no nulas del mismo, es decir
sop(x) ={1<i<n:z; #0}.

Proposicién 2.1.1. El conjunto BR(y) es convexo y si x € BR(y), entonces i €

sop(x) implica que e; € BR(y).
Demostracion. Es claro que si x1,xs € BR(y), entonces
x] Ay = x] Ay.

Luego, a.x? Ay + (1 —a).xI Ay = xT' Ay € BR(y), por lo que el conjunto resulta

convexo. Para lo segundo, tomamos x € BR(y) y lo expresamos como

n
X = Z ZT;€e;.
i=1
Sea 1 < k < n tal que x; > 0. Supongamos que
el Ay < x' Ay.

Entonces
XTAy = Z«xz(Ay)z < Z.fZ(XTAy) = XTAy7
i=1 i=1
lo cual es absurdo. Luego,

ef Ay = x" Ay.
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Diremos que dos estrategias x y y forman un Equilibrio de Nash (N.E.) si
cada una es mejor respuesta de la otra, es decir, si x € BR(y) vy y € BR(x). Un
par de estrategias N.E. es un escenario en donde ningtin jugador esta incentivado a

desviarse de su estrategia actual, es equivalente a cumplir
x!' By < xBy ,Vj € S,

T Ay <xTAy Vi€ S,.

En un juego simétrico existen siempre equilibrios de Nash simétricos, que son
pares de estrategias NE de la forma (x,x) (hay al lo menos uno, esto lo veremos en
breve) los cuales serdn de nuestro interés cuando pasemos al contexto de la Teoria

de Juegos Evolutiva. Ser NE simétrico es equivalente a cumplir

27 Ax < xTAx Vz € S,,.

2.2. Juegos con mas de dos jugadores

Hasta ahora nos hemos restringido al caso de juegos entre dos jugadores, princi-
palmente porque es el contexto y la notaciéon que mantendremos lo largo del trabajo,
sin embargo, estas definiciones pueden extenderse a juegos de k£ € N jugadores. Cada
jugador 1 < j < k tendra un conjunto de n; > 0 estrategias puras, por lo que el
simplex S,; serd su conjunto de distribuciones sobre las estrategias puras.

Un elemento x € S,, representa una estrategia mixta del j—ésimo jugadores
y podemos escribirlo como © = Y01, zq€l, donde el € S, es el a-ésimo vector
canonico del simplex S, y representa la estrategia en la que el jugador j utiliza la
a-ésima estrategia con probabilidad uno. Definimos ¥ = S,,, X - - xS, como el
espacio de estados de estrategias mixtas, y notamos a un elemento del espacio de
estado como la tira de vectores x = (x1,...x;) € X (en el contexto general x serd una
tira de vectores, mientras que en el caso de dos jugadores serd un vector escalar).

Cada jugador tiene una funcién de pago u; : ¥ — R de forma tal que si las

estrategias utilizadas son x = (x1,...xx) € X, entonces el pago recibido (o pagado,
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en caso de ser negativo) por el j—ésimo jugador es u;(x). Escribimos la estrategia

mixta del i-esimo jugador, x; € S,,,, como

xr; = Ti)a €, V1<i<k
Z( )z (7R 9

a;=1
dondeet, ..., eﬁu € Sy, representan los vectores canoénicos del i-ésimo simplex. Luego,
dado una tira de vectores (x1,...xx) € 3, las funciones de pago de todo jugador

1 < j <k deben cumplir

wj(z1, .., ) = i i f: (ﬁ(xi)al) ujlel, eny, - en ). (2.2.1)

a1=1az=1 ap=1 \i=1
Dado un vector (z1,...,x,) € ¥ introducimos la notacién
(LU,I,]') = (%1, ey L1, Ty Ty 1y - ,xnk) (- E,
asi, (zj,x_;) = (x1,...,7;) para todo 1 < j < k. Usando esta notacién, podemos

generalizar el equilibrio de Nash como un punto (z1,...x;) € Sy, X ... xSy, tal que:
wj(xy, v_5) > uj(2f, x_;) Vo € S, , V1 < j < k. (2.2.2)

Ademaés, generalizamos la nocion de juego simétrico (y NE simétrico) en el con-
texto de juego de k € N jugadores. Un juego simétrico de k jugadores es un juego en
el que debe valer que S = 5] = ... = S} y ademas para cualquier jugador 1 < j <k

y cualquier permutacion 7 : {1,....,k} — {1, ..., k} necesariamente vale que

Ui (15 ey Tk) = Un(G) (Tr(1)s s Tr(i)) (2.2.3)

En el caso inicial de dos jugadores, aplicando o(1) = 2 nos queda A;; = uy(e;, €;) =
us(ej, €;) = Bj; = (B);. Decimos que una estrategia x € X es un equilibrio de Nash
simétrico si x cumple las condiciones de 2.2.2 y ademés x € {x € S" : x; = z; V1 <

i,j <n}.

2.3. Estabilidad evolutiva

En lo que resta del capitulo, en las definiciones que daremos y los teoremas que
veamos, trabajaremos en el caso de un juego simétrico entre dos jugado-

res sin hacer uso de la definicién general del juego de forma normal. Mencionamos la
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generalizacién con el fin de dar una introducciéon mas completa, y para que cuando
enunciemos el teorema de existencia de un equilibrio de Nash mas adelante, poda-
mos dar un enunciado y una demostracion mas fiel al trabajo original de Nash. Salvo
que se aclare explicitamente, no estaremos trabajando en el contexto de un juego de
forma normal general de k jugadores.

Como podemos ver a partir de las definiciones anteriores, un equilibrio de Nash
representa una situacion donde ningtun jugador tiene un incentivo para variar su es-
trategia; sin embargo, en un mismo juego puede haber multiples equilibrios de Nash.
Naturalmente, esto nos lleva a preguntarnos qué condiciones nos podran garantizar
la existencia de un solo equilibrio de Nash, o bien, en caso de que haya varios, qué
criterio puede usarse para introducir una jerarquia entre ellos. Para responder estas
preguntas, en el caso del juego simétrico, podemos introducir el concepto de Es-
tabilidad Evolutiva. Una estrategia X € 5,, se dice estrategia evolutivamente

estable (ESS) si para todo x € S,, con x # X existe un €(x) > 0 tal que:
xTAlex +(1—€).%] < %TAlex+ (1 —€) %], V0 < e < e(x). (2.3.1)
La condicién puede re-escribirse de la forma:
(1—e) (%A% — xTAR) + (3T Ax —xTAx) >0, V0 < € < €(x), (2.3.2)

y usando 2.3.2 podemos ver que X sea un estrategia evolutivamente estable (ESS)

es equivalente a que cumpla las condiciones:
i.) Condicién de equilibrio:
xT A% < %7 A% para todo x € S,,.
ii.) Condicién de estabilidad:
Six # %y xTA% = £T AR, entonces x7 Ax < %7 Ax.

La primera condicion es simplemente ser N.E., la segunda condicién nos asegura

que si existiese una alternativa x a X con igualdad de pagos, entonces X seria mejor
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respuesta contra ella x que si misma. Estas condiciones, considerablemente mas
fuertes que solo N.E., sugieren una unicidad que el equilibrio de Nash por si solo no
nos puede garantizar. Efectivamente, este sera el caso siempre que la estrategia ESS
se encuentre en el interior del simplex.

Ahora veremos algunos resultados que nos permiten enunciar una definiciéon equi-
valente para una estrategia ESS que usaremos mas adelante en el capitulo 3 cuando
introduzcamos juegos en un contexto poblacional. La siguiente propiedad es un re-
sultado necesario solamente para la demostracion de la caracterizacion de ESS que

presentaremos en el 2.3.2.

Proposicién 2.3.1. [4] Sea X € S,, un punto ESS. Dado x € S,\{X} definimos
€(x) como el minimo entre 1 y menor real positivo para el cual vale 2.3.1. Entonces

se puede elegir ¢(x) de forma tal que sea continua en S,, — {X}, en particular:

— ~ csi xTAx > %7 Ax
e(x) =¢ R—x)ARXK-x) (2.3.3)

1 csi xTAx < &7 Ax.

Demostracion. Por 2.3.1 podemos ver que para cualquier 0 < € < ¢(x) debe valer
xTAlex + (1 —€) %] < &7 Alex + (1 — €).%].
Reorganizando podemos ver que
[xTAx — xT A% — &7 Ax + %7 A%]e < T A% — xT A%,

[(x —R)A(x — X)]e < (X — x)A%.

Si suponemos que x? Ax — £TAx > 0, usando que X7 A% — xT A% > 0 por la
condicién de equilibrio, podemos ver que en el coeficiente de € es positivo, por lo

que en este caso nos queda que

Si miramos el caso x? Ax = %7 Ax, la condicién de estabilidad evolutiva nos queda

(KT A% — xTAR)e < (T A% — xTAR),
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por lo que es inmediato que € < 1.
Analizamos el tltimo caso, xT’ Ax < &7 Ax, vemos que en este caso 2.3.1 se

cumple para € = 1, ademas, si 0 < € < 1 vemos que

xTAlex+ (1 — )] = exPAx + (1 — e) xTAR <
eXTAx + (1 — €). %1 AR = e T A[x + (1 — €) 8],

por lo que la condicién ESS vale para cualquier 0 < € < 1, ergo en este caso €(x) = 1
nos proporciona una barrera apropiada para 2.3.1.

Con esto, hemos demostrado que para cualquier X que sea ESS y para cualquier
x € S,\{X}, tomando ¢(x) = min{1, %} tenemos que

—x)A

xTAlex 4+ (1 —€).%] < &7 Alex + (1 —€).%], V0 < € < €(%).

La continuidad sobre S,,\{X} es inmediata.

Teorema 2.3.2. [4] Una estrategia X € S,, es ESS si y solo si
1T Ax > xT Ax
para cualquier X # x en un entorno de X en .S,,.

Demostracion. Supongamos que X € S, es ESS. Veamos que cualquier x € S,

cercana a X puede expresarse de la forma

ex+ (1 —e)x.
Definimos
Ci={x €S, z;=0}
C = U Cz'7
i€sop(X)
donde

sop(X) ={1 <i<n:xz >0}
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Coloquialmente, C' es el conjunto de todos las caras del simplex que no contienen
a X. Cada uno de los conjuntos C; es un compacto y cerrado, pues son caras de un
poliedro acotado (el simplex). Luego, usando la continuidad de €(x) que probamos
en 2.3.1 podemos definir

¢ =mine(x) > 0.
xeC

En particular, nos interesa ver que
Sp={(1—-€)x+ex:0<e<1,xeC}. (2.3.4)

Si logramos demostrar esto, la condicion que buscamos demostrar se cumplira
para cualquier y € B(X,€) NS, pues (suponiendo que vale 2.3.4) existe x € C' tal
que

y=(1—€X+ex cone<e.
Luego, por como hemos definido € vale que
xTAlex + (1 — %] < & Alex + (1 — €)%].
Multiplicamos ambos lados por €:
extAlex+ (1 —e)%] < exT Alex + (1 — €)%].
Sumamos (1 — €)X A [ex + (1 — €)X] a ambos lados:
[exT +(1— e)ch] Alex + (1 —e)x] < T Afex + (1 — )%].
Como tenemos que y = ex + (1 — €)X, se concluye que:
yT Ay < %7 Ay.

Veamos que vale 2.3.4. Miramos L(t) = %(1 — t) + yt. Como S,, es cerrado,
compacto y convexo podemos tomar el maximo valor de ty; > 0 tal que L(ty) € S,
(lo que hacemos es ir desde X hacia y hasta toparnos con una cara o vértice del
politopo S,,). En particular, debe existir un ¢ € sop(X) tal que L(tp); = 0, de lo
contrario se contradice la maximalidad de ty;. Luego L(ty) € C; C C, tomando
x = L(tpr), por como esté definido L(t) tenemos que y € {X(1 —€) +ex,0 < e < 1}.

O



CAPITULO 2. INTRODUCCION A LOS JUEGOS EN FORMA NORMAL 17

Corolario 2.3.3. Si X € int(S,) es ESS, entonces no hay otra estrategia ESS, en

particular tampoco hay otra estrategia que sea equilibrio de Nash.

Demostracion. Como ser ESS implica NE por la condicion de equilibrio, basta con
ver que si X € 5, es ESS entonces no puede haber un NE. Supongamos que X €
int(S,) es ESS y que x € S,, es NE. Por definicién de NE debe valer que 7 Ax <

xT Ax, ya que % estd en el interior del simplex. Sea 0 < € < 1, entonces
[KTe+ (1 — )xT)Ax = eRTAx + (1 — e)xT Ax < exTAx + (1 — )xT Ax = xT Ax,

lo cual estd en contradiccion directa con 2.3.2.

2.4. Existencia de equilibrios de Nash

A continuacién, haremos un breve retorno al juego de forma normal de k € N
jugadores para escribir el teorema de John Nash que nos demuestra la existencia de

un equilibrio de Nash para cualquier juego normal de finitos jugadores.

Teorema 2.4.1. Teorema del punto fijo de Brouwer Sea D C R" un conjunto
convexo, compacto y no vacio. Si f : D — D es una funcién continua, entonces

existe al menos un punto x € D tal que

f(z) ==

Teorema 2.4.2. [2] Sea un juego de finitas estrategias puras y 2 o mas jugadores.

Entonces existe al menos un equilibrio de Nash.

Demostracion. Haremos la demostracién para el caso de dos jugadores, cada uno
con matrices de pago A € R™" y B € R™™. Sea K = S,, X S,,. Buscamos definir
una aplicacién T : K — K que a un par de estrategias mixtas (z,y) le asigne un
nuevo par (Z,7) tal que Z sea una mejor respuesta a y que x, y que ¢§ sea mejor

respuesta a x que .
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Si mostramos que 7" es continua, al ser K un compacto convexo podremos usar el
Teorema de Punto Fijo de Brouwer y nos garantizamos la existencia de estrategias

mixtas (z,y) € K tal que,
T(z,y) = (z,y).

Vamos a construir el operador 7', dadas (z,y) definimos

¢; = max{e] Ay — z7 Ay,0} y dj = maa:{xTBTej —a' By, 0},

y los puntos ¥ € S, § € S,, como

. T + ¢ . _ y; +d;
Ii=———V1<i<m 'y §=—c—",
1+ Ek:1 Ck ! 1+ Ek:1 dk

En ambos casos la pertenecia al simplex se obtiene facilmente sumando sobre

<j<m,

sus coordenadas

m m $Z+CZ
; =y —— =1

il DD R

Definimos T'(x,y) = (Z,7). Respecto a la continuidad de T ¢; y d; resultan
continuas por ser el méaximo entre cero y una suma de productos lineales de x e
y. Luego cada coordenada de T' es un cociente de funciones continuas en el que la
funcién del denominador es siempre mayor o igual a uno. Entonces, por Brouwer,
debe existir (z*,y*) € K tal que T(z*,y*) = (z*,y*). Veamos que este punto fijo
debe ser un equilibrio de Nash.

Al ser (z*, y*) un punto fijo, tenemos que * = x* y §* = y*. Usando la definicion
de 7*:

x**M = c-*x*ic Vi<i<m
I Y e LT b =r=""

Definimos C' := 7", ¢x. Luego la condicién de punto fijo para el Jugador 1 es
¢; = xfC para todo 1 < i < m. Veamos que z* € BR(y*)

Supongamos que existe k € [m] tal que el Ay* > x*Ay*. Se sigue que ¢, > 0,
como ademas ¢, = z;C tenemos que x > 0y C' > 0. Entonces k € sop(z*).

