CONTENIDO DE LA MATERIA:
- Descripción de la problemática. Ejemplos: Dinámica de poblaciones, Mecánica clásica. Diagramas de fase. Ejemplos: Ecuaciones de Lotka-Volterra, Campos conservativos, Campos gradiente.
 - Existencia y unicidad local de soluciones. Prolongabilidad. Soluciones maximales. Continuidad respecto de datos y parámetros. Diferenciabilidad. Más regularidad.
 - Noción de flujo. Equilibrios. Puntos periódicos.
 - Sistemas lineales: El espacio de soluciones. Método de variación de constantes. Resolución de sistemas lineales autónomos. Nociones de estabilidad.
 - Sistemas no lineales: Conjuntos invariantes. Estabilidad de equilibrios. Funciones de Liapunov. a y w límites.
 - Perturbaciones de sistemas lineales: Variedades estable e inestable. Estabilidad Lineal.
 - Soluciones periódicas: Sistemas lineales periódicos. Multiplicadores de Floquet. Estabilidad de Liapunov de soluciones periódicas. Estabilidad orbital. El mapa de Poincaré. El Teorema de Poincaré-Bendixon.
 - Aplicaciones.
 
