The critical random transposition random walk

Christina Goldschmidt (University of Oxford)

Miércoles 21/10/20 - 11 hs - Zoom


Abstract: Create continuous-time random walk on the symmetric group by successively composing independent transpositions chosen uniformly at random from among the possibilities, at rate n/2.  The uniform distribution is stationary for this Markov chain. A well-known result of Schramm states that this process undergoes a phase transition: if t < 1, the cycles of the permutation at time t are O(log n) in size, whereas for t > 1, a positive proportion of the numbers {1,2,\ldots,n} are contained in giant cycles, whose relative sizes are distributed approximately as Poisson-Dirichlet(0,1) (so that although the whole random walk is far from having reached stationarity, it has mixed on part of the space).  In this talk, I will characterise the behaviour of the critical random transposition random walk, and shed light on the emergence of the Poisson-Dirichlet distribution.  This is joint work with Dominic Yeo.

Para información de acceso a la transmisión interactiva escribir a Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Contacto

Departamento de Matemática
Pabellón I - Ciudad Universitaria
1428 - Buenos Aires REPÚBLICA ARGENTINA

  • dummy+54 (11) 5285-7618

  • dummy secre@dm.uba.ar

Search