Como nuestra suposicién nos garantiza que C' > 0, =7 > 0, esto implica que
¢; > 0, con lo cual el Ay* > (z*)T Ay*. Entonces:

o) Ay “ij (7 Ay") = > ilei Ay") > (") Ay,

i€sop(x*)
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lo cual es absurdo. Luego e} Ay* < z*Ay* para todo 1 < i < m, por lo que z* €
BR(y*). Andlogamente, y* € BR(z*), entonces nuestro punto fijo es NE.
m

Adicionalmente, el trabajo de Nash nos dice que en el caso de un juego simétrico

siempre podremos encontrar al menos un equilibrio simétrico en el juego.

Corolario 2.4.3. Sea un juego simétrico de finitas estrategias puras y 2 o mas

jugadores. Entonces, existe al menos un equilibrio de Nash simétrico.

Demostracion. Definimos el conjunto de las estrategias simétricas
Y={(x,y) € S, xS, :x =y} (2.4.1)

Tomamos T" como en 2.4.2. El conjunto ¥ es compacto,convexo y no vacio, por lo
que si demostramos que T'(z,y) € ¥ tendremos que 7' : ¥ — ¥ es una funcién
continua sobre un conjunto que cumple las condiciones de 2.4.1. Luego, tendremos
un (x,x) € S, punto fijo de T', el cual, por lo que probamos en 2.4.2, debe ser un
equilibrio de Nash.

Veamos que T : ¥ — X. Al estar en un juego simétrico, tenemos que BT = A,

por lo que si (z,y) = (z,2) € S, valen

¢; = max{el Ay — 2" Ay, 0} = max{el Ax — 27 Az, 0},

d; = méx{z" BTe; — 2" B"y, 0} = max{e] Az — 2" Az, 0}.
Se sigue que ¢; = d;, para todo 1 < j < n. Luego, si llamamos T'(z,y) = (Z,3), por
como hemos definido T" tenemos que

j}i _ Z; +mci _ Y; ‘:dJ — gj’ 1 S] S m.

Hemos visto que & = g, por lo que T'(z,y) € X, entonces, debe existir un equilibrio

simétrico.
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2.5. Algunos juegos clasicos

Halcones y Palomas

Un ejemplo clasico de la teoria de juegos evolutiva es el juego de Halcones y
Palomas (Hawk-Dove Game), fue propuesto por los bidlogos John Maynard Smith
y George Price en un intento de explicar las peleas de ritual en competencias entre
animales de una misma especie. En su modelo asumen una poblaciéon con dos feno-
tipos (es decir, con dos posibles estrategias). La primera estrategia e; es escalar el
conflicto hasta que la muerte o lesién termine el conflicto, la segunda estrategia, es,
consiste en huir si el oponente resulta dificil.

Llamaremos Halcon (resp. Paloma) al jugador que usa la estrategia pura e
(resp. e2). Ganar el conflicto otorga un payoff esperado GG, y perder resulta en una
penalidad C' > G. Si asumimos que al encontrarse dos halcones ambos tienen igual
probabilidad de ganar el conflicto, entonces la esperanza de su payoff es g - % De
la misma forma, suponemos que si se encuentran dos palomas, la victoria de una u

otra es igual de probable. Para el jugador 1 tenemos la siguiente matriz de payoft:

2
. (2.5.1)
U

La matriz del Jugador II es simplemente la transpuesta de la matriz del Jugador I.

Piedra, Papel o Tijera

Para ver un ejemplo en tres dimensiones, podemos remitirnos al juego de piedra,
papel o tijera con matriz de payoff como en (1.1). Podemos observar que en este
ejemplo la ganancia de un jugador es exactamente la pérdida del otro, estamos en el
caso de un juego de suma cero. Una cualidad interesante del juego de piedra, papel
o tijera es que exhibe un comportamiento ciclico, es decir, la primera estrategia es
dominada por la segunda, la segunda es dominada por la tercera y la tercera es

dominada por la primera. Naturalmente surge la duda: ;podriamos tener un juego
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ciclico que no sea de suma cero? La respuesta es que si, y a esta clase de juego se los
denomina juego de piedra, papel o tijera (PPT). La matriz de payoff para el caso

genérico es la siguiente:

0 —as b3
A=|b 0 —as|, (2.5.2)
—Qaq bz 0

con a;, b; > 0. Aca a; es el costo de jugar contra la estrategia pura e; cuando el
jugadorl usa la estrategia que esta domina, similarmente, b; es la ganancia de jugar

contra la estrategia pura e; cuando el Jugador I usa la estrategia que domina a e;.



Capitulo 3

Preliminares de E.D.O.

3.1. Definiciones y resultados generales

Sea x = f(x) una E.D.O. auténoma en una regiéon de R” y sea x(t) una
solucién definida para todo ¢ > 0 con condicién inicial x(0) = x. Llamamos érbita
de x al recorrido de una trayectoria de x(t) a lo largo del tiempo tras comenzar
en x(0) = x. Usaremos x(t) para referirnos de la ecuacién diferencial que cumple
%= f(x) y x(0) = x.

Decimos que x es un punto de equilibrio si {x(¢) = x,Vt > 0}, se caracteriza
por cumplir f(x) = 0. Si uno comienza en un punto de equilibrio, permanecerd alli
por siempre. Si x(7') = x para algin T' > 0, pero x(t) # x para t € (0,T") entonces
decimos que x es un punto periédico con periodo 7.

Un punto de equilibrio x de una E.D.O. se dice estable si para cualquier entorno
U de x existe un entorno V' de x tal que si la érbita comienza en V' permanece en
U a lo largo de toda la trayectoria. Si las érbitas que comienzan en V', ademas de
permanecer en U, convergen a x cuando ¢ — co decimos que el punto de equilibrio
es asintéticamente estable. Si el conjunto para el cual las 6rbitas convergen al
punto de equilibrio es toda la region sobre la cual esta definido el problema, diremos
que el punto es globalmente estable.

El w-limite de x es el conjunto de los puntos de acumulacion de {x(t)}+>0, lo

22
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notamos:
n k—+o0
w(x) ={y € R" : x(t}) — y con t —— +00}.

Observamos que siempre que x(t) permanezca dentro de un conjunto compacto a
partir de un instante de tiempo dado, existird al menos un punto de acumulacion.
A partir de la definicién se sigue que podemos representarlo como la siguiente inter-

seccion de conjuntos cerrados:
w(x) = Ni>e{x(s) : s > t}. (3.1.1)

A partir de 3.1.1 obtenemos que w(x) es conexo y cerrado, donde la conexidad
se obtiene por estar intersecando conjuntos conexos decrecientes. Adicionalmente,
podemos ver que cualquier punto z sobre la o6rbita de x tiene el mismo w—Ilimite.
Para ver esto miramos la trayectoria que comienza en z = x(7") para algin tiempo
T, luego la trayectoria de z en un tiempo t es z(t) = x(7'+1t). Si y € w(x) entonces

{tr} C R tal que x(ty) 2252 y oy ¢, 2252 oo,

por lo que z(ty — T) = x(t;) también converge a y. Entonces, necesariamente y €
w(z). El conjunto w(x) es invariante, es decir si y € w(x) entonces y(t) € w(x)
para todo t > 0. Esto vale ya que si x(fx) — y entonces x(ty +t') — y(t') para

cualquier ¢ > 0.

Teorema 3.1.1. (Teorema de Lyapunov - débil)

[3] Sea x = f(x) una E.D.O. definida en un subconjunto G C R™ sobre el cual es
invariante. Sea V' : G — R continuamente diferenciable. Si para alguna solucién x(t)
la derivada temporal V de la funcién ¢t — V(x(t)) satisface la inequaciéon V > 0,

entonces w(x) NG C {x € G:V(x) =0}

Demostracion. Sea 'y € w(x) N G, entonces I{tx} C Rsg tal que tp — +oo y
x(tx) — y. Como V > 0 sobre la 6rbita de x entonces V(y) > 0 por continuidad.
Supongamos que V(y) > 0

Como el valor de V' nunca decrece sobre una orbita, tenemos que

Viy(t) > V(y)
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por lo que existen €, > 0 tal que
V(y(t)) >V(y)+e>V(y), parat > ¢ (3.1.2)

La funcién V(x(t)) es creciente y V(x(t;)) converge a V(y) por la continuidad de
V, por lo que
V(x(t)) < V(y) (3.1.3)

para cualquier t € R. Como x(t;) — y se sigue que x(t; +t) — y(t) para todo t > 0
lo cual implica que

V(x(tx + 1)) = V(y(t)) (3.1.4)

entonces por 3.1.2, para un k suficientemente grande, vale que V (x(t,+t)) > V(y)+
¢, lo cual contradice 3.1.3.

O

A continuaciéon demostramos un teorema clasico de E.D.O. auténomas que usa-

remos mas adelante.

Teorema 3.1.2 (Teorema de Lyapunov para estabilidad asintdtica). Sea x = f(x)
un sistema dinamico auténomo y sea X un punto de equilibrio (i.e., f(%X) = 0). Sea G
un entorno abierto de X y supongamos que existe una funcién V : G — R, continua

y derivable en int(G), que cumple:
1. V(x) =0,y V(x) > 0 para todo x € G \ X.

2. La derivada de V a lo largo de las soluciones satisface V(x) < 0 para todo

x € (.

Entonces X es estable. Ademas, si V(x) < 0 para todo x € G\ %, entonces R es

asintoticamente estable.

Demostracion. Sea x = f(x) un sistema auténomo y X un punto de equilibrio. Sea

G un entorno abierto de X y supongamos que existe

V:G—R,
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continua en G y derivable en int(G), tal que
V(%) =0, V(x) >0 para todo x € G\ {X},

y ademds V(x) < 0 para todo x € G.

Veamos primero la estabilidad. Tomemos ¢ > 0 tal que la bola cerrada B(%,¢)
esté contenida en G. Como la funciéon V es estrictamente positiva sobre 0B(X, ¢)
tenemos

m:= min V(x)>0.
x€OB(%.¢)

Luego, definimos el subconjunto de nivel
L.={xeG:V(x)<c}

Si x € L. entonces, como V es no creciente , necesariamente V' (x(t))) para todo
t > 0, por lo que el conjunto L. resulta invariante. Veamos que ademés cualquier
trayectoria que comienza en L. permanece en B(X,€).

Sea x € L., supongamos que existe un t > 0 tal que x(t) € 0B(X,¢€), entonces
V(x(t)) > ¢, lo cual contradice la invariancia de L.. Luego, toda trayectoria que
comienza en L. permanece en B(X,¢€). Por la continuidad de V' en int(G) existe

0 > 0 tal que
Ix—%||<d = |[V(x) - V(X)) <m = V(z) <m,

por lo que B(%,d) C L.. Hemos visto que dado un entorno U = B(%,¢) C G, existe
un entorno V' = B(X,J) tal que toda trayectoria que comienza en V' permanece en
U, por lo que X resulta estable.

Veamos que si V(x) < 0 para todo x € G\ {&} entonces tenemos estabilidad
asintotica. Tomemos x( suficientemente cercano a X de modo que la solucién x(t)
permanezca en un subconjunto compacto de G para t > 0 (esto puede garantizarse
eligiendo xy dentro de una bola suficientemente pequena contenida en G, y usando la
estabilidad ya probada). Como ¢t — V(x(t)) es decreciente y acotada inferiormente
por 0, existe

(= lim V(x(t)) > 0.

t——+o00
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Sea w(xp) el conjunto w-limite de la solucién x(t). Sabemos que w(xg) es com-
pacto, no vacio (pues x(t) se mantiene en un compacto de G) e invariante por la
dindmica, ademés, por la continuidad de V' y por la monotonia de V' (x(t)), V es
constante y igual a £ sobre w(xp). Sea y € w(xp). Como w(xg) es invariante, si
y € w(x) tenemos que lim; , o x(t +1) = y(f) € w(xp), junto con la continuidad de
V' tenemos que

(= lim V(x(t+1)=y(t).

k—+o00

Esto nos dice que la trayectoria que pasa por y permanece en w(Xq) y por tanto
t — V(y(t)) es constante (igual a £). Pero entonces su derivada en cualquier punto

de w(xg) debe ser cero:
V(y)=0 para todo y € w(Xo).
Por la hipétesis de negatividad estricta de V en G\ {&}, la tinica posibilidad es que
w(xo) C {X}.

Dado que w(xgp) no es vacio, se sigue w(xg) = {X}. En particular, x(¢) — X cuando

t — +o00. Esto prueba la estabilidad asintética de X. O

Decimos que una funcién V' que satisface el teorema es una funciéon de Lyapunov
y definimos que un punto x es Lyapunov estable si para cualquier € > 0 existe

d > 0 tal que si ||x(0) — x|| < ¢ entonces ||x(t) — x|| < e.

Decimos que una funcién V : G — R es una constante de movimiento si es
constante a lo largo de cualquier trayectoria, es decir, dada una trayectoria x(t),
existird una constante ¢ € R tal que la 6rbita estd contenida en {(z,y) € G :
V(z,y) = c¢}. Una vez hallada una constante de movimiento, el siguiente teorema

nos provee informaciéon acerca de su comportamiento.

Teorema 3.1.3. Teorema de Poincaré-Bendixson Sea x = f(x) una E.D.O.
definida sobre un abierto G C R? Sea w(x) un conjunto no vacio y compacto
de w—limites. Si w(x) no contiene un punto de equilibrio, entonces es una érbita

periodica.



Capitulo 4

Dinamica poblacional y la

ecuacion del replicador

4.1. Ecuacion del Replicador y Equilibrios de
Nash

Hasta el momento todos los juegos que miramos transcurren entre una cantidad
finita de jugadores, en situaciones donde cada uno elije una distribucién sobre sus
estrategias puras y juega una ronda con ello. En este capitulo, veremos como se uti-
lizan los juegos normales para modelar frecuencias de estrategias en una poblacion,
y luego, como usar ecuaciones diferenciales ordinarias para modelar la evolucién de
las estas frecuencias a lo largo del tiempo.

Consideremos el caso de un juego simétrico (X, u), el escenario que nos plan-
teamos es el siguiente: los miembros de una poblacion eligen una estrategia pura y
comienzan a jugar el juego simétrico definido por X y u entre ellos. Para describir las
elecciones de cada miembro de la poblacién usaremos una distribuciéon de estrategias
(frecuencias) y supondremos que los miembros interactiian (juegan una ronda) al
azar.

Nuevamente llamamos |X| = n, por lo que la informacién relevante acerca de los

pagos puede condensarse en la matriz de payoff A € R"*". Diremos que una fraccion

27
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x; de una poblacion utiliza la estrategia pura e; € X'. Para cada estrategia, tendre-
mos una fraccion de la poblacién que la utiliza, caracterizamos esta distribucién de
estrategias con un vector x = (xy,...,x,) € S,, donde la i-ésima coordenada repre-
senta la proporcion de nuestra poblacion que utiliza la estrategia e; € X. Luego, el

payoff esperado para el sector de la poblacién que utilice la estrategia e; es
(14X)Z = Zj ATy, V1 S 1 S n,

donde a;; := u(e;,e;) es el payoff que espera recibir un jugador que utiliza la
estrategia e; cuando se enfrenta a otro que juega con la estrategia e;. Para ver el
payoff esperado de de una interaccién al azar entre miembros cualesquiera de la
poblacién, nos basta con sumar los payoffs de cada estrategia e; € X pesada por su

frecuencia en la poblacién (ver 2.2.1):
xT'Ax = 3, 2;(Ax);,

Esta de mas aclarar que la notacién x € S,, para las frecuencias de cada estrategia
es la misma que usamos para las estrategias mixtas en el capitulo uno. Sin embargo,
lo que representa sera facilmente discernible segin el contexto.

Asumimos que las poblaciones pueden evolucionar a lo largo del tiempo, pues,
en base al rendimiento de cada estrategia, su frecuencia aumentara o disminuird.
En base a esto, introducimos la dependencia temporal x(t), y notamos #;(t) a la
velocidad con la que cambia la frecuencia de la i-ésima estrategia, x;. El modelo
mas simple para modelar el cambio de la i-ésima frecuencia es la ecuaciéon del

replicador clasica:

Como se observa, esta ecuacion relaciona la variacion de la i-ésima estrategia con la
diferencia entre su payoff y el payoff promedio de toda la poblaciéon, responde a la
intuicion de que las estrategias mas exitosas aumentaran su frecuencia y las menos
exitosas la disminuiran.

Podemos ver que
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it = 2 (Ax); — xAX] = Y, [7i(Ax);] — xAx =0

para cualquier x € S,,, por lo que la ecuacion 4.1.1 resulta invariante sobre el simplex
estandar S,,, es decir, si nuestro punto inicial se encuentra en S,,, todo el recorrido
también estard en el conjunto. Ademads, como z;(ty) = 0 implica que z;(t) = 0,Vt >
to, la ecuacion también resulta invariante sobre S, (J) = {x € S,, : z; =0Vj € J}
para cualquier J C {1,...,n}.

Para cualquier x € S, sujeto a la ecuacion del replicador tenemos la siguiente

regla del cociente para cualquier j € [n] tal que z; > 0:

ln(xi) = (Ij) = (%)((Ax)i — (Ax);). (4.1.2)
Ademé&s observamos que los puntos de equilibrio de 4.1.1 en int(S,) deberan
cumplir

(Az); = ... = (Ax), = zAx.

Proposicién 4.1.1.

1. Sea A € R™" la matriz de payoff de un juego simétrico: sumar una constante
¢ € R todas las entradas de cualquier columna de A no afecta la ecuacién del

replicador asociada a la matriz en S,,.
2. Si P =TI, zj" entonces

P = PZ%{(AX% - XTAX}.

Demostracion. Demostramos (i). Sea €' € R™™ una matriz tal que Col;(C) es
un vector de tamano n cuyas coordenadas son todas de valor ¢; € R. Definimos
A" := A+ C y demostramos que su ecuacion del replicador asociada es igual a la de

A.

El payoff promedio al usar la estrategia x resulta

x"Ax =x"(A+C)x =x"Ax + x"Cx = x"Ax + > _ c;z;.
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El payoff esperado para la i-ésima estrategia nos da
(A'%), = [(A+ O)x; = (Ax); + Y e,
J

Luego tenemos que
T [(A/X)i — XTA/X} = x; {(Ax)i - XTAX}.
0

En los siguientes capitulos nos referiremos al soporte de un punto x € R”, en
estos casos estaremos haciendo referencia al conjunto sop(x) = {i € [n] : z; # 0}.
Los puntos de equilibrio (rest points) de la ecuacién del replicador son aquellos
x € S, para los cuales todos los valores de payoff (Ax); son iguales para todo
1 < i < n que cumpla z; > 0. En particular, para un x € S, que es punto de

equilibrio, podemos ver facilmente que si i € sop(x) debe valer (Ax); = x'Ax,
ri[(Ax); —xTAx] =0 A 7, >0 = (Ax); = x' Ax.

Ademas mirando 4.1.1, resulta inmediato ver que todos los vértices e; € S, son
puntos de equilibrio.

De aqui en adelante usaremos las nociones de estabilidad y asintoéticamente esta-
ble en referencia a la ecuacion del replicador 4.1.1. Diremos que X es globalmente
estable si es estable y x(t) — x cuando t — +o00 para cualquier x € S,, que tenga
el mismo soporte que X.

En el contexto de la dindmica poblacional, decimos que X € .S, es equilibrio de
Nash (N.E.) si:

xT A% < xA%, Vx € S,,, (4.1.3)

para cualquier y € S, y diremos que x € S,, es un estrategia evolutivamente
estable (ESS) si cumple
xT Ax < % Ax, (4.1.4)

para cualquier X # X en un entorno de X.
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Teorema 4.1.2 (Teorema folk de la teoria de juegos evolutiva). [4] Para la
dindmica de replicador clasica 4.1.1 valen los siguientes resultados (llamamos A a la

matriz de pagos):
1. Si un punto x € S,, es N.E., entonces es un punto de equilibrio.

2. Si X es un punto de equilibrio y el liimite de una 6rbita x(t) en int S,,, entonces

es N.E.
3. Si x es un punto de equilibrio estable, entonces es N.E.

Demostracion. 1.) Al ser x N.E., tomando y = e; en 4.1.3 tenemos que
(Ax); < xTAx, V1<i<n.

Para ver que x es punto de equilibrio, nos basta con ver la desigualdad inversa para

i € sop(x), pues tomando
J:={i€n|:z;=0}=[n]\sop(x),
esta claro que, para todo i € J, la ecuacion del replicador
T; = :E,-[(Ax)i — XTAX},
es nula. Para los 7 € sop(x), por 2.1.1 tenemos que ¢; € BR(x), por lo que
(Ax), < (Ax);, V1 <k <n,
entonces tenemos que

xTAx = Xn:mk(Ax)k = Y zp(Azr)p < ) ap(Ax); = (Ax);.

k=1 kesop(x) kesop(x)
Por lo tanto,

xT Ax < (Ax); Vi € sop(x),

y finalmente obtenemos

T, = [(Ax)i — XTAX} =0Vl<i<n.
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2.) Sea x(t) una trayectoria en el interior de S, tal que X € w(x). Sabemos que
existe una sucesion {tx ren tal que ty — +00 y x(tx) — X. Supongamos que X no

es N.E., entonces existe y € .S, tal que
$TA% < yT A%,

entonces debe existir al menos una estrategia pura 1 < i < n tal que
£TA% < (A%);.

Veamos esto rapidamente: supongamos que no existe tal 7, entonces

lo cual contradice nuestra suposiciéon inicial. Luego tenemos que

(A%); — %A% > (A%); — yT A% > 0.

Como x(t) 22 % podemos tomar un € > 0 y un o > 0 tal que

iEB = (Ax(0)i = x(O)"Ax(t) > € ¥t = to,

en donde el cociente estd bien definido pues x(t) € int(.5,). Luego, tenemos
In(z;(t)) > €, Vk > K.

Entonces

z;(t) > e'.c Vk > K, con ¢ > 0,

lo cual es absurdo pues 0 < z;(t) < 1 para todo k € N.

3) Supongamos que x no es N.E., entonces existe y € S,, tal que
xTAx < yT Ax.
Por lo visto en 2.), existe 1 < i < n tal que

x'Ax < e] Ax,
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se sigue que

Je >0 tal que (Ax); — x" Ax > e

También sabemos que i ¢ sop(x), pues de lo contrario habria una contradiccién

inmediata al ser x punto de equilibrio.

Por la continuidad de la funcién

f(z) = (Az); — 2" Az,

existe un entorno U de x tal que, si z € U, entonces f(z) > e. A su vez, por la

estabilidad de x, existe un entorno V' de x tal que, si x(0) € V, entonces

x(t)e U, Vt>0.

Luego, tomando z € V' tal que i € sop(z) tenemos que

S (Az); — 2" Az = f(z) > e
Zj
Usando que

() = 2
g ) =

podemos ver de forma andal item anterior que esto implica

t

zi(t) > e“.c, con ¢ >0,

lo cual contradice la estabilidad.

O

Teorema 4.1.3. [4] Sea A la matriz de pagos de un juego simétrico y sea X €

S, un estado evolutivamente estable (ESS). Entonces X es un punto de equilibrio

asintoticamente estable de la dinamica replicadora 4.1.1 restringida a la cara minimal

del simplex que contiene a X, es decir,

Cy ={x €S, :sop(x) C sop(X)}.

En particular, si X € int(S,), entonces X es asintéticamente estable en todo

int(S,).’

IEn algunas fuentes, este teorema se encuentra entre los resultados del Teorema Folk
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Demostracion. Tomando las convenciones 0.1n(0) = 0.1n(co) = 0 definimos
V(x) ::Z:ﬁiln%, xS,

Veamos que V' cumple las condiciones de 3.1.2 en la cara sobre la que se encuentra
%. Es inmediato que V(%) = 0. Si x € int(Cx), entonces necesariamente sop(x) =
sop(X), adicionalmente, al estar en el caso del replicador clasico 4.1.1, usando la

regla del cociente tenemos que

d d &

5 V() = dt(ieg(x) #i[In(#;) — In(x,)])
= — Z xz ln (x;)]
1€sop(x) t

S Z i"i[(Ax)i — XTAX}

i€sop(x)

=— Y &[(Ax); — x"Ax]
i€sop(X)

=— > #H(Ax); + > #(x"Ax)
i€sop(%k) i€sop(%k)

= %xTAx + x'Ax.
Al ser %X evolutivamente estable, por 2.3.2 tenemos que existe un entorno de X,

G C S, tal que
%7 Ax > xT Ax, Vx € G\{%}, (4.1.5)

por lo que 4V (x) < 0 para cualquier x € G\{&} que esté en el interior de la cara
Cx. Definimos G’ := G N int(S,), hasta ahora hemos visto que V(X) = 0 y que
4V (x) < 0 para todo x € G'\{z}. Veamos que V (x) > 0 para cualquier x € G'.

Reescribimos V(x) = — ¥cqopx) L3 In (%) Aplicando la desigualdad de Jensen
a la funcién céncava In(z), tenemos que

) xlln<x><ln( xx)
xX; . s xX;

i€sop(%) i€sop(k)

Desarrollando el término dentro del logaritmo del lado derecho:

Z,Z%

i€sop(xk) ¢ i€sop(X)
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Dado que estamos restringidos a la cara minimal Cg, sabemos que sop(x) C sop(X),
y como X € Sy, se cumple que 3-;cq0p%) i = 1. Por lo tanto:
S 4 (x> < In(1) = 0.
i€sop(%k) Li
Multiplicando por —1 obtenemos
A T
Vix)=— > &In (A) > 0.
i€sop(X) L

Debido a la concavidad estricta del logaritmo, la igualdad a cero se alcanza si y solo

8

. , ;T . .. A . PN
si la razéon & = 7, bara cualquier i, j € sop(X), es decir, en el caso x = X. Por lo

#|

tanto, tenemos que V' (X) = 0 y, para todo x € G' \ {X}, se cumple que

V(x)>0 vy ;ltV(x) < 0.

Finalmente, se concluye por 3.1.2 O]

4.2. Promedios Temporales

Dada una o6rbita x(¢) de la ecuacién del replicador, definimos el promedio tem-

poral de la siguiente manera:

Z(T) = 7{ /O i)t (4.2.1)

A continuacién veremos algunos resultados importantes que lo relacionan con los

puntos de equilibrio de 4.1.1.

Teorema 4.2.1. [4] Si existe una 6rbita x(t) que permanece separada una cierta
distancia de la frontera a lo largo de todo su recorrido, entonces existe un punto de

equilibrio en int(S,,).

Demostracion. Como x(t) permanece separada de la frontera, existe a > 0 tal que

x;(t) > a para todo t > 0, V1 < i < n. Entonces tenemos que

In(z;) = i _ (Ax(t)); — x(t)Ax(t), V1<i<mn, Vt>0,

Z;
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por lo que integrando entre 0 y 7" de ambos lados y dividiendo por 1" obtenemos

In(x;(T)) — In(x;(0
T

! - ;/OT[(AX% - x" Ax].dt = Zn: ai;zj(T) — ;/OT xT Ax.dt.

j=1
Como a < z;(T) < 1, el lado izquierdo converge a cero a medida que 7" — 400, por

lo que nos queda

> a;jz;(T) = lim —/ xT Ax.dt.
j=1

T—+oco T Jo

Adicionalmente, tenemos que

1 /7
2z(T) = f/ z;i(t)dt > a>0,V1 <i<n.
0
Como S, es compacto, existe un punto de acumulacién de {(z1(7), ..., 2,(T")) }r>0

en el simplex. De esta forma, existen {7} }x>1 C [0,+00) y z € S, tal que Ty, — 400

y
1 [T
zi = lim —/ x;(t)dt,
0

k—+4o00 Tk

k—4oc0 Tk‘

(Az); =Y gz = lim — / " x(ty) T Ax(ty).dt,
=1 0
zi>a, V1<i<n.
Entonces, z € int(S,) y cumple que

(A2), = ... = (Az2), (4.2.2)

por lo que z debe ser punto de equilibrio interior de la ecuacién del replicador.

]

Teorema 4.2.2. [4] Si la ecuacién 4.1.1 admite un tnico punto de equilibrio z € S,
y la trayectoria de x(t) es tal que su w—limite esta en int(S,,), entonces su promedio
temporal converge al punto de equilibrio, es decir

1 /7
lim —/ z;(t)dt = z; V1 < i <n. (4.2.3)
0

T—+o00
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Demostracion. Sea {z(T,)},>1 una subsucesién de 4.2.1 definida coordenada a coor-

denada para el recorrido de x(t), es decir
1 [T
z(T,,) = —/ x;(t)dt V1 <i<n.
T, Jo

Como {z(T,)}n>0 C Sy, existe una subsucesioén {z(7},, ) }x>0 C S, que converge

aun X € S,. Como vimos en 4.2.1, al ser X limite de promedios temporales tenemos
RAX = (AX);, Vi € sop(X),

por lo que X es un punto de equilibrio de la ecuacién del replicador. Luego, X = z.
Hemos demostrado que para cualquier subsucesién de {z(t)}+>o existe una subsub-

sucesion que converge a z, lo cual demuestra el resultado.

[]

Teorema 4.2.3. [4] Si no hay ningin punto de equilibrio en int(S,) entonces toda

orbita debe converger al borde de S,,.

Demostracion. Supongamos que hay una 6rbita x(¢) que no converge al borde del

simplex. Entonces, existe una sucesion {tj}r>1 y un € > 0 tal que
d(x(tg),0S,) > € Vk € N.

Luego, existe una trayectoria que permanece separada al menos € de la frontera del
simplex a lo largo de todo su recorrido. Entonces por 4.2.1 debe existir una N.E. en

el interior del simplex, absurdo.

4.3. Juegos con pagos no lineales

Hasta ahora hemos trabajado con juegos en donde el payoff de la i-ésima estra-
tegia estd dado por la funcién (Ax);, sin embargo existen muchos casos en donde
el pago (también llamado fitness en algunos casos) de la i-ésima estrategia esta da-

do por una funcién no lineal a;(x) : S, — R. Aqui, una poblacién que tiene una
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distribucién de frecuencias x € S,, tendra un payoff esperado de

a(x) = éxi.ai(x) = x.a(x),
donde tomamos
a(x) = (a1(x), ..., a,(x)).

Esto nos permite escribir una ecuacion del replicador generalizada de la forma:
Z; = xi(a;(x) —a(x)),v1l <i < n, (4.3.1)

la cual, en el caso en que a;(x) = (Ax); para ¢ = 1,..,n se reduce a 4.1.1.
Al igual que antes, suponemos estar trabajando en el simplex estandar S,,. Si
nuestro punto inicial se encuentra en este conjunto, la trayectoria resultante de 4.3.1

permanece en el mismo. Tomando S = }_}" | x; se satisface:

S = > wai(x) — a(x)] = a(x) [Z 7 C:((;c)) _ S] =a(x)(1—-29),

por lo que S = 1 resulta invariante. En el caso del replicador clasico 4.1.1 vimos que

sumarle constantes a cada columna de nuestra matriz A no afecta la ecuacién del

replicador, en el caso no lineal, tenemos un propiedad analoga.

Proposiciéon 4.3.1. La suma de una funcién 9 (x) a todas las a;(x) no afecta la

dindmica del replicador 4.3.1.

Demostracion. Definimos g;(x) = a;(x) + 1(x). Luego g(x) = > x;¢:(x) = a(x) +
1 (x), luego tenemos que ¢;(x) — g(x) = a;(x) — a(x) O

La teoria de la estabilidad evolutiva también puede extenderse al caso genérico.
Decimos que X € S, es localmente evolutivamente estable si X.a(x) > x.a(x) para
cualquier x # X en un entorno de X. Adicionalmente, tenemos un analogo a las

condiciones de equilibrio y establidad vistas en el primer capitulo.

Proposiciéon 4.3.2. Un estado X € S, es localmente evolutivamente estable si y

solo si se cumplen las siguientes condiciones:
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L% fR) > x-f(R).
2. Sien (1) se cumple la igualdad y x esta lo suficientemente cerca de X, entonces

x-f(®) > x- f(x).

4.4. Dinamicas de Imitacion

Las dindamicas de imitacion plantean una dinamica en la que, de forma ocasional
y al azar, los jugadores “observan” la estrategia de otro jugador, y en base a un
criterio establecido, adoptan o no la estrategia de su rival con cierta probabilidad. La
probabilidad con la que un jugador adoptara o no la estrategia de su rival dependera
de la diferencia entre los pagos de cada estrategia y su frecuencia actual. Definido
de forma mas rigurosa, la dindmica de imitacién es una trayectoria que evoluciona

segun el siguiente sistema
Z [fij (@) = fru(@)] 25, V1 < i< (4.4.1)

en donde f;; es la frecuencia con la que el jugador que utiliza la estrategia j adopta
la estrategia i. Asumimos que la funcién f;; depende de los pagos de iy j, y que

ademés existe f(u,v) tal que:

fij(x) = flai(x), a;(x)).

Llamamos a f(u,v) la “regla de imitacién” (que serd la misma para todos los juga-
dores). Un ejemplo simple de una regla de imitacién es imitar la mejor estrategia,

en cual caso tenemos

0 siu<w,
flu,v) =

1 siu>w.
En general se suele agregar la suposicion de que la regla de imitacion es de la forma
f(u,v) = ¢(u — v) donde ¢ : R — Ry es una funcién creciente (en este trabajo
también lo supondremos), esto nos permite escribir las probabilidades de transicién

de la forma

[ij(x) = ¢(a;(x) — a;(x)). (4.4.2)
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En el que caso de una regla de imitacion genérica como en (4.4.2) podemos definir

i =x Yy U(ai(x) — aj(x))z;. (4.4.3)



Capitulo 5

Ejemplos y Caracterizaciones de

Juegos Normales

5.1. Dinamica de replicador clasico
unidimensional

En el primer capitulo, nombramos el juego de halcones y palomas como un
ejemplo clasico en n = 2, y miramos su matriz de payoff en 2.5.1. En esta seccion

nos interesa analizar qué sucede cuando miramos la ecuacion del replicador asociada

G-C

5~ a los elementos de la primera

a este juego: usando 4.1.1, podemos restarle
columna y g a los elementos de la segunda columna, obteniendo una matriz con

una ecuacion del replicador idéntica (sobre S,,)

(5.1.1)

S »Q

Mas alld de nuestro analisis del juego de halcones y palomas, es facil ver que
este razonamiento puede extenderse a cualquier juego unidimensional. Tomando la

matriz de payoff A € R?*2 basta con restarle a;; a los elementos de la primera

41
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columna y ass a los elementos de la segunda columna para obtener una matriz de la

forma
0 a

, (5.1.2)

b 0
la cual, por 4.1.1, comparte la misma ecuacion del replicador con la matriz de payoff
original A. Ademas, como la evolucién de la ecuacién transcurre en Ss, nos basta con
conocer r; para caracterizar el estado del juego, pues necesariamente ro = 1 — 1.
Para facilitar la notacién, en el contexto del juegos de dos dimensiones llamamos x

ax;yl—xaxy A deesto, podemos dar la siguiente escritura genérica para la

ecuacion del replicador de un juego de dimensién dos,
t=ux[(Azx); —x - Az] = 2 [(Az); — (2(Az); + (1 — 2)(Ax)s)],
simplificando nos queda,
t=z(1—2)[(Az); — (Ax)s) = 2(1 — ) [a — (a + b)z] . (5.1.3)

El lado derecho de nuestra ecuacion diferencial es un producto de tres factores:
el primero se anula en 0, el segundo en 1; el tercer factor tiene una raiz & = o en
(0,1) si y solo si ab > 0. Asi, obtenemos tres casos posibles:

1. No hay punto de reposo en el interior del espacio de estados. Esto ocurre si y
sélo si ab < 0 . En este caso, & tiene siempre el mismo signo en (0, 1). Esto puede
verse facilmente reescribiendo 5.1.3 como & = x(1—x)[a(l—z)—bx]. Sia >0y b <0
con al menos una desigualdad estricta, entonces © > 0. Esto significa que z(t) — 1
cuando t — +o00 para cualquier valor inicial, X ya que la trayectoria resultante es
una secuencia estrictamente creciente en un compacto con maximo 1.

Por el contrario, si a < 0y b > 0 con al menos una desigualdad estricta, el signo
de & serd negativo, por lo que z(t) — 0 y e domina. En cada caso, la estrategia
dominante converge hacia la fijacion.

2. Existe un punto de equilibrio, es decir, ab > 0, y tanto a como b son negativos.
Sabemos que & = z(1—x)[a(1—x)—bz] tiene una tnica raiz en (0, 1) que se ubica en

& = %, sl tomamos un niimero & < r < 1 entonces 0 = a(1—%)—b% < a(l—x)—bz,
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y por ende & > 0. Esto nos dice que la trayectoria para cualquier dato inicial
x = (x,1 —x) con & < x < 1 necesariamente cumple que x(tf) — 1 a medida que
t — +00, es decir, se aleja del punto de equilibrio.

Anéalogamente, se puede comprobar que para cualquier 0 < x < Z la trayectoria
con dato inicial x = (z,1 — ) cumple x(t) — 0 a medida que ¢ — +oc.

3. Existe un punto de equilibrio, es decir, ab > 0, y tanto a como b son positivos.
Similarmente al caso anterior, sabemos que & = _%; es la Unica raiz en el intervalo
(0,1) para & = x(1 — z)[a(l — x) — bx]. En este caso, para cualquier & < = < 1
tendremos que & < 0, es decir, z(t) — Z a medida que t — +00, andlogamente para
cualquier 0 < x < & tendremos que & > 0, por lo que la trayectoria también debera
converger a I.

Habiendo visto la clasificacion de juegos de dos dimensiones, es facil ver que
pasa en el juego 2.5.1. Como mencionamos en el primer capitulo, siempre asumimos
que C (el costo de pelearse) es mayor a G (la recompensa de ganar la pelea) y
que ambos son mayores a cero, por lo que es un juego donde existe un punto de
equilibrio g Ademas, para cualquier punto inicial x en el interior de Sy tenemos

G Cc-G

que x(t) — (&, ~z~) a medida que ¢ — +o0.

5.2. Dinamicas de replicador generalizadas

En el caso no lineal no hay una clasificacion tan simple, sin embargo sigue siendo
posible reducir el problema a la resoluciéon de una E.D.O en R. Tenemos dos funciones
de payoff, a; y as, por lo que @(x) = z1a1(x)+x2a2(X) y tenemos el siguiente sistema

de ecuaciones:

Ty =1 {fl(X) - ?(X)L
Ty = T2 {fz(X) - ?(X)}

Nuevamente tomamos x1 = x y x5 = 1 — x, remplazando estos valores en la

primera ecuacion del sistema obtenemos:

t=x(l —2)a(x,1 —z) — as(z,1 — ). (5.2.1)
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Ejemplo: Regla de imitacion de Fermi La regla de imitacién de Fermi se refiere
a una dinamica de imitacion en la que tenemos una regla de imitacion sigmoidal de

intensidad > 0, es decir
1

M) = T

Si llamamos a;(x) al payoff esperado para la i-ésima estrategia en una poblacién

con frecuencias x € S,, nuestra regla de imitacion (como en 4.4.2) sera

1
Jis(x) = dlai(x) —a;(x)) = ey (5.2.2)

donde [ actia como un coeficiente de intensidad de cambio. Miramos en mayor
detalle el caso en el en que a;(x) = (Ax); para alguna matriz de payoff A € R™*",
en particular, observaremos el caso n = 2 con f = 1 y deducimos su equilibrio de

Nash. En este caso tenemos

. 1 1
= {1 + e~ ((Ae)i—(Az)2) ] 4 e(A)—(Aw):2 |
. _ 1 1
T2 = 1112 {1 T+ e~ ((Aw)a—(Ax)1) ~ 1+ ewﬂﬂmh} '

Tomaremos A como en 5.1.2; con a,b € R —{0}. Realizamos el remplazo z5 = z,
r1=1—=x
De esta forma (Az); = a.(1 — z) y (Ax)s = bx. Al igual que en el replicador

clasico tomamos x = x1 y x9 = 1 — x para obtener una sola ecuacion

1 1
14+ e—az—b(l-x) o 14+ eazr—b(1-x)

t=ux(l —2) (5.2.3)

Luego, para encontrar el equilibrio de Nash interior(en caso de que exista) nos

basta con resolver
1 1

14+ e—az+b(l—z) - 1+ eazr—b(1—x) -

0,

despejando podemos ver que que si existe un equilibrio de Nash interior es de la forma

a b

3530 =r3))- La condicién de

r = -2 (decimos esto coloquialmente, el verdadero es (
a+b
existencia es que aLer € (0,1), equivalentemente debe valer que, o bien a,b > 0, o

bien a,b < 0.
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Trayectorias para multiples condiciones inicales

1.0 -
0.8
0.6
=)
®
0.4 1
—— x0=0.35
¥0=0.375
0294 — x0=0.4
— x0=0.5
— x0=0.7
0.01 — x0=3a/(a+b)
T T T T T T T T
0 1 2 3 4 5 6 7

Figura 5.1: Evolucién de una dindmica de imitaciéon de Fermi en n =2 cona =5y
b=3

Ejemplo: Imitar al mejor En este caso nos mantenemos en el mismo tipo de
dindmica que en el ejemplo anterior; a;(x) = (Ax); V1 < i < n para alguna matriz
A € R™"™, Sin embargo, cambiamos nuestra regla de imitacion, en este caso tomamos
¢(x) = 11 +00)(x) por lo que obtenemos
0 siaix)<a;(x),
fii(x) = ¢(ai(x) — a;(x)) (5.2.4)
1 siai(x) > a;(x).
en la dindmica de imitaciéon en cuestion cuando un jugador compara su estrategia
actual con la de otro sector de la poblacién, si esta es mejor que la suya, la adopta
con probabilidad uno. Siempre se imita al mejor. En este caso, sustituyendo en 4.4.1,

la expresion general de cada derivada nos queda
B = 25 3 25| L0400 @:(X) — (%)) = Lo, 400)(a;(%) — ai(x))], (5.2.5)
j=1

para todo 1 <i < n.
Cuando incorporamos, miramos la dindmica en el caso de los payoffs del repli-

cador cléasico, es decir, a;(x) = (Ax);, obtenemos

& = 2: 25 L0 400 (A%); = (A%);) = Lo 400 (Ax); — (Ax); )], (5.2.6)
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para todo 1 < i < n.

En ambas instancias podemos, observar que si x € S,, es equilibrio de Nash de
la ecuacién del replicador clasica, entonces también es equilibro de Nash de esta
dindmica de imitacion. Para finalizar el ejemplo miramos las trayectorias de un

ejemplo puntual en n = 3, tomamos la matriz

3 0 5
A=15 1 0}, (5.2.7)
0 4 2

de forma tal que a;(x) = (Az); para todo 1 < i < n. A continuacién mostramos

algunas trayectorias en el hiperplano que contiene a Ss.

%3

— x0=[0.1, 0.8, 0.1]
x0=[0.1, 0.1, 0.8]
0.8 - —— x0=[0.33, 0.33, 0.34]
x0=[0.5, 0.25, 0.25]
0.6
=
x
a
o
£ 04
wn
0.2 1
0.0 1
e T T T T ——X2
0.0 0.2 0.4 0.6 0.8 10
Simplex X

Figura 5.2: Evolucién de una dindmica de imitacién con matriz de pagos 5.2.7 y
dindmica 5.2.6



Capitulo 6

SINDy: Identificaciéon Esparsa de

Sistemas Dinamicos no Lineales

6.1. Introducciéon a SINDy

La Identificacion Dispersa de Sistemas Dinamicos No Lineales es un método
de machine learning basado en la regresion que se usa para descubrir ecuaciones
diferenciales ordinarias auténomas (que no dependen explicitamente de t) a partir
de datos empiricos de su evolucion a lo largo del tiempo (ver [6]). Supongamos que
tenemos un conjunto de mediciones x(t) € R™ de algtn sistema dindmico en distintos
momentos. SINDy busca una f : R* — R" de forma tal que la evolucién de x()

pueda ser representada a través de una ecuacién diferencial ordinaria auténoma:

El vector x(t) = (x1(t),..,x,(t)) representa el estado del sistema fisico en el
tiempo ¢ y la funcién f(x) restringe como evoluciona el sistema en el tiempo. La
suposicion principal detrds de SINDy es que dado un conjunto de funciones apropia-
das O(x) = {01(x), .., 0;(x)}, podremos obtener una aproximacién de f(x) que sea
una combinacién lineal de ©(x) con relativamente pocos terminos no nulos. En estos

casos, decimos que la funcién f(x) es esparsa en el espacio de funciones apropiado.

47
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Para aplicar SINDy en la practica, se necesita un conjunto de datos de medi-
ciones recogidos en los instantes t1,%s,...,%,,, vy las derivadas temporales de estas
mediciones (ya sean dato o aproximaciones numéricas). Estos datos se agrupan en

las matrices X y X , respectivamente:

[E1<t1) Ig(tl) xn(tl) il (tl) Jfg(tl) l‘n(tl)
X _ $1(.t2) xz(‘tg) . [L’n(tg) 7 X _ i‘l(‘tz) i’Q('tQ) . ZL’n(tQ) c Rmxn)
_xl(tm) To(tm) -+ xn(tm)_ _j31 (tm) do(tm) -+ j;n(tm)_

A continuacién, se forma una matriz O(X), cuyas columnas consisten de las

funciones que elegimos como ©(x) aplicadas sobre los datos de las trayectorias:

| | |
O(X) = [01(X) 6:(X) ... 6,(X)| € R™™. (6.1.1)

| | |
Por ejemplo, si O(z) = {61(x),02(z),...,0(x)} son monomios de grado 2 en R"

tendriamos

r1(t1)? zi(t)ze(ty) .. z(tr)?
o) = | | | |
1(tm)? i (O)za(tnm) .o Tp(tn)?
Nuestra incégnita en este caso es un conjunto de vectores de coeficientes dispersos

(agrupados en una matriz)

| |
E=|&4 & ... &| R

El vector &; proporciona los coeficientes para una combinacién lineal de funciones
base 01(x),05(x),...,0,(x) que representan la i-ésima funcién componente de f,

fi(z). De forma tal que

filw) = (01(2), 0a(), . .., 0u(2) ) &:.



CaAPiTULO 6. SINDY: IDENTIFICACION ESPARSA DE SISTEMAS DINAMICOS NO
LINEALES 49

Con cada uno de los objetos X, X, O(X) y E definidos, podemos escribir el

problema de aproximacién subyacente de SINDy:

X =0O(X)E. (6.1.2)

Tipicamente en la practica no contamos con los datos de la matriz X, por lo que
debemos utilizar una aproximacién numérica. Adicionalmente, los datos que contie-
ne X pueden estar contaminados con ruido, por lo que la ecuacién que buscamos

resolver en la practica es de la forma:
X =0O(X)E +nZ, (6.1.3)

donde Z es una matriz con entradas gaussianas independientes e idénticamente
distribuidas con media cero, y 1 es la magnitud del ruido. Asi, buscamos una soluciéon
dispersa para un sistema sobre determinado con ruido. El método LASSO clasico
funciona bien con este tipo de datos, proporcionando una regresiéon dispersa, sin
embargo, puede resultar computacionalmente costoso para conjuntos de datos muy
grandes.

Una alternativa es implementar el algoritmo de minimos cuadrados secuenciales
con umbral. Lo introducimos coloquialmente y lo formalizamos mas adelante en el
Algoritmo 1. En este algoritmo, se comienza con una solucién de minimos cuadrados
para 6.1.2 y luego se eliminan (mediante un umbral) todos los coeficientes que sean
menores que un cierto valor de corte X\. Una vez que se identifican los indices de
los coeficientes distintos de cero que quedan, se obtiene otra solucién de minimos
cuadrados para Z restringida a esos indices.

Estos nuevos coeficientes se vuelven a umbralar utilizando A, y el procedimiento
se repite hasta que los coeficientes distintos de cero convergen. Este algoritmo es
computacionalmente eficiente y converge rapidamente a una solucién dispersa en
pocas iteraciones. El algoritmo también se beneficia de su simplicidad, ya que solo

requiere un unico parametro A para determinar el grado de dispersion en =.
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6.2. Algoritmo SINDy

En esta seccion definiremos formalmente el algoritmo de SINDy y exponemos
algunos resultados de [8], particularmente los que se refieren a la convergencia del
problema original de SINDy planteado en [6]. Desarrollamos en mas detalle el al-
goritmo STLSQ (Sequencially Thresholded Least Squares) que usa PySINDy en su
implementacién y ademas mostramos la relaciéon entre el resultado producido por el
algoritmo y la solucion(es) de 6.1.2. Para comenzar, definimos el valor que tomare-
mos como la norma cero de un vector a

0 if €Ty = O,
|z|lo := card(supp(z)) = |z;|° donde |z;]° =
I 1 if T 7£ O,
la cual nos sera 1til a la hora de definir la funcién minimizar. Dado un conjunto
S C [n] definimos zg € R™ de forma tal que
X lf] S S,
(zs); =
0 ifjé¢s,

y notamos a la pseudoinversa Moore-Perose de una matriz A € R"™*"

conm > n
como A'. El problema propuesto en [6] para el caso de una dimensién se reduce al

sistema matricial

Ax =b,

con A € R™" x € R" y b € R™ . Buscamos resolver este problema de forma tal
que la solucién tenga la menor cantidad posible de coordenadas no nulas, es decir,
buscamos promover esparcidad. Para lograr esto, se introduce un umbral fijo A > 0
como hiperparametro del método. Al utilizarlo como un término de penalidad [, el

problema final que buscamos resolver nos queda:
mxin||A:z:—b||§+)\2Hx||o, (6.2.1)

en el cual podemos podemos asumir sin pérdida de generalidad que ||Al]s = 1 ya
que ||c.z||o = ||x||o para cualquier ¢ € R — {0}. Para resolver este problema, SINDy

utiliza el siguiente algoritmo iterativo:
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% = Afp, (6.2.2)
Sp={ieml:lefl =}, k=0, (6.2.3)
e = argmin  ||Ax —blly, &k >0. (6.2.4)

z€R"™ : supp(z)C Sk

en lo que resta del capitulo, mostraremos algunos de los resultados de [8] que nos
garantizan la convergencia en finitos pasos de la iteracién 6.2.2 y la relacion entre
los resultados que produce la iteracién y los minimos locales y globales de la funcion
no convexa:

F(z) = ||Az — b2 + N¥||z]lo , = € R, [|A]2 = 1. (6.2.5)

A partir de 6.2.2, utilizamos el siguiente algoritmo:

Algorithm 1 Algoritmo SINDy (STLSQ) para Az = b

Entrada: m > n, A € R™*" con rango(A) =n, b € R™, umbral A > 0
Salida: Solucién dispersa aproximada x

1: k<0
2: Inicializar 2° < ATby S_; + @
3 So+{jen]:|@;| >N} > elegir A > 0 tal que Sy # @
4: while S; # S;._1 do
5: oFt «— arg min | Az — b||2
z€R™ : supp(x)CSk
6: Skar < {j € [n] + |(«*);] > X}
7 k+—k+1
8: end while
9: return z*

En principio el algoritmo anterior s6lo puede utilizarse en problemas de la forma
Ax = b, y la gran mayoria de los resultados tedricos que veremos también trabajan en
este contexto, sin embargo, definiendo un algoritmo SINDy apropiado para E.D.O.s
de mayores dimensiones la extension de los resultados es inmediata. Extendemos el

Algoritmo 1 en problemas de las forma
AX =B, (6.2.6)

donde A € R™*" X € R"™P y B € R"™*", Para aprovecharnos de los resultados en

una dimension resolveremos p problemas lineales de la forma

A.Col;(X) = Col;(B), V1 < j <n, (6.2.7)
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de forma tal que la ejecucion del algoritmo SINDy en n > 1 sea simplemente un
ejecucion de p instancias paralelas del Algoritmo 1. De esta forma generalizamos

el algoritmo (y mas adelante resultados tedricos) al caso de SINDy aplicado a una

E.D.O. en R"™.

6.3. Convergencia de SINDy a minimos locales

Teorema 6.3.1. El algoritmo iterativo 6.2.2 converge en a lo sumo n pasos.
Demostracion: Sea {r%};>¢ la sucesién generada al iterar 6.2.2. Por definicién,

sop(z*1) C Sy, entonces:
Sk1 C 50p(Tpy1) C Sk

Si existe k € N tal que Sy = Si41 entonces tenemos que

ot = arg min | Az — b2,
zER™ : supp(x) S Sk+1
= argmin |Az —b||2
z€R™ : supp(z)CSk
_ gkt

por lo que 2™ = 2! Vm > k. Como card(S;) < n necesariamente k < n, por lo
que el algoritmo converge en n pasos. Si no existe tal £ € N entonces Si11 T Sk
para cualquier S;, # (). Entonces S,, = ), por lo que el método debe converger a la

solucién trivial en n pasos 0]

1

Proposicién 6.3.2. Definiendo 2**! como en 6.2.2 vale que :

(AT (Az™™ —b))g, = 0.

k

Demostracion: Por definicion del algoritmo,

" = argmin || Az — b|)3.

z€R™, supp(z)CSk
Sea el residual

ro= Az —b.
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Tomemos cualquier vector de perturbaciéon h € R™ cuyo soporte esté contenido

en Sy (es decir, h; = 0 para j ¢ Sy). Consideremos la funcién en una variable

o(t) = || A" +th) = b3 = || + tAR3.

k+1

Como x es un minimizante entre los vectores con soporte en Sy, ¢ = 0 es un

minimizante de ¢. Por lo tanto, ¢'(0) = 0. Calculamos la derivada en ¢t = 0:
¢'(t) = 2(Ah, r+tAR) = 0=¢'(0) =2(Ah, r). (6.3.1)

Asi, (Ah,r) = 0 para todo h soportado en Sj,. Reescribimos (Ah,r) como (h, ATr).

Como lo anterior vale para todo h con sop(h) C Sy, obtenemos
(h,(ATr)s,) =0 para todo tal h.
El tinico vector en R/ ortogonal a todos los vectores es el vector nulo, por lo que
(ATr)s, =0,
lo cual es precisamente lo que buscabamos probar. 0

Teorema 6.3.3. La sucesion generada al iterar 6.2.2 es estrictamente decreciente o
estacionaria para la funcién F'(x) (como en 6.2.5).
Demostracién: Definimos la variable auxiliar y* := xlgk, k € N, de esta forma

cumple la siguiente relacién:

supp(z*1) C Sy = supp(y*) C supp(a").
Luego, por 6.2.2 tenemos que

[ Az = bls < [|Ay* = bll2 v [[2*H]o < [ly*]lo

k+1

Adicionalmente, por 6.3.2, al ser " la solucién de cuadrados minimos sobre Sy

tenemos que (AT (Az**! —b))s, = 0, por lo que tenemos que

(a")s, = ((A'A4) 7' Ab)s, = AL D.
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Para ver el decrecimiento de la funcién F'(x) definimos la siguiente funcién au-
xiliar
G(z,y) = Az = bl — |A(x =)z + = — yl3 + N]lzllo, 2R, (6.3.2)
como nos encontramos en el caso en el que ||A]|3 = 1 tenemos que
—[lAG =5+ Iz = yllz = = [|Alz -yl + = — yl5 =0,

de lo que se sigue que G(x,y) > F(x) para cualquier par z,y € R".
Definimos la matriz B := I — A'A, como la matriz A*A es de rango n, los
autovalores de B son de la forma 1 —~; con 0 < ~; < 1 autovalor de AA, luego los

autovalores de B necesariamente estan en el intervalo [0,1]. Luego, tenemos que:
F(a"1) = [[Az™ = b5 + [+

< [ Az = B3 + N[ o + fl2® — ¥ (15
< [[Ay* = bll5 + N[l o + 12" — "1
< [ Ay" = bl + X[l lo + (2* — ") (T - ATA) (2" — y")
= [ Ay" = 0ll3 + X*[ly"llo + [l2* — y" [ + A" = y)]13
= G(y*, z5).

Es decir, F(zF) < G(y*, 2%).

Ahora demostraremos que G(y*, 2*) < G(x*, 2%). Usando la definicién de nuestra

variable auxiliar tenemos que:

k_ .k _ ok _ ok _. k
=yt = ot —wg =a,
=k . - .
donde S© = {1,...,n}\Sk. Restando las evaluaciones de nuestra funcion auxiliar

vemos que:
G(yF, %) — G(2*, 2%)
= | Ay* — bl — A" — 23 + [ly* — 23 + N[ly*[lo — | Az* = b]I3 — A%[|2*[|o
— 2, Ay) + 2(AyF, A¥) — 2] Az + 20b, AzF) + 2 — 13+ 22 (Ilg*llo — 1 o)
= —2(yF —F AT(b — Aa®)) + [l — (13 + N2 (Nl lo — ll=* 1)

= —2(aky, AT(AH = b)) + [ ]|C + X2 (1o — 12 o).
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Por definiciéon de nuestras variables auxiliares tenemos que

supp(x%k) = supp(x%kmupp(ggk)) C supp(z™) c ¥,
y por la Proposicién 6.3.2 tenemos que (A'(Az* — b))ge-1 = 0. Juntando ambas
propiedades queda claro que <x’§k,AT(Axk - b)> = 0. Adicionalmente, ‘x%k z <
A2card(supp(z*) N'S"), luego aplicando la definicién de ||.||o nos queda la cota:
G(yF, %) — G(a*, 2%) < Ncard(supp(a*) N'S") (6.3.3)
+2? (card(Sk) - card(supp(:vk))).
Analizamos primero el caso supp(z¥) ns* = (. Esto nos dice que 2* = y* = x’fgk,

por lo que S* = supp(z*). En conjunto con (6.4) tenemos que

gt = arg min I|Az — bl|5.

z€R":supp(x) Csupp(xk)

Supongamos que **! £ ¥ entonces tenemos que
||AZEk+1 — b||2 < ||1437]C — b||2

pero supp(x*t1) C supp(z®) = S* c S*71, por lo que usando (6.4) llegamos a
una contradicciéon. Entonces ¥t1 = z*. Si estamos en el caso supp(z*) N A # 0,

observamos que
card(supp(z®)) — card(S*) = card(supp(z*) N gk),

por lo que obtenemos a partir de 6.3.3, obtenemos que G(y*, z%) — G(a*, 2%) < 0.

Se sigue que z**! < zF, O

Finalmente, demostramos que el resultado del algoritmo de SINDy para un pro-
blema de una dimension converge a un minimo local. Previo a esto recordamos la
definicién

0 if €Ty = 0,
lzllo = >_ |z;]” donde |a;|* =
/ 1 ifz; #0.
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Teorema 6.3.4. Sea {2"};>¢ la sucesién generada por el esquema iterativo definido
en 6.2.2. Entonces {r¥};>¢ converge a un punto fijo del esquema. Ademds, dicho

punto fijo es un minimizante local de la funcién objetivo (ver 6.2.5):
F(z) = || Az = blI3 + A*[[z]lo.

Demostracion. Por 6.3.1 sabemos que el esquema termina en un numero finito de

pasos. Es decir, existe M € N tal que

gMH = M GM+1 _ gM

En particular, esto implica de manera inmediata que
o
> [t =2t < oo,
k=1

pues s6lo hay a lo sumo M términos no nulos en la suma. Sea z* = 2™ el estado
estacionario. Por definicién del esquema 6.2.2, x* satisface

*

" = argmin ||Az — b2,
zeR™

supp(z)CS* (634)
St={Jj  |zj[ = A}
pues x* es un punto fijo de la iteracion.
Veamos que el punto z* es efectivamente un minimo local de F(z). Usando la

Propiedad 6.3.2 tenemos que
(A" (Az* —b))s- =0, (6.3.5)

ademds, x} # 0 si y sdlo si [7| > A por 6.3.4, pues de lo contrario variarfa S*, lo
cual contradice que x* sea punto fijo.
Para ver que z* efectivamente es un minimo local de F'(x) nos basta con probar

la existencia de un € > 0 tal que
F (2" + z) > F(x*) para cualquier z € R" con ||2||« < €.
Sean

U:={jen]:2;=0}, vy U=supp(z’)={jecn]:|zj]>A} =5
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Fijando z € R" y tomando G(-,-) como en 6.3.2, tenemos que
G2+ 2,07) = Ga",a") = 2Az, Ax" = b) + N(|l" + 2llo = [|2" o) + 12113
Si notamos a; como la j-ésima columna de A obtenemos la siguiente simplificacion:
2(Az, Az* —b) + N (||lz* + 2|lo — [|z*]o)

= > (24} (Az" = b)2; + N|°)

jeu

+ 3 (207 (A — b)z; + N (Jaf + 2, — [23[°))

jeu
= > (2a] (Az" = b)z; + N[z ") + 3 N(a) + 2 — 23]°). (6.3.6)
Jjeu jeu

Supongamos que existe € > 0 tal que 6.3.6 es mayor a 0 para cualquier z € R" tal

que ||z* — 2|l < € Entonces G(z* + z,2%) — G(z*,2*) > ||z||3 y tenemos que

F(z* 4 2) =G

Luego para finalizar nos basta con encontrar tal € > 0 tal que si [|z* — 2| < €,

entonces

5= (2] (A" = b)z + W1z,l°) + 30 X1} + 51~ &) > 0

jeu jeu
Sij € U entonces |z}| > X. Si |z;| < Aparatodo1 < j < n,y [25+2]"—|z}|° = 0,

luego, si |z;| < A para todo j € U usando 6.3.6 tenemos que
2(Az, Ax” = b) + N(||l2" + z]lo — [|2"[lo) = 2a] (A — b)z; + X*|z[".
Miremos el caso j € U. Si para cualquier j € U vale que z; = 0 entonces

2&?(141'* — b)ZJ + )\2|Zj|0 = O
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Si |z;] > 0y A* > 2|al(Az* — b)z;|, entonces

2a] (Az* = b)z; + X’|z]” = 2a] (Az* — b)z; + A* > 0.

Luego, para j € [n] nos basta con pedir |z;| < min{)\, MT(i\ib)l} Finalmente
J
pedimos
)\2
0 <e < min{ min S A .
- { jeln] 2 |a] (Az* — )| }

y se cumple que si ||z]|« < €, por 6.3.6 vale que
G(:L'* + Z,l'*) - G(:c*,x*) > ”ZH%
]

Para finalizar, mostramos dos teoremas mas, uno de ellos un resultado adicional
presente en [8] que no demostraremos, y un segundo que es un resultado final que

resume todo lo que hemos visto en el capitulo.

Teorema 6.3.5. Un minimo global de la funcién 6.2.5 es un punto fijo del esquema

iterativo generado por 6.2.2

Teorema 6.3.6. Supongamos que m > n. Sea A € R™*" con ||All; =1, b€ R,y
A > 0. Sea {7¥}1>0 la sucesion generada por 6.2.2. Definimos la funcién objetivo F
por 6.2.5. Entonces se cumple que:

1.) la sucesién converge a un punto fijo del esquema iterativo definido por 6.2.2
en a lo sumo n pasos.

2.) Un punto fijo del esquema es un minimizante local de F' (6.2.5);

3.) un minimizante global de F' es un punto fijo del esquema iterativo SINDy.

4.) La funcién objetivo F' disminuye estrictamente en la sucesién {a* }1>0 a menos

que las iteraciones sean estacionarias.
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6.4. Relacién entre la respuesta de SINDy y la

verdadera solucion

En la seccién anterior exploramos la relacién entre el algoritmo SINDy y los
minimos de la funcion (6.2.5). Para finalizar este capitulo daremos algunos resultados
que relacionan la solucién que da la iteracion de SINDy con las soluciones verdaderas

del sistema lineal Ax = b.

Teorema 6.4.1. Sea x* € R™ un vector tal que Ax* = b, con A de rango completo.
Definimos S := sop(z*). Una condicién suficiente y necesaria para lograr recuperar

a r* es un solo paso utilizando el esquema iterativo 6.2.2 es

min |[(ATh);] > A > méx |(ATD),]. (6.4.1)
JES j€S

Demostracién. Como vimos en 6.2.2, 2% = ATb y Sy = {j € [n] : [29] > A}. Como
x? = (Ab); V1 < j < n entonces, si vale 6.4.1, tenemos que S = S°. Por como
hemos definido S y S° se sigue que
S=8" <= S={jen:(Ah); >)\} = min |(ATh);] > A > méx |(ATb);]
J jES
Supongamos que x* puede recuperarse mediante el esquema iterativo 6.2.2 en un

1

solo paso, es decir, que ' = z*. De acuerdo con el criterio de parada del Algoritmo

1, se tiene que S° = S*. Luego tenemos que

St={eh]: |l 2 \y={jeln]:(); 2 =5
Por tanto, S® = S, por lo cual vale 6.4.1. Reciprocamente, supongamos que 6.4.1 es
valida, lo cual hemos que equivale a Sy = S. La hipdtesis Az* = b implica que

||Az*™ — bl = min ||Az — bl|2,
z€R™:supp(z)CS
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ya que supp(z*) C S y la norma es cero. Como A es inyectiva(por ser de rango

completa), la solucién es tnica, y por tanto, usando la definicién de z! tenemos que

*

= argmin ||Az —b|p = argmin [|Ax —b|s = 2.
z€R™:supp(z)CS z€R™:supp(z)CSo

Es decir, z* puede recuperarse mediante el esquema iterativo en un solo paso.

O

El resultado que hemos demostrado se extiende facilamente a R™ utilizando el
planteo que vimos en 6.2.7. Dejamos a continuacion el resultado generalizado al
problema matricial. Vale aclarar, que en el algoritmo SINDy generalizado para mayor
dimensién consideramos a un paso como la iteracion individual de SINDy en cada

uno de los problemas de 6.2.7.

Teorema 6.4.2. Sea A € R™" (m > n) de rango completo (rg(A) = n), sea
X* € R™P una matriz tal que AX* = B con B € R"™*P. Para cada i € {1,...,p},

definimos el conjunto soporte de la i-ésima columna de X* por
Si»=sop(Coli(X™)) = {j € [n]: X;, #0}. (6.4.2)

Sea A > 0 el umbral usado en el Algoritmo 1(generalizado columna a columna).
Entonces, una condicién necesaria y suficiente para que X* se recupere en un tnico

paso por el esquema iterativo (generalizado a sistemas matriciales) es

min min
1<i<p j€S;

(A'B);;| > A > mix méx|(A'B)

1<i<p jeg,

: (6.4.3)

Jst

donde S; = [n] \ S; y AT = (ATA)7LAT es la pseudo-inversa (bien definida por la

hipétesis de rango completo).



Capitulo 7

Dinamicas de Replicador a través

de SINDy

En este capitulo nos centramos en la aplicaciéon de SINDy a la ecuacion 4.1.1,
para esto utilizaremos la libreria de Python PySINDY (ver [6]), la cudl ejecuta el al-
goritmo tal como lo hemos descrito en el capitulo anterior en el Algoritmo 1. Nuestro
objetivo es obtener la ecuacion del replicador, o una aproximacion de ella, a partir
de datos empiricos de trayectorias de nuestro sistema usando SINDy en combinacion
con una familia apropiada de funciones ©. A lo largo del capitulo tendremos que
armar bases de datos de trayectorias de distintas dindmicas de replicadores, para
este fin utilizamos un método Runge-Kutta RK-45, el paso y el intervalo utilizado

se aclararan en cada instancia.

7.1. Aproximando la ecuacion del replicador con

SINDy

Partimos de la suposicion de que los datos discretos con los que estaremos tra-
bajando provienen de de una dinamica de replicador genérica. A raiz de esto, su-

pondremos que la ecuacion que buscamos aproximar es de la forma 4.3.1, es decir,
I'i = xi(ai(x) — E(X)), 1 S ) S n,

61



CAPITULO 7. DINAMICAS DE REPLICADOR A TRAVES DE SINDY 62

motivo por el cual trabajamos bajo la suposicion de que, para cualquier @; = f;(x)
con 1 < i < n, six; =0 entonces f;(x) = 0. Esta suposiciéon nos ayuda a reducir
el conjunto de funciones © que elegimos para aproximar las f;. Para las familias
polinomiales nos permite utilizar como © a la base de P,(R"™)\Py(R™) formada por

polinomios moénicos de un término, es decir,
O(x) = {x“:0 < |a| < p}. (7.1.1)

Dado un grado p € N, definimos la matriz de Vandermonde multivariada para

un conjunto de puntos {xi,...,%x,,} C R™ como
thx(l) x?(N”)
Vixy,...oxm| =1 | .. B (7.1.2)
xe) - xa(Np)
donde a(1),...,a(N,) es una numeracién del conjunto de los multi-indices de grado

menor igual a p para puntos de R",

I ={a € (Zso)": Y || < p}, de cardinal N, := #(I,) = <” +p>.
i=1 p
En particular, suponiendo que (1) = 0, dado un conjunto de puntos {x;}i1<i<m C

R™, tenemos que

X?@ xf(Np)
OX)=V[x, ., Xm])1=1| | .. | (7.1.3)
x2@ o xo(Np)

al plantear el sistema de ecuaciones de SINDy utilizando la familia de funciones
7.1.1.

A lo largo del capitulo, siempre que implementemos SINDy en una ecuacién del
replicador en R", no sera sobre el sistema de n ecuaciones que evolucionan en .S,

(como en 4.1.1), sino que previo a buscar una aproximacion con SINDy remplazamos

n—1
T, =1-) = (7.1.4)
i=1
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de forma explicita en las ecuaciones. Es decir, aplicamos SINDy en el sistema de n—1
ecuaciones resultantes que evolucionan en R"~!. Esto se debe al hecho al hecho de
que el remplazo explicito 7.1.4 nos da un sistema de ecuaciones tinico en R"~! para la
evolucion del sistema (atin que el recorrido que nos interesa es en R%), mientras que
en el caso del sistema en R" restringido a S,, tenemos multiples formas de escribir
una misma evolucion sobre el simplex. Para dar un ejemplo de esto usamos el juegos

de Halcones y Palomas que introdujimos en 2.5.1. Dadas dos matrices

seal o
G c-G
0o ¢ =

2

Y

G
2
0

al remplazarlas en el replicador clasico 4.1.1, nos brindan dindmicas idénticas sobre
S5. Esto se debe a la Propiedad 4.1.1, ya que restando una constante en cada columna
podemos obtener una matriz partiendo de la otra. Sin embargo, si remplazamos la

primera matriz en el replicador clasico obtenemos

C G-C G
ZL’1—|—GJ]2—<J/’1( 9 I1+GZE2>+ZE2 <2$2>>:|,
5 T2 Ty 5 Ty H) T2 9 L2 )

mientras que para la segunda matriz obtenemos la dinamica

n=afgos(a(Gn)ra(S500)]
i[5 a = (n (5] n (570)))

Siempre que comenzamos en un punto x € S, la evoluciéon de ambas dinamicas es la

i’l:l’l[

.172:.%2

misma, sin embargo, a la hora de aplicar SINDy, el problema que genera esta claro,
no tenemos una Unica expresion algebraica para describir la dindmica. Para este
caso del replicador clésico, si ®(x) € R es un vector con evaluaciones de todos los
monomios de grado menor o igual a p (con p > 3) de x € R™, no existe un tnico
vector &; tal que

i; = & 0(x)
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para ningin 1 < ¢ < n. La solucién que proponemos a lo largo del capitulo es
implementar SINDy en el sistema

n—1 n—1
'7}2' = X; [CL1<]. — Z l’k,X_n) - a<]- - Z Ik,X_n)}, 1 < i <n-— ]-7 (715>
k=1 k=1

el cual tiene una tinica expresién en R"~!. Una vez hecha la aproximacion, si llama-
mos x;(t) con 1 < ¢ < n —1 a las trayectorias de la dindmica aproximadora, para

ver la evolucién de nuestra aproximcacion en .S, nos basta con mirar

n—1

X = (.Il(t), . ,xn_l(t), 1-— Z l‘l(t>>

i=1
En nuestro caso utilizamos x,, para escribir la restriccién del simplex de forma expli-
cita, esta elecciéon es arbitraria ya que nos es indistinto en que variable z;, 1 <1 < n,
usamos para el remplazo explicita de la condicién 7.1.4.

A continuacién, definimos las matrices necesarias para escribir el problema de

aproximaciéon de una dinamica de replicador con SINDy. Tal como dijimos al inicio,
planteamos SINDy con la familia de monomios de grado menor o igual a p € N,

7.1.1. Notamos

T, R" — R

a la proyeccién canodnica sobre las primer n — 1 coordenadas de un vector. Si
{z(tj)}1<j<m C Sy es una base de datos a partir de trayectorias de una ecuacion del
replicador, entonces para aproximar una ecuacién de la forma 7.1.5 tomamos la base
de datos {m,(z(t;))}1<j<n C R""!. Hacemos el mismo proceso con las derivadas y
tomamos, {m,((t;))}1<j<m. De esta forma, para aplicar SINDy con la familia 7.1.1

tenemos
O(X) = (Vima(z(t1)), ..., mu(z(tm))]) -1 € R (Np=1) (Vcomoen 7.1.3) , (7.1.6)

y una matriz de derivadas

T1(t1)  do(ty) - dnoa(t1)

X _ j}l(tg) j72(t2> te i'n—l(tQ) c Rmx(nfl)'

B1(tn) datm) - Fni(tm)
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Ya definidos los elementos necesrarios, nuestra incognita serd una matriz E €

RWp=Dx(n=1) ta] que

O(X)E~ X. (7.1.7)

7.2. Ejemplo: SINDy en el replicador clasico

Ejemplo 1

Para comenzar, miramos el caso de un juego matricial simétrico de dos jugadores,

cada uno con dos estrategias posibles. Utilizamos la siguiente matriz de payoff

0 7
10 0

I

cuya ecuacion del replicador, tal como vimos en 5.1.3, puede reducirse a
t=z(l—x)(7—17x). (7.2.1)

Para aproximar esta ecuacién del replicador utilizando SINDy, creamos un base
de datos con m € N trayectorias distintas, cada una con un punto inicial elegido de
forma aleatoria. A continuacién mostramos dos aproximaciones.

Para la primera aproximacion, hemos elegido m = 3 puntos iniciales aleatorios
con distribucion uniforme sobre el simplex, para cada uno de ellos hemos aproxima-
do su trayectoria hasta un tiempo final t; = 0,01 con un paso d; = 0,001 (usando el
método RK-45 tal como aclaramos al inicio del capitulo). Esta serd la base de datos
de trayectorias que utilizaremos para ajustar el método SINDy.!. Utilizamos la fami-
lia de funciones ©(z) = {z,z?, ...,2%} y definimos el hiperpardmetro de umbralado
como A =0, 3.

Una vez creada la base de datos y elegidos el hiperparametro A > 0 y la familia de

funciones ©, podremos escribir nuestro problema de aproximacién de una dinamica

Para observar la base de datos utilizada y el ajuste via SINDy véase el archivo
ejl_replicador_ clasico.ipynb.
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como en 7.1.7. Resolvemos este sistema usando el Algoritmo 1, implementado a

través de PySINDy (ver [7]), a partir de lo cual obtenemos siguiente dindmica:
& = 7,00002 — 24,000822 + 17,00722% = (0,9994 — )(7,0045 — 17,0072). (7.2.2)

Como puede observarse tras una primera inspeccion, es muy similar a la dinamica del
replicador original, 7.2.1. Previo a un analisis del error, en la Figura 7.1, comparamos
algunas trayectorias de la dinamica del replicador original, 7.2.1, con trayectorias
de nuestra aproximacién, 7.2.2 (aproximadas con un método RK-45 con paso d; =
0,001). Las trayectorias graficadas parten de puntos iniciales que estan por fuera de
la base de datos con la que hemos entrenado la dindmica de SINDy, como se puede

observar, en estos casos SINDy logra una trayectoria casi idéntica a la original.

0.7 4 — 1z, =0.2 (oTiginal)
x, =0.2 (modelada)

— 1, =0.4 (0riginal)

0.6 - =z, =04 (modelada)
= 2, =0.7 (OTiginal)
==z, =0.7 (modelada)

0.5 4

=t
0.4 1 g —— —
0.3 7
/
0.2 4
0.0 0.2 0.4 0.6 0.8 10 12 14

Figura 7.1: Trayectrias originales del replicador clésico 7.2.1 y las aproximadas por
su aproximacién con SINDy, 7.2.2

Analisis del error: Ejemplo 1

Dado un punto inicial xy € S,, y una dinamica del replicador
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junto con una segunda dindamica en .S,, que la aproxima,

x = [(%),

definimos el error de X con respecto a x para la trayectoria que comienza en xq € S,
a tiempo ¢t > 0 como

e(t;xo) = [1%(t) — x(t) | o- (7.2.3)

Definimos el error en el punto xy € S,, como
e(xo; X,x) = sup e(t; Xo). (7.2.4)
>0
De esta forma, el error de la dindmica X con respecto a la dinamica del replicador
X es

e(X,x) = max e(Xo; X, X). (7.2.5)
X0ESh

Esta dltima es la forma de cuantificar el error que mas informacion nos ofrece acerca
de la diferencia entre ambas dinamicas, su principal problema es que en principio, no
podemos calcular 7.2.5. Un criterio alternativo para cuantificar el error mas sencillo,

aunque menos informativo, es calcular o aproximar el valor
|f — flloo sobre S,. (7.2.6)

Con el fin de obtener una aproximacion del error 7.2.5 utilizaremos el siguiente

algoritmo



CAPITULO 7. DINAMICAS DE REPLICADOR A TRAVES DE SINDY 68

Algorithm 2 Aproximacion numérica del error en norma infinito entre soluciones
de dos E.D.O.
Entrada: Dos funciones f(x) y f(x) que definen las E.D.O.
Entrada: Intervalo temporal [0, ]
Entrada: Numero de puntos temporales k£ € N
Entrada: Conjunto de condiciones iniciales {:L‘(()k)} C Sn
1: teval < linspace(0, ¢, k)
2: €aprox < 0
3: Para cada x(()k) do
£ x(t) < SolvelVP(f, 2(”, tewn)

5: X(t) < Solvel VP (f, a:ék), teval)
6: Calcular la norma oo discreta:

e ¢ max [[x(t) — x(t)]|
7 Si e > eaprox then
8: €Caprox ¥ €
9: end Si
10: end Para
11: return e,;.ox

Para aproximar el error global (7.2.5) de la dindmica 7.2.2, llamada X(t), con
respecto a 7.2.1, llamada x(t), hemos usando al Algoritmo 7.2, tomando como
{xék)} C S el conjunto de k = 100 puntos equiespaciados en el intervalo (0,1).?

Obtuvimos la aproximacion

e(%,x) = 0,0038.

Como en este caso ambas dinamicas son polinomios de grado 3, calcular el error

de las expresiones de las derivadas (7.2.6) puede hacerse analiticamente. Llamamos
fx) = a(l =) (7 = 17z),
f(x) = (0,9994 — z) (7,0045 — 17,007 z:),

el error entre las derivadas nos queda

1f = Flloo fo.) = 0,0064.

En los ejemplos que siguen, nos centraremos en la aproximaciéon y el anélisis de 7.2.5,

si bien debemos aproximarla numéricamente y en un intervalo temporal finito, nos

2La implementacién del Algoritmo 7.2 puede verse en el archivo auxiliar utils 1D.py



CAPITULO 7. DINAMICAS DE REPLICADOR A TRAVES DE SINDY 69

da un criterio de cuanto difieren realmente las dindmicas a lo largo de un periodo

considerablemente superior al tiempo de la base de datos.

Ejemplo 2: Datos ruidosos

En este ejemplo continuaremos usando 7.2.1 como dindmica a ser aproximada
via SINDy. Para nuestra segunda aproximacion vamos a trabajar con una base de
datos con condiciones menos favorables. Para lograr esto, tomaremos una base de
datos de trayectorias aproximadas con un paso mas grande en el método RK-45,
disminuyendo su precisién, y agregando un ruido de distribucion N(0, €). El proble-
ma que resolveremos con SINDy en este caso es de la forma 6.1.3. Puntualmente,
la base de datos que usamos en este caso estd formada por 10 trayectorias cuyos
puntos iniciales se han elegido aleatoriamente de forma unforme sobre el intervalo
[0,1]. Las trayectorias con aproximadas con un paso d; = 0,005 (en comparacién
a 0,001 en el caso anterior) y tiempo final ¢; = 0,25, luego intervenimos en cada
punto de cada trayectoria agregando ruido de distribuciéon N (0, €), con € = 0,00025.
El umbral A lo mantenemos en 0, 3.

Tras plantear el sistema de la forma 7.1.7 con esta nueva base de datos y resolverlo
utilizando el Algoritmo 1 implementado a través de PySINDy obtenemos la dindmica

7= 35,9502 — 356,462 3% + 1410,049 #*

(7.2.7)
—2704,127 #* 4 2453,778 5 — 836,052 2°.

En primer lugar podemos ver que la derivada de 7.2.7 no es un polinomio de
grado 3, es decir, no hemos logrado recrear la verdadera forma de la dindmica. En la
Figura 7.2 podemos observar una comparacion entre las trayectorias de la ecuaciéon
del replicador 7.2.1 y la segunda aproximacién de 7.2.1 que hemos hecho con SINDy,
7.2.7. Comparando estas trayectorias con las de la Figura 7.1 podemos apreciar que
nuestra aproximaciéon de las trayectorias ha empeorado considerablemente al insertar
un ruido normal en las trayectorias y aumentar el paso con el que aproximamos las

trayectorias.
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0.7 4 x; = 0.2 (original)

x; = 0.2 (modelada)
xy = 0.4 (original)
061 xy =0.4 (modelada)
x; =0.7 (original)
x; =0.7 (modelada)
0.5+

0.4

0.3 A

0.2 1

0.0 0.2 04 06 08 10 12 14

Figura 7.2: Trayectrias originales del replicador clasico 7.2.1 y las aproximadas por
su aproximacién con SINDy con datos ruidosos, 7.2.7

Analisis del error: Replicador clasico con datos ruidosos

Para analizar el error entre la dindmica obtenida por SINDy con datos ruidosos,
7.2.7, y la dinamica original, 7.2.1, usamos el Algoritmo 7.2. Nuevamente, tomamos
{a:(()k)} C S; como el conjunto de k = 100 puntos equiespaciados en el intervalo (0, 1).
Al igual que en el ejemplo anterior, llamamos X a la dindmica correspondiente a
7.2.7 y notamos f(x) a la expresién de su derivada, andlogamente, x y f(x) son la
dinamica y derivada de la aproximacién 7.2.1 respectivamente. Asi, obtenemos la
aproximacion®

e(x, %) ~ 0,182, (7.2.8)

un error considerablemente mayor a la aproximacién hecha en 7.2.2. Es razonable
preguntarse si el principal culpable del deterioro del modelo obtenido via SINDy es
el ruido gaussiano o el aumento del paso de la base de datos. En la misma seccion en
la que hemos programado esta aproximacion puede verse que si uno utiliza la misma
base de datos, pero sin ruido gaussiano, logra una aproximacién con e(x,X) & 0,042,
la cual, aun que considerablemente peor que nuestra primera aproximacion 7.2.2, nos

indica una alta sensibilidad al ruido por parte de SINDy.

3vease archivo ejl_replicador clasico.ipynb en el repositorio de Github
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7.3. Ejemplo: SINDy en dindmicas de imitacion

En el replicador clasico sabemos que todas las derivadas que estamos observando
son polinomiales, por lo que es esperable que si a SINDy le damos una base de
datos bien confeccionada, logre aproximar la dindmica con relativamente poco error.
Ahora, estamos interesados en ver que pasa en el caso en el que la dinamica de la
cual provienen los datos no es de la forma de un replicador clasico, ya que hay
numerosas dindmicas de modelado mas complejas (véase [5] para ejemplos varios)
que se utilizar para modelar la evolucién de estrategias en poblaciones.

Para nuestro analisis, usaremos la dinamica de imitacién que introdujimos en
4.4.3, ya que la regla de imitacion nos permite incorporar funciones de distintos tipos
facilmente. De todas formas, aclaramos que el modelo no esta pensado solamente
para esta generalizacion del replicador, sino que simplemente utilizamos la dinamica
de imitacion por la variedad de trayectorias que nos provee dentro de un mismo
marco tedrico. Miraremos dos casos particulares, el primero sera el caso de la regla
de imitacién de Fermi, el cudl desarrollamos en el capitulo 5 (ver 5.2.3), y el segundo
serd el caso de una regla de imitaciéon Heaviside, que es la dinamica de "imitar al

mejor” (ver 5.2.5).

Regla de imitacién de Fermi con SINDy

En esta instancia aplicaremos SINDy a la ecuaciéon 5.2.3, la cual surge de aplicar
una dinamica de imitaciéon a un juego de replicador clasico en n = 2 con una matriz
de la forma 5.1.2 y una funciéon de imitacién sigmoide con g = 1. Para este ejemplo,
usaremos a = 5y b = 3, de forma tal que la ecuacién que aproximaremos con SINDy

es
1 1
1 4 e—52+3(1-z) | 4 e—3(1—2)+52

T =x(1l—2x) (7.3.1)

Para el entrenamiento con SINDy, utilizamos una base de datos que consta de
7 trayectorias distintas aproximadas con un método de un paso RK-45 con paso
d; = 0,005 con tiempo final ¢t; = 0,15. Tomamos A = 0,2 como hiperpardmetro de

SINDy, y como hicimos en el ejemplo anterior, tomamos O(z) = {z, 22, ..., 2%}. Tras
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utilizar la implementacion del Algoritmo 1 de PySINDy ([7]) para resolver 7.1.7,

obtenemos la siguiente dindmica para aproximar nuestra dindmica de imitacién®
T = —0,2642" — 7,0072% + 44,1594% — 86,5862 + 71,2902° — 21,5862°.  (7.3.2)

Como probamos en 5.2.3, la dindmica original tiene un equilibrio de Nash en
el interior del simplex en el punto 0,375 en conjunto con los equilibrios del borde.
Las raices reales de 7.3.2 son 0, 0.374258 y 1.004291, por lo que logramos obtener
una aproximacion muy cercana (inclusive menor al error de truncado del método
con el que aproximamos los datos) del equilibrio de Nash interior de la dindmica
de imitacién que estamos modelando. Debajo, en la Figura 7.3 comparamos las
evoluciones de la dindmica 7.3.2 de SINDy con trayectorias de 7.3.1 que no estan
en la base de datos con la que hemos ajustado el modelo. Como podemos ver en la
Figura 7.3, el polinomio de grado 6 no solamente tiene raices reales similares a la
ecuacion original, sino que ademaés, con relativamente pocos datos, logra aproximar
muy bien las trayectorias del juego de imitacion de Fermi. Las trayectorias con
etiqueta GT (ground truth) son las pertenecen a la dindmica original (tanto en esta

figura como en las siguientes).

1.0
--- ar

I, —— Xp=0.25 (model)
xp=0.75 (model)
—— xp=0.375 (model)

""" tend_train

0.8

0.6

x(t)

0.4

0.2

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
t

Figura 7.3: Comparacién entre trayectorias de la dindmica de Fermi original 7.3.1 y
la aproximaciéon de SINDy, 7.3.2

4vease ej2 _ dinamica_imitacion.ipynb en el repositorio del proyecto
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Analisis del error: SINDy aplicado a dinamica de Fermi

Para obtener una aproximacion del error de 7.3.2 con respecto a 7.3.1, hemos
aproximado 7.2.5 a través del Algoritmo 7.2. Nuevamente, llamamos X a la dindmica
asociada a nuestra aproximacion 7.3.2 y x a la dindmica original de la partimos, 7.3.1.
Asi, ejecutando el Algoritmo 7.2 con los mismos parametros que en 7.2.8, obtenemos
5

la aproximacion

e(x, %) ~ 0,0078.

Regla de imitaciéon con funcién Heaviside

Para este ejemplo nos mantendremos en el caso de una dinamica de imitacion en
n = 2, y nuevamente miraremos el caso en el que a;(x) = (Az); con A € R**?  sin
embargo, ahora tomamos la regla de imitacion de “imitar al mejor” que desarrollamos
en 4.4.3. La ecuaciéon nos queda de la forma 5.2.6. En el caso de dimensién dos, con

una matriz de la forma 5.1.2, tenemos la ecuacion
T = 2122[1(0 100) (a2 — bT1) — L(0400) (.21 — az2)].
Tras remplazar x = x5 y 1 = 1 — x obtenemos la dinamica
i = (1 = ) [Lo) (az = b(1 = 7)) = Lg.00) (b(1 — 2) — az) |. (7.3.3)

Simplificando, vemos que en 7.3.3, que z € (0,1) sea un equilibrio de Nash

interior es equivalente a cumplir
10 400y (=b+z(a+b)) — 1 o0y (@ — x(a+ b)) =0,
lo cual equivale a que se cumpla

—b+xz(a+b) > 0
b—xz(a+b) > 0,

(7.3.4)

—b+z(a+b) < 0
b—xz(a+b) < 0.

(7.3.5)

Svease archivo ej2 imitacion_clasico.ipynb en el repositorio de Github
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La condicién 7.3.4 es claramente descartable, por lo que no nos interesa ver cuando

se cumple 7.3.5. Esta condicion equivale a
b—xz(a+0b) =0,

por lo que para que un equilibrio de Nash interior en 7.3.3, en caso de existir, sera

T = a%b al igual que en el caso del replicador clasico (pues en este caso hemos
calculado el valor de z5).
Nos interesa ver como SINDy responde a esta dinamica de imitacién que surge
de la misma matriz que antes, en la que a =5y b = 3, y que clase de aproximacion
5 3

podemos obtener del equilibrio de Nash interior, en este caso (g, ;) (para nuestro

caso 3).

Para esto, hemos creado una base de datos con trayectorias a partir de los mismos
puntos iniciales y con el mismo paso en el método de un paso (con el mismo ¢5) que
utilizamos en el ejemplo anterior , y con el mismo valor de hiperpardmetro A = 0,2
¢, Mantenemos también la misma familia de funciones O(z) = {z,z?% ...,2%}. Al
igual que antes, una vez definida la base de datos, el hiperpardmetro y la familia de

funciones © resolvemos el sistema 7.1.7 con el Algoritmo 1 implementado a través

de PySINDy ([7]). En este caso, la dindmica resultante del ajuste de SINDy es
&= 15,942 — 219,712% + 1034,132% — 2188,082* + 2155,022° — 806,172°. (7.3.6)

En la Figura 7.4 podemos observar comparaciones entre trayectorias reales de
7.3.3 y las trayectorias de la dinamica proveniente de SINDy generada por 7.3.6. Las
trayectorias de ambas dinamicas han sido aproximadas con el método RK-45 con
paso d; = 0,001. Mirando la figura podemos apreciar una clara diferencia entre las
trayectorias de la dindmica original y las ajustada via SINDy, sin embargo ninguna

de las trayectorias se sale del simplex.

6El cambio de lambda surge a partir de una btisqueda sobre una grilla en el (0,1) para un A
mas 6ptimo, el costo computacional ese leve gracias a la rapida convergencia del algortimo STLSQ
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Analisis del error: Imitacion con Heaviside y aproximacién polinomial

A continuacién analizamos el error de 7.3.6 con respecto a 7.3.3 usando el Algo-

ritmo 7.2 con los mismos pardmetros que en 7.2.8. En este caso, obtenemos

e(x,%) ~ 0,108.

0.8 4

--- GT
—— xp=0.2 (model)
Xp=0.325 (model)

0.6

=
2 L R e N I I —— xp= 0.4 (model)
P B it R —— xp= 0.7 (model)
"""" 1‘-‘er’u‘litrau'\
021 “""—‘-:-_-_:A___ _________________
T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Figura 7.4: Comparacién entre trayectorias de la dindmica de imitaciéon verdadera,
7.3.3, y su aproximacién por SINDy con funciones polinomiales, 7.3.6

Como aclaramos la comienzo del capitulo, trabajamos bajo la suposiciéon de que
las ecuacion que buscamos aproximar es de la forma 4.3.1, por lo que en el caso de

7.3.3, al tomar O(z) = {z,...2%}, la aproximacién que estamos haciendo es
T =x(l—1) {l(ojm)(ax —b(1 —2)) — 100 (b(1 — ) — ax)] ~ x[z ax']. (7.3.7)
Por ende, lo que estamos intentando es aproximar la funciéon
(1—x) {1(0700)(ax —b(1 =) = 1(0,00)(b(1 — ) — am)},

con un polinomio de grado 5. Buscamos aplicar SINDy a 7.3.3 con una funcién de fa-
milias O(z) apropiada. Como sabemos, la familia de funciones {%, cos(nmx), sen(nmz) }pen

es una base ortonormal del espacio L?((—1,1)) con su cldsico producto interno

(f,9) = /11 f(z).g(x).dx.
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Si buscamos aproximar una dinamica de la forma 4.3.1 en n = 2, lo que obtenemos
es una dindmica de la forma 5.2.1, donde a;(x1,x2) y as(z1,x2) son las funciones de

pagos de cada estragia pura. Luego, bajo suposicion de
(1—a)ay(z,1—2)€ L*((-1,1)) y (1 —x).a9(x,1 — 2) € L*((—1,1)), (7.3.8)

tenemos que

(1—2)[a(x,1 —x)—as(x,1 —x)] = \O;% + 2—31 ay.cos(nmx) + B,.sen(nmx), (7.3.9)

para sucesiones {ay, }n>0, {4n}n>1 C R apropiadas. A partir de esto, para aproximar

una dinamica del replicador 4.3.1 en n = 2, cuya dindmica se reduce a
t=z(1—2z)a(z,1 —2x) —as(z,1 — x)],
bajo la suposicién 7.3.8, la familia de funciones
O(z) = {zcos(nmz), zsin(nmx), x <<y para algin N € N, (7.3.10)

emerge como una alternativa a la familia polinomial que estuvimos usando en los
ejemplos anteriores. En particular, mirando nuevamente la dinamica de imitacion

7.3.3, vemos que
(1 = 2) Lo (az — b(1 = 2)) — Loy (b(1 — @) — az) | € LX((~1,1)),

por lo que utilizar SINDy con ©(x) como en 7.3.10 parece ser una posible alternativa
para obtener una dindmica similar a 5.2.4.

Veamos que esta idea funciona. Para esto, hemos usamos la misma base de datos
que en el ajuste de 7.3.6, pero hemos remplazado la familia polinomial por 7.3.10
con N = 6, ademés hemos mantenido el umbral A\ = 0,2. En este caso tenemos la

matriz

x(ty) x(ty)sen(z(ty)) -+ a(ty)cos(6mx(ty))
O(X) = : : : € R™*P, = e RP,

x(tm) x(tm)sen(z(ty)) -+ x(tn)cos(6mx(ty,))
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a la hora de plantear 7.1.7. Al igual que antes, resolvemos usando el Algoritmo 1

implementado a través de PySINDy “. La dindmica resultante nos queda
& = —0,433 x cos(mz) — 0,417 z cos(2mx) (7.3.11)

En la Figura ?? vemos algunas trayectorias de la dindmica original, 7.3.3 (con la
etiqueta GT la igual que en graficos anteriores) en conjunto con trayectorias de
7.3.11.

C

Analisis del error: Imitacion Heaviside con aproximacion trigonométrica

Al igual que en los casos anteriores, aproximamos el error 7.2.5 a través del
Algoritmo 7.2. Usamos los mismos parametros y la misma notacién que en 7.2.8. En
este caso, obtenemos

e(x,%x) = 0,958,

un error muy pronunciado, ampliamente superior a todos los casos anteriores. Este
error elevado se lo atribuimos al efecto Gibbs: este nos dice que para cualquier
funcién de L?([—1, 1]), cerca sus discontinuidades, la serie de Fourier presenta fuertes
oscilaciones. En el caso de la dinamica 7.3.3, la discontinuidad de ambas funciones
Heaviside de la expresion sucede en el equilbrio de Nash. Si nuestro razonamiento es
correcto, para trayectorias con xy en un entorno de 0,375 debemos ver trayectoria
con errores mas altas (donde el error dado un punto inicial lo definimos como 7.2.4)

En la Figura 7.5 comparamos trayectorias de 7.3.3 (etiquetadas GT por ground
truth) con trayectorias de la dindmica 7.3.11, en particular, miramos trayectorias

con puntos iniciales cerca del equilibrio de Nash.

Tyéase archivo ej2_ dinamica_ imitacion
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Figura 7.5: Manifestacién del efecto Gibbs en la aproximacién 7.3.11 de la dinamica
de imitacion 7.3.3 cerca de su equilibrio de Nash

En efecto, una inspeccion inicial de las trayectorias de la Figura 7.5 nos muestra
que su error 7.2.4 es muy elevado. Para puntos cerca del equilibrio de Nash, la
aparicion del efecto Gibbs en el término de la derivada de la dindmica deviene en

un error muy pronunciado en el error de la trayectoria.

7.4. Propiedades del replicador clasico en SINDy

Ya hemos visto como plantear un problema de aproximacién para una ecuacion
del replicador genérica mediante el método SINDy con una famlia polinomial(7.1.7)
y en el caso de unidimensional, hemos implementado un caso con una familia trigo-
nométrica (7.3.11). En esta seccién, nos interesa analizar el modelo propuesto desde
un punto de vista mas tedrico, enfocandonos principalmente en el problema de apro-
ximar el replicador cldsico (4.1.1) con SINDy a través de la famlia polinomial 7.1.1.
Haremos este analisis a partir de los resultados de Zhang explicados en la ultima

secciéon del sexto capitulo.
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Teorema 7.4.1. Sea {x(t;) }1<j<m C S, un conjunto de datos una trayectoria pro-
veniente de un sistema del replicador clasico (4.1.1). Suponemos p > 3. Definimos

las matrices
@(X) c RmX(Np—l)’ X c ]Rmx(n—l)7 =c R(Np—l)x(n_l)

comoen 7.1.6 y 7.1.7. Aplicamos la iteracién de STLSQ 6.2.2 en el sistema de SINDy

O(X)E = X.
Sirg(©(X))=N(p) —1= (”‘;ﬂ’) — 1y para A > 0 vale que
fn mf FX) ., ix mé FX)..
[oin min [(O(X)'X)ji| = A > hdx mx 1(0(X)TX)l, (7.4.1)

donde S; esta definida como en 6.4.2, es decir,

S; == sop(Col,((8(X)1X))) = {j € [n]: (O(X)I X, # 0},

Np—1)x(n—1)

entonces existe una tnica soluciéon = € R y cumple que

O(r)E =4 Vz e R (7.4.2)
Adicionalmente, 6.2.2 la recupera la solucion tras una sola iteracion.

Demostracion. Al estar aproximando una sistema de la forma 7.1.5, el cual ademas

es un replicador clasico (cuya matriz llamaremos A), llamando

n—1
a, =1-— Z Lk,
k=1
podemos escribir la dindmica sobre la que estamos aplicando SINDy de la forma

T =pi(x1, ..., Tpoy) = xi{(A(an,x_n) — (an, X_p)A(an,x_p)], 1 <i<n-—1
(7.4.3)
En este caso, p; € Pslz1, ..., zn 1]\Po[z1,...,2n_1]. Aligual queen 7.1.2 y 7.1.3,

llamamos (1), ..., a(NV,) a la numeracién del conjunto de los multi-indices de grado
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menor igual a p para puntos de R"~! respetando el orden de las columnas de O(X).

Nuevamente, tomamos a(1) =0 € R*"!. Llamamos ® : R"™! — R ! a la funcién
[(I)(xh s 7xn—1)]j = (xla s 7xn—l)a(j)7 V2 S ,] S Np-
En particular, por como hemos definido ¢ vale que
®(m,(x(t;))" = Fila;(0(X)), VI<j<m.

Como estamos en el caso del replicador clasico reducido a n — 1 dimensiones

(7.4.3) y tomamos p > 3, sabemos que existen tinicos &, ..., &,_1 € RN~ tal que
T = pi(Ty, .., 0py) = O(ay, .. 2 ) VI <i<n—1,Vz e R"L (7.4.4)
En particular, tenemos que
ii(t;) = pi(ma(x(t;)) = ®(ma(x(t;))7& VI <j<m,V1<i<m. (7.4.5)
Como 7g(0(X)) = N, — 1, el problema ©(X)E = X tiene una tnica solucién
E=[0X)To(X)]'O(X).X = (0(X)'X,

ademas, la condicion que le exijimos a A > 0 nos garantiza que se recupera en un
paso por 6.4.2, para finalizar nos basta probar que E cumple 7.4.2.

Supongamos que existe 1 < i < n—1 tal que Col;(E) # &;. Luego, como la matriz
O(X) es de rango completo, y por ende {®(m,(x(¢;))) }1<j<m es base de RN 1 debe

existir 1 < j < m tal que
O(ma(x(t))" & # O(ma(x(t)))" .Coli(E),

pero

por lo que concluimos que ®(m,(x(t;))".& # #;(t;), lo cual contradice 7.4.5. Luego,

por lo que, por 7.4.5, debe cumplir 7.4.2. O]
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Conclusiones

A lo largo del trabajo estudiamos la aplicacion del método Sparse Identification
of Non-Linear Dynamics (SINDy) a dinamicas de Teoria de Juegos Evolutiva con
el objetivo principal de analizar en qué medida es posible reconstruir ecuaciones del
replicador y, a partir de ellas, identificar equilibrios de Nash, utilizando tinicamente
datos discretos de trayectorias del sistema. A lo largo de la tesis se desarrollé tanto el
marco teérico necesario de Teoria de Juegos Evolutiva (capitulos 2, 3, 4, 5) como de
las herramientas teoricas y préacticas necesarias para la comprension e implementa-
cién de SINDy (capitulo 6). Finalmente, se realizaron aproximaciones numéricas del
rendimiento de SINDy en este contexto junto con visualizaciones de las dinamicas
originales con sus aproximaciones (capitulo 7).

En el capitulo 7 hemos implementado de forma detallada el método SINDy so-
bre distintas variantes de la ecuacion del replicador. En primer lugar, se analizé el
replicador clasico unidimensional, donde la dindmica es polinémica y su estructura
algebraica encaja de manera natural la familia polinomial utilizada por SINDy. En
este caso (7.2.2) se observo que, siempre que la base de datos tenga un alto grado
de precisién, puede obtenerse una aproximaciéon con un error muy bajo y una alta
capacidad de aproximacion de la trayectoria inclusive por fuera de la base de datos.
Adicionalmente, se logré una aproximacion cerca del equilibrio de Nash interior de la

dindmica. Por otro lado, en 7.2.7 pudimos ver que ante un pequeiio ruido gaussiano

81
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y datos con un paso temporal aumentado, el incremento del error fue muy notable
y aun mas, se perdié la forma de polinomio de grado 3 que habia logrado preservar
el primer modelo.

Los experimentos muestran que la presencia de ruido puede introducir oscila-
ciones espurias en las derivadas estimadas, lo que a su vez conduce a un modelo
mucho menos estable y de peor ajuste. Esta sensibilidad al ruido es consistente con
lo reportado en la literatura (propia de SINDy) y constituye una limitacién conoci-
da del método, especialmente en sistemas donde la dinamica depende de derivadas
que deben estimarse numéricamente. El analisis del error realizado en el capitulo
7 muestra como dichas perturbaciones se traducen en errores globales significativa-
mente mayores. Esto sugiere que la calidad de la reconstruccion depende fuertemente
de la precision con la que se obtengan las trayectorias y de la capacidad de filtrar o
suavizar el ruido antes de aplicar SINDy.

Otra parte importante del trabajo fue la aplicacion del método a dindmicas de
imitacion, que extienden generalizan al replicador clésico incorporando funciones de
respuesta mas complejas (como la regla sigmoide de Fermi o reglas tipo Heaviside).
Utilizamos estos casos para evaluar el rendimiento de SINDy en dindmicas cuyas
derivadas no son parte de la familia de funciones que elegimos como ©(x), poniendo
asi una prueba mas exigente a su capacidad de generalizacion. A pesar de ello, los
resultados muestran que SINDy puede capturar de manera sorprendentemente pre-
cisa la dinamica efectiva. En particular, en el ejemplo basado en la regla de imitacion
de Fermi, SINDy recupera un polinomio de grado seis cuyas raices reales coinciden,
hasta errores de truncamiento numérico, con los equilibrios del modelo original. Esto
indica que, aunque la representacién polinémica es una aproximacion, puede ser sufi-
ciente para capturar la geometria esencial de las trayectorias del sistema. El andlisis
del error confirma este comportamiento favorable, mostrando diferencias pequenas
aun para puntos iniciales fuera del conjunto de entrenamiento. En el caso de la dina-
mica de imitacién con una regla de imitacion proveniente de la funcion Heaviside la
aproximaciéon lograda con SINDy fue considerablemente peor que la obtenida para

el replicador clasico y la dindmica de Fermi. A partir de esto, podemos conjeturar
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que las dindmicas con derivadas no continuas le traen problemas considerables a
SINDy.

En conjunto a la aplicacién de SINDy a varias dinamicas de replicador al final del
capitulo 7 se presenté un andlisis tedrico del caso de SINDy aplicado al replicador
clasico utilizando herramientas tedricas vistas en el capitulo 6, provenientes de [8].
Utilizando el resultado de Zhang (6.4.2), logramos probar que si nuestra matriz de
datos evaluados es de rango completo, tomando el hiperparametro de SINDy en un
cierto rango podemos recuperar la dindmica de replicador clasica. Esto nos provee
una base tedrica sélida para la aplicacion de SINDy a dinamica del replicador clasico
en dimensiones mas grandes sin necesidad de programar varios ejemplos puntuales.

En conjunto, los resultados obtenidos muestran que SINDy constituye una he-
rramienta valiosa para la identificacién de modelos dentro de la Teoria de Juegos
Evolutiva, especialmente cuando la dindmica subyacente pertenece (o es cercana)
a la familia del replicador clasico. Su capacidad para encontrar representaciones
dispersas permite no solo reconstruir ecuaciones diferenciales, sino también obtener
informacién cualitativa relevante, como la posicién de equilibrios internos o la es-
tructura de estabilidad de la dindmica. Aunque existen limitaciones entre ellas, la
sensibilidad al ruido, la eleccion del umbral A y la dependencia fuerte de la biblioteca
de funciones, el método se muestra robusto en escenarios controlados y flexible para
modelar dindmicas complejas.

Respecto a las lineas de investigacion que el trabajo deja abiertas, resultaria
interesante obtener una generalizacion de las condiciones suficientes del replicador
clasico hacia dinamicas de replicador mas generales, lo que permitiria justificar con
mayor solidez la aplicacién de SINDy en modelos de mayor dimensién. Asimismo,
seria valioso estudiar la evolucion del error de SINDy en dindmicas de imitaciéon y
en otras dinamicas relacionadas, en dimensiones superiores. En sintesis, el presente
trabajo demuestra que SINDy puede utilizarse de manera efectiva para aproximar
dindmicas de replicador y sus generalizaciones, y constituye un aporte tanto compu-

tacional como tedrico a la interseccién entre el ML y la teoria de juegos.
